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Abstract: This article presents an algorithm for the numerical solution of an initial-boundary value
problem for a symmetric t-hyperbolic system of partial differential equations. This problem is based
on continual filtration model, which describes the propagation of seismic waves in a poroelastic
medium saturated with a fluid characterized by such physical parameters as the propagation veloci-
ties of longitudinal P- (fast and slow) and transverse S-waves, the density of the medium materials,
and porosity. The system of linearized equations of saturated porous media is formulated in terms
of physical variables of the velocity–stress tensor of the porous matrix and the velocity–pressure of
the saturating fluid in the absence of energy dissipation. The solution is implemented numerically
using an explicit finite difference upwind scheme built on a staggered grid to avoid the appearance
of oscillations in the solution functions. The program code implementing parallel computing is devel-
oped in the high-performance Julia programming language. The possibility of using the approach is
demonstrated by the example of solving the problem of propagation of seismic waves from a source
located in the formation. Computational experiments based on real data from oil reservoirs have
been implemented, and dynamic visualization of solutions consistent with the first waves arrival
times has been obtained.

Keywords: symmetric t-hyperbolic system; poroelastic medium; finite difference method; seismic
waves

1. Introduction

Mathematical modeling plays an essential role in the development of new geophys-
ical technologies, which makes it possible to provide synthetic wave fields for various
arrangements of sources and receivers of acoustic vibrations in models of media with a
given complexity of internal structure. Computer modeling is especially important in
view of the complexity of conducting an experimental study of internal non-stationary
physical processes in fluid-saturated elastically deformable porous structures [1,2]. The
development of computer simulation methods for realistic models of filtration mechanics
in geophysical applications stimulates progress in many other fields of research, such as
medicine, biotechnology, materials science, chemistry, micro- and nanofluidics, and geo-
sciences [3–7]. Hyperbolic systems of partial differential equations are found in modeling
separation and reaction engineering problems.

The main approach to the study of wave processes in liquid-saturated porous media
is based on the Frenkel–Biot theory [8,9]. The model, which describes the processes of
deformation of an elastic porous medium and the flow of fluid in it, is macroscopic, i.e.,
assumes that the space is filled with an enclosing poroelastic two-phase medium, and the
phases corresponding to the porous solid and the liquid contained in the pores are present
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at each point in space. The Frenkel–Biot type models consist of two groups of equations:
(I) equations of the theory of elasticity taking into account the internal forces associated
with the influence of fluid pressure in pores on the stress-strain state of the medium, and
(II) equations of fluid filtration in pores taking into account changes in the volume of the
pore space filled with fluid due to deformation of the medium.

A continuum filtration model that satisfies the laws of thermodynamics was proposed
in [10,11]. In this theory, the properties of a saturated porous medium are described
using such physical parameters as the propagation velocities of two longitudinal waves
and one transverse acoustic wave, the partial densities of the porous matrix and the
saturating liquid, and the permeability coefficient. The continuum filtration approach
makes it possible to describe the poroelastic medium with a smaller number of model
parameters than in the Frenkel–Biot theory of poroelasticity and with a better agreement
with experimental data [12].

The main tool for studying the applied problems of the theory of poroelasticity is
numerical modeling, which allows conduction of numerical experiments with fully con-
trolled input data and thereby reliably verifying hypotheses and formulating criteria for
the manifestation of fluid mobility in seismic data. In [13–25], the propagation of seis-
mic waves in porous media in the presence of energy dissipation was studied. Finite
difference methods for solving poroelasticity problems have been formulated in several
ways. In [13,14], the central difference method was used in terms of displacements. A
semi-analytical method for solving a system of poroelasticity equations in terms of dis-
placements is proposed in [15,16]. In [17], the problem was investigated by means of a
predictor-corrector scheme for a system of velocity-stress equations. In [20], a spectral
method was used, where the time derivatives are approximated through Laguerre functions
(polynomials). The numerical solution of linear two-dimensional dynamic problems for
porous media by the finite difference method together with the discrete PML model was
used in [19] for the absorbing boundaries. The PML is introduced by Berenger (1994) for
electromagnetism. Many authors have applied the PML to various wavefields simulations:
Zeng et al. (2001) analyzed the PML in numerical modeling of the poroelastic media in
time domain [14]. In [2], the PML is applied to the poroelastic waves in frequency domain
and is used for the absorbing boundaries. The simplified wave equation with the PML
attenuation term in time domain is used in [3]. Computational algorithms based on the
finite element method have been successfully used to simulate the dynamics of hydraulic
fracturing crack development in a three-dimensional formulation [26]. The development of
multiprocessor systems stimulated the development of computational methods for solving
seismic problems [27,28]. The grid-characteristic numerical method, which takes into ac-
count the internal mathematical structure of the hyperbolic problem—the propagation of
discontinuities along the characteristics—has been successfully applied to the numerical
solution of the direct problem of wave propagation in a heterophase medium [29].

In this paper, a numerical solution of the dynamic poroelasticity problem is obtained
within the framework of a continuous filtration model. The features of the discretization of
linearized poroelasticity equations of physical variables are considered. A feature of the
model of a homogeneous, isotropic liquid-saturated porous medium is the specification
of its properties by experimentally measurable velocities of longitudinal fast and slow P
and transverse S acoustic waves in a two-phase medium. The difference algorithm is based
on the finite difference method using an upwind staggered difference scheme to avoid the
appearance of oscillations in solution functions [30]. The implementation of the scheme
is sufficiently universal for calculations on a rectangular grid with the setting of various
boundary conditions for pressure and stresses. The program code for the implementation
of the algorithm was developed using the high-performance Julia programming language,
since the explicit computational scheme allows efficient parallelization of cyclic sections
of the algorithm. The stability of the scheme is ensured by selecting the grid steps in time
and in spatial variables to satisfy the Friedrichs–Courant–Lewy criterion. The possibilities
of the approach used are demonstrated by two examples of numerical experiments using
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realistic sets of parameter values and types of functions describing a seismic source. A
visualization of the solution describing the change in the velocity of propagation of seismic
waves in a poroelastic formation is obtained.

2. Material and Methods
2.1. Statement of the Problem

Let us turn to the mathematical formulation of the continuum model for a two-
dimensional dynamic problem. It is expressed as the initial-boundary problem for a
symmetric t-hyperbolic system. The main equations are based on the laws of momentum
conservation, Hooke’s laws, and are consistent with the thermodynamics conditions. A
half-plane filled with a liquid-saturated porous medium is considered, with parameters
characterizing each of the components of such a medium.

It is assumed that the liquid completely fills the pores. The distribution of phases in
space is described by such a macroscopic parameter as porosity (the volume concentration
of voids filled with fluid in the medium).

The propagation of seismic waves in these media in the absence of energy loss is
described by the following initial-boundary value problem in terms of the velocity com-
ponents of the saturating fluid, the velocity of the solid matrix, the fluid pressure, and
the stress tensor [19–22,24,25]. The values related to the solid phase of the elastic medium
are denoted by the subscript “s”, and to the mobile phase of the saturating liquid—by the
subscript “l”. Thus, partial density of an elastic porous medium is denoted as ρs and a
partial density of a liquid is denoted as ρl . Partial densities are determined through the
physical densities of the porous medium ρ

f
s and liquid ρ

f
l , and porosity—, and together

they form a density of the porous medium ρ0, as follows:

ρ0 = ρ
f
s (1− d0) + ρ

f
l d0 = ρs + ρl

The problem considered in the domain t ∈ [0;+∞), x1 ∈ (−∞;+∞), x2[0;+∞) is
stated as the following system of equation:

The equation of motion for an elastic medium:

∂uj

∂t
+

1
ρs

(
∂σj1

∂x1
+

∂σj2

∂x2

)
+

1
ρ0

∂p
∂xj

= Fj, (1)

where for the two-dimensional case j = 1, 2;
→
u = (u1, u2)

T is the velocity vector of an
elastic porous medium, σjk—stress tensor components, k = 1, 2, p—porous pressure, Fj—is
a source function components; the equation for saturating fluid motion:

∂vj

∂t
+

1
ρ0

∂p
∂xj

= Fj, (2)

is expressed in the form of conservation laws in the linearized case, where
→
v = (v1, v2)

T is
the velocity vector of a liquid;

Hooke’s law for a solid matrix (elastic medium):

∂σjk

∂t
+ µ

(
∂uk
∂xj

+
∂uj

∂xk

)
+

(
ρs

ρ0
K− 2

3
µ

)
δjkdiv

→
u − ρs

ρ0
Kδjkdiv

→
v = 0, (3)

where δjk is the Kronecker symbol;
Hooke’s law for a saturating liquid is expressed as follows:

∂p
∂t
−
(

K− ρs

ρ0
α

)
div
→
u +

ρl
ρ0

αdiv
→
v = 0. (4)
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Initial conditions:

uj
∣∣
t=0 = vj

∣∣
t=0 = σjk

∣∣∣
t=0

= p|t=o = 0, (5)

Boundary conditions on the free surface in the plane:

σ22 + p|x2=0 = σ12|x2=0 =
ρl
ρ0

p
∣∣∣∣
x2=0

= 0, (6)

where K = λ + 2
3 µ, λ > 0 and µ > 0 are the Lame coefficients, and α = γ + K is the

sum of two modules of volumetric compression of solid K and liquid γ components of
a heterophase medium, which characterizes the two-phase porous medium. The elastic
moduli K > 0, µ > 0, and γ > 0 (K, µ, γ ∈ R) are expressed in terms of the propagation
velocities of two longitudinal fast and slow P-waves denoted as cp1 , cp2 , respectively, and
transverse seismic S-wave denoted cs as follows [16,17]:

µ = ρsc2
s ,

K =
ρ0

2
ρs

ρl

(
c2

p1
+ c2

p2
− 8

3
ρl
ρ0

c2
s −

√
(c2

p1
− c2

p2
)2 − 64

9
ρlρs

ρ2
0

c4
s

)
,

γ =
ρ0

2

(
c2

p1
+ c2

p2
− 8

3
ρs

ρ0
c2

s +

√
(c2

p1
− c2

p2
)2 − 64

9
ρlρs

ρ2
0

c4
s

)
.

In the two-dimensional case, the Equations of system (1)—(4) consist of eight partial
differential equations of the following form:

∂u1

∂t
+

1
ρs

∂σ11

∂x1
+

1
ρs

∂σ12

∂x2
+

1
ρ0

∂p
∂x1

= F1, (7)

∂u2

∂t
+

1
ρs

∂σ21

∂x1
+

1
ρs

∂σ22

∂x2
+

1
ρ0

∂p
∂x2

= F2, (8)

∂v1

∂t
+

1
ρ0

∂p
∂x1

= F1, (9)

∂v2

∂t
+

1
ρ0

∂p
∂x2

= F2, (10)

∂σ11

∂t
+ 2µ

∂u1

∂x1
+

(
ρs

ρ0
K− 2

3
µ

)(
∂u1

∂x1
+

∂u2

∂x2

)
− ρs

ρ0
K
(

∂v1

∂x1
+

∂v2

∂x2

)
= 0, (11)

∂σ21

∂t
+ µ

(
∂u1

∂x2
+

∂u2

∂x1

)
= 0 (12)

∂σ22

∂t
+ 2µ

∂u2

∂x2
+

(
ρs

ρ0
K− 2

3
µ

)(
∂u1

∂x1
+

∂u2

∂x2

)
− ρs

ρ0
K
(

∂v1

∂x1
+

∂v2

∂x2

)
= 0, (13)

∂p
∂t
−
(

K− ρs

ρ0
α

)(
∂u1

∂x1
+

∂u2

∂x2

)
+

ρl
ρ0

α

(
∂v1

∂x1
+

∂v2

∂x2

)
= 0, (14)

Boundary condition (6) only for a porous layer saturated with a liquid with a density
ρl > 0 takes the following form with respect to the functions σ22 and p:

σ22|x2=0 = σ12|x2=0 = p|x2=0 = 0, (15)

We write the system (7)–(14) in a matrix for

A
∂w
∂t

+ B
∂w
∂x1

+ C
∂w
∂x2

= D,
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where w = (u1, u2, v1, v2, σ11, σ12, σ22, p)T and matrices A, B, C, D have the following
form:

A =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, B =



0 0 0 0 1
ρ0,s

0 0 1
ρ0

0 0 0 0 0 1
ρ0,s

0 0
0 0 0 0 0 0 0 1

ρ0

0 0 0 0 0 0 0 0
ρ0,s
ρ0

K + 4
3 µ 0 − ρ0,s

ρ0
K 0 0 0 0 0

0 µ 0 0 0 0 0 0
ρ0,s
ρ0

K− 2
3 µ 0 − ρ0,s

ρ0
K 0 0 0 0 0

ρ0,s
ρ0

α− K 0 ρ0,l
ρ0

α 0 0 0 0 0


,

C =



0 0 0 0 0 1
ρ0,s

0 0
0 0 0 0 0 0 1

ρ0,s
1
ρ0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

ρ0

0 ρ0,s
ρ0

K− 2
3 µ 0 − ρ0,s

ρ0
K 0 0 0 0

µ 0 0 0 0 0 0 0
0 ρ0,s

ρ0
K + 4

3 µ 0 − ρ0,s
ρ0

K 0 0 0 0
0 ρ0,s

ρ0
α− K 0 ρ0,l

ρ0
α 0 0 0 0


,

To find a numerical solution of the dynamic problem for the poroelasticity Equations (7)–(15),
a discrete analogue is constructed. An algorithm for computing a solution based on an
explicit scheme is built on a uniform staggered grid using the finite difference method.

Since in problem (7)–(15) the boundary conditions are set only for three functions (15)
on the left boundary at x2 = 0, for the remaining functions on the right boundary of a
sufficiently large area, the conditions for the decay of functions at infinity are assumed. To
obtain the numerical solution, we use an upwind difference scheme, which approximates
the derivatives, starting from the right boundary (a rather large value is taken instead
of infinity) along the x2-axis moving to the left to x2 = 0. To ensure the convergence
of a numerical solution based on an explicit difference scheme, it is necessary to choose
steps in time and space variables so that they satisfy the Courant–Friedrichs–Lewy (CFL)
conditions, i.e., the following inequalities hold:

max(λi(B))
∆t
h1
≤ 1, max(λi(C))

∆t
h2
≤ 1,

where λi(B) are the eigenvalues of the matrix B and λi(C) are the eigenvalues of the matrix
C, i = 1, . . . , 8, h1-step along x1 axis, and h2 is the step along x1 axis.

The flowchart of the numerical solution is shown on Figure 1:

2.2. Discrete Approximation of the Problem

The use of the finite difference method has shown its effectiveness for the numerical
solution of the problem stated on the constructed uniform difference grid in the region
QT = [0, T] × Ω , where Ω = [0, R] × [0, L] is specified with a staggered arrangement
of nodes.

Let us introduce the following notation for such a uniform difference grid:

ω = ωτ ×ωh, ωh = ω
(1)
h ×ω

(2)
h ,

ωτ = {tn = nτ, n = 0, 1, . . . , Nt, Ntτ = T},

ω
(1)
h = {x1,i = ih1, i = 0, 1, . . . , N1, N1h1 = R},
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ω
(2)
h =

{
x2,j = jh2, j = 0, 1, . . . , N2, N2h2 = L

}
with a staggered arrangement of nodes shown in Figure 2.

Figure 1. Flowchart of the numerical solving of the dynamic poroelasticity problem.

Figure 2. Grid with a staggerred arrangement of nodes.

A similar grid was used in [18] to avoid the appearance of oscillations in the solution
functions when using central differences on an unstaggered grid. We chose the location
of the nodes on the distributed grid in such a way that the longitudinal components of
the velocity vectors

→
u and

→
v are determined by the direction of the variable x1 , i.e., u1

and
→
v are defined at the nodes (i + 1/2, j), and the transverse components u2 and v2 of the

indicated vectors are determined in the direction of the variable x2 , i.e., in nodes (i, j + 1/2),
the diagonal components of σ11 , σ22 the stress tensor and pressure are in nodes (i, j) , the
off-diagonal component σ12 is in nodes (i + 1/2, j + 1/2).

Due to the presence of numerous indices, we introduce the following designations
for the desired grid functions with the same letters as in the differential problem (7)–(14),
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but with the addition of a superscript h , as well as subscripts and superscripts denoting
node numbers: (

uh
1

)n

i,j
= u1(ih1, jh2, τ n),

(
uh

2

)n

i,j
= u2(ih1, jh2, τ n),

(
vh

1

)n

i,j
= v1(ih1, jh2, τ n),

(
vh

2

)n

i,j
= v2(ih1, jh2, τ n),(

σh
11

)n

i,j
= σ11(ih1, jh2, τ n),

(
σh

12

)n

i,j
= σ12(ih1, jh2, τ n),(

σh
22

)n

i,j
= σ22(ih1, jh2, τ n),

(
ph
)n

i,j
= p(ih1, jh2, τ n),

It is assumed that the entire region Ω = [0, R] × [0, L] consists only of a porous
medium, where 0 < L and L = Nh2 . Denote by ωh the set of nodes of the difference grid,
that is:

ωh =
{(

x1,i, x2,j
)
∈ ωh : i = 0, 1, . . . , N1, j = 0, 1, . . . , N2

}
.

Let us assign the following explicit difference scheme on a difference grid ω to the
differential problem:

(uh
1)

n+1
i+ 1

2 ,j−(uh
1)

n
i+ 1

2 ,j

τ + 1
ρs

(
(σh

11)
n
i+1,j−(σh

11)
n
i,j

h1
+

(σh
12)

n
i+ 1

2 ,j+ 1
2
−(σh

12)
n
i+ 1

2 ,j− 1
2

h2

)
+

1
ρ0

(ph)
n
i+1,j−(ph)

n
i,j

h1
=
(

Fh
1

)n+ 1
2

i+ 1
2 ,j

,

(16)

(uh
2)

n+1
i,j+ 1

2
−(uh

2)
n
i,j+ 1

2
τ + 1

ρs

(
(σh

12)
n
i+ 1

2 ,j+ 1
2
−(σh

12)
n
i− 1

2 ,j+ 1
2

h1
+

(σh
22)

n
i,j+1−(σh

22)
n
i,j

h2

)
+ 1

ρ0

(ph)
n
i,j+1−(ph)

n
i,j

h2
=
(

Fh
2

)n+ 1
2

i,j+ 1
2

(17)

(
vh

1

)n+1

i+ 1
2 ,j
−
(

vh
1

)n

i+ 1
2 ,j

τ
+

1
ρ0

(
ph
)n

i+1,j
−
(

ph
)n

i,j

h1
=
(

Fh
1

)n+ 1
2

i+ 1
2 ,j

, (18)

(
vh

2

)n+1

i,j+ 1
2

−
(

vh
2

)n

i,j+ 1
2

τ
+

1
ρ0

(
ph
)n

i,j+1
−
(

ph
)n

i,j

h2
=
(

Fh
2

)n+ 1
2

i,j+ 1
2

, (19)

(σh
11)

n+1
i,j −(σh

11)
n
i,j

τ + β1
(uh

1)
n
i+ 1

2 ,j−(uh
1)

n
i− 1

2 ,j

h1
+β2

(uh
2)

n
i,j+ 1

2
−(uh

2)
n
i,j− 1

2
h2

−
ρs
ρ0

K

(
(vh

1)
n
i+ 1

2 ,j−(vh
1)

n
i− 1

2 ,j

h1
+

(vh
2)

n
i,j+ 1

2
−(vh

2)
n
i,j− 1

2
h2

)
= 0,

(20)

(
σh

12

)n+1

i+ 1
2 ,j+ 1

2

−
(

σh
12

)n

i+ 1
2 ,j+ 1

2

τ
+ µ


(

uh
1

)n

i+ 1
2 ,j+1

−
(

uh
1

)n

i+ 1
2 ,j

h2
+

(
uh

2

)n

i+1,j+ 1
2

−
(

uh
2

)n

i,j+ 1
2

h1

 = 0 (21)

(σh
22)

n+1
i,j −(σh

22)
n
i,j

τ + β2
(uh

1)
n
i+ 1

2 ,j−(uh
1)

n
i− 1

2 ,j

h1
+ β1

(uh
2)

n
i,j+ 1

2
−(uh

2)
n
i,j− 1

2
h2

−
ρs
ρ0

K

(
(vh

1)
n
i+ 1

2 ,j−(vh
1)

n
i− 1

2 ,j

h1
+

(vh
2)

n
i,j+ 1

2
−(vh

2)
n
i,j− 1

2
h2

)
= 0,

(22)
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(ph)
n+1
i,j −(ph)

n
i,j

τ + β3

(
(uh

1)
n
i+ 1

2 ,j−(uh
1)

n
i− 1

2 ,j

h1
+

(uh
2)

n
i,j+ 1

2
−(uh

2)
n
i,j− 1

2
h2

)
+

ρl
ρ0

α

(
(vh

1)
n
i+ 1

2 ,j−(vh
1)

n
i− 1

2 ,j

h1
+

(vh
2)

n
i,j+ 1

2
−(vh

2)
n
i,j− 1

2
h2

)
= 0,

(23)

where coefficients βi, are calculated by the following formulas:

β1 =
ρs

ρ0
K +

4
3

µ, β2 =
ρs

ρ0
K− 2

3
µ, β3 =

ρs

ρ0
α− K.

We define an algorithm for the numerical solution of the problem as follows. Let the

values of the grid functions
(

uh
1

)n

i+ 1
2 ,j

,
(

uh
2

)n

i,j+ 1
2

,
(

vh
1

)n

i+ 1
2 ,j

,
(

vh
2

)n

i,j+ 1
2

,
(

σh
11

)n

i,j
,
(

σh
12

)n

i+ 1
2 ,j+ 1

2

,(
σh

22

)n

i,j
,
(

ph
)n

i,j
on the n -th time layer be known. Then the transition to the (n + 1) -th

time layer is carried out according to explicit Formulas (16)–(23), and due to the boundary
conditions, the calculation of grid functions σh

12 ,σh
22, and ph according to Equations (21)–(23)

starts from the lower left corner of the computational grid, and calculation of grid functions
uh

1 , uh
2 , and vh

2 by Equations (16)–(19) from the upper right corner. The algorithm of
numerical solving of the grid functions is shown on Figure 3.

Figure 3. Flowchart of the numerical solving of the grid functions.
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3. Results
3.1. Computational Experiments

According to the proposed algorithm, two computational experiments were per-
formed, simulating the propagation of seismic wave fields in a two-dimensional elastic
porous medium filled with a viscous fluid. The medium is homogeneous and isotropic, the
properties of its constituent materials are characterized by the velocities of two longitudinal
cp1 , cp2 and one transverse sound cs waves propagating in it. We define a two-dimensional
square-shaped region x ∈ Ω with a side of 100 m, in which zero initial conditions and
boundary conditions are specified on the left boundary for three functions σh

12 ,σh
22, and ph ,

and on the right boundary for functions uh
1 , uh

2 , and vh
2 for various parameter values and a

function describing a seismic wavelet.
The program code for the implementation of the algorithm was developed using the

new high-performance programming language Julia (free of charge and freely distributed
under the MIT license).

The calculations were implemented using parallel computing on a computer with the
technical characteristics shown in Table 1:

Table 1. Hardware description.

Description Technical Characteristics

Processor 16-core AMD Ryzen 9 3950X

Clock speed/Frequency 3.5 GHz (Matisse)

RAM 64 GB

The use of an explicit computational scheme, which contain the cyclic sections, enables
the software to create parallelized algorithm and allows the efficient use of the computa-
tional resources.

The dynamic visualization of the computational experiments results presented in this
paper was performed using ParaView software package.

3.1.1. First Computational Experiment

The real input data for physical parameters in the first computational experiment of
the problem are taken from [19] and are shown in Table 2:

Table 2. Input physical parameters and grid characteristics in the first computational experiment.

##
Name of the Input
Physical and Grid

Parameter
Notation Value Units

1 Matrix physical density ρ
f
s 1.5 g/cm3

2 Fluid physical density ρ
f
l

1 g/cm3

3 Fast longitudinal wave velocity cp1 2000 m/s

4 Slow longitudinal wave velocity cp2 450 m/s

5 Transverse wave velocity cs 1400 m/s

6 Porosity d0 0.2

7 Integration area along x1 axis R 100 m

8 Integration area along x2-axis L 100 m

9 Number of nodes along x1 axis N1 400

10 Number of nodes along x2 axis N2 400

11 Number of time layers Nt 105

12 Step along axis x1 h1
R
N1

= 100
400 = 0.25 M
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Table 2. Cont.

##
Name of the Input
Physical and Grid

Parameter
Notation Value Units

13 Step along axis x2 h2
L

N2
= 100

400 = 0.25 m

14 Step in time τ 9·10−5·h1

20
√

10
≈ 3.5575 · 10−7 s

15 The signal propagation time T 0.02135 s

16 Dimensionless source Parameter γ̃ 4

17 The source central Frequency f0 1 Hz

18 Source duration t0 1 S

The source function F(t, x1, x2) = (F1(t, x1, x2), F2(t, x1, x2)) is described by the fol-
lowing formulas:

F1(t, x1, x2) = f (t)
∂δ(x− x0)

∂x1
δ(x− x0),

F2(t, x1, x2) = f (t)δ(x− x0)
∂δ(x− x0)

∂x2
,

where the momentum function is described by the formula:

f (t) =
{
−2π2 f 2

0 · (t− t0) exp(−π2 f 2
0 · (t− t0)

2), t ≤ 2t0,
0, t > 2t0

x0 = (x0
1, x0

2) = (50, 14).

The graph of the function f (t) is shown in Figure 4.

Figure 4. Function f (t) in the first computational experiment.
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In this case, the two-dimensional delta function δ(x), x = (x1, x2) is approximated
using the “hat” function of the form:

δ(x) ≈ ∆1(x) =

exp
(
− ε2

ε2−|x|2

)
, |x| < ε,

0, |x| ≥ ε,

where ε→ 0 is the parameter. The partial derivative of this function with respect to the
variable xk, (k = 1, 2) has the form:

∂

∂xk
∆1(x) =

−
2ε2xk

(ε2−|x|2)
2 exp

(
− ε2

ε2−|x|2

)
, |x| < ε,

0, |x| ≥ ε.

Visualization of the results of computational experiments is shown in Figures 5 and 6.

Figure 5. Cont.
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Figure 5. Graph of the module of the solid phase velocity in the first computational experiment at
time intervals: (a) t = 0.00356 s, (b) t = 0.01067 s, (c) t = 0.02135 s.

Figure 6. Cont.



Symmetry 2022, 14, 1516 13 of 20

Figure 6. Graph of the module velocity vector of a liquid phase in the first computational experiment
at certain time intervals: (a) t = 0.00356 s, (b) t = 0.01067 s, (c) t = 0.02135 s.

Figures 5 and 6 show the dynamics of the modulus of the vectors
∣∣∣→u ∣∣∣ = √

u2
1 + u2

2

and
∣∣∣→v ∣∣∣ = √v2

1 + v2
2 from time t = 0.00356 s. to t = 0.02135 s. with certain time intervals.

The computational process in this experiment took 34 min.
On the dynamic graphs on Figures 5 and 6 we can observe that the velocity in a solid

phase change faster in time that in a liquid phase, which is in agreement with the observed
experimental data.

The seismograms of components u1(x2, t) and u2(x2, t) along the traces going through
the source point are shown in Figures 7 and 8, respectively.

Figure 7. Seismogram of u1(x2, t) component.
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Figure 8. Seismogram of u2(x2, t) component.

3.1.2. The Second Computational Experiment

In the second computational experiment, the different set of values of physical param-
eters shown in Table 3 and the form of the source function describing the seismic pulse of
the problem are taken from [20]:

Table 3. Input physical parameters and grid characteristics in the second computational experiment.

##
Name of the

Input Physical and Grid
Parameter

Notation Value Units

1 Matrix physical density ρ
f
s 1.5 g/cm3

2 Fluid physical density ρ
f
l

1 g/cm3

3 Fast longitudinal wave velocity cp1 2100 m/s

4 Slow longitudinal wave velocity cp2 500 m/s

5 Transverse wave velocity cs 1400 m/s

6 Porosity d0 0.2

7 Integration area along x1 axis R 7000 m

8 Integration area along x2-axis L 10500 m

9 Number of nodes along x1 axis N1 400

10 Number of nodes along x2 axis N2 400

11 Number of time layers Nt 5 · 105

12 Steps along axisx1 h1
R
N1

= 100
400 = 0.25 m

13 Steps along axis x2 h2
L

N2
= 100

400 = 0.25 m

14 Step in time τ 9·10−5h1√
4200

≈ 2.4303 · 10−5 s

15 The signal propagation time T 2.43 s

16 Dimensionless source parameter γ̃ 4

17 The source central frequency f0 1 Hz

18 Source duration t0 1 s
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Source function F(t, x1, x2) = (F1(t, x1, x2), F2(t, x1, x2)) is described by the follow-
ing formulas:

F1(t, x1, x2) = f (t) ∂δ(x−x0)
∂x1

δ(x− x0),

F2(t, x1, x2) = f (t)δ(x− x0)
∂δ(x−x0)

∂x2
,

where f (t) = exp
(
− (2π f0·(t−t0))

2

γ2

)
sin(2π f0 · (t− t0)) (Puzyrev impulse)

x0 = (3500 m, 1500 m)—source coordinates.
The delta function δ(x− x0) and its partial derivatives are approximated in a similar

way as in the first computational experiment using the “hat” function.
The graph of the impulse function f (t) is shown in Figure 9.

Figure 9. Function f (t) in the second computational experiment.

Figures 10 and 11 show the dynamics of the modulus of the vectors
∣∣∣→u ∣∣∣ = √u2

1 + u2
2

and
∣∣∣→v ∣∣∣ = √v2

1 + v2
2 from point of time t = 0.243 s to t = 2.43 s at certain intervals.

The seismograms of components u1(x2, t) and u2(x2, t) along the traces going through
the source point look similar to the seismograms shown in the first computational experiment.

The program code implementing parallel computing is developed in the high-performance
Julia programming language. The possibility of using the approach is demonstrated by the
example of solving the problem of propagation of seismic waves from a source located in
the formation. Computational experiments based on realistic data from oil reservoirs have
been implemented and dynamic visualization of solutions consistent with the first waves
entry times has been obtained.
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Figure 10. Cont.
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Figure 10. Graph of the module velocity of the solid phase
→
u in the second computational experiment

at particular time intervals: (a) t = 0.243 s, (b) t = 1.22 s, (c) t = 2.19 s, (d) t = 2.43 s.

Figure 11. Cont.
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Figure 11. Graph of the module velocity of the liquid phase in the second computational experiment
at particular time intervals: (a) t = 0.243 s, (b) t = 1.22 s, (c) t = 2.19 s, (d) t = 2.43 s.

4. Discussion

Thus, an original algorithm for the numerical solution of the initial-boundary value
problem for the poroelasticity system is presented. This problem models the propagation
of seismic waves in a poroelastic medium saturated with a fluid, characterized by such
physical parameters as the propagation velocities of longitudinal and transverse waves,
the physical density of the medium materials, and porosity. This approach has important
industrial applications. Modeling of seismic waves propagation is instrumental for seismic
surveys as the most reliable geophysical technique used to identify oil and gas prospects in
the geologic structures. This paper introduces a new approach to the computer simulation of
wave propagation processes in complex multiphase media. The proposed algorithm allows
efficient use of parallel computations on computers with multi-core processors. Thanks to
improvements in high-performance modern computing systems, the introduction of a new
approach to computer simulation technology may play a critical role in the field of data
processing and interpretation and in other applications. The use of a staggered grid method
enabled us to avoid oscillations of the eight solution functions in a two-dimensional case of
the problem. The solution is implemented using an explicit finite difference upwind scheme
built on a staggered grid using parallel computing. The continuum filtration approach
makes it possible to describe the poroelastic medium with a smaller number of model
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parameters than in the Frenkel–Biot theory of poroelasticity and with a better agreement
with experimental data.

The numerical modeling allows the conduction of numerical experiments with fully
controlled input data and thereby reliably verifying hypotheses and formulating criteria
for the manifestation of fluid mobility in seismic data. The program code implementing
parallel computing is developed in the high-performance Julia programming language. The
stability of the proposed scheme is ensured by the satisfaction of the Friedrichs–Courant–
Lewy criterion. Computational experiments based on real data from oil reservoirs have
been implemented, and dynamic visualization of solutions consistent with the first waves
arrival times has been obtained.

This work is mainly aimed at demonstrating the numerical method for solving the
stated poroelasticity problem, while the results of the theoretical study of the resolvability
conditions and the expression of the analytical solution in explicit form will be the subject
of a separate paper.

This investigation presents an algorithm for the numerical solution of an initial-
boundary value problem for a system of symmetric partial differential equations of
t-hyperbolic type. This will be crucial for research in various areas, such as medicine,
chemical engineering, micro and nanofluidics.

5. Patents

The authors are planning to create an easily usable interface allowing implementation
of solutions for various input data of physical parameters values and a source function
form based on the algorithm described in the article. Once this work is completed, a patent
will be obtained resulting from the work reported in this manuscript.
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