Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = parabolic curves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1184 KiB  
Article
Influence of Bragg Resonance on the Hydrodynamic Performance of a Fixed-Detached Asymmetric Oscillating Water Column Device
by Prakash Kar, Robert Mayon and Dezhi Ning
J. Mar. Sci. Eng. 2025, 13(6), 1115; https://doi.org/10.3390/jmse13061115 - 2 Jun 2025
Viewed by 446
Abstract
The present study analyzes the hydrodynamic performance of an asymmetric offshore Oscillating Water Column device positioned in close proximity to multiple bottom standing and fully submerged breakwaters and trenches. The breakwaters and trenches are located on the leeward side of the Oscillating Water [...] Read more.
The present study analyzes the hydrodynamic performance of an asymmetric offshore Oscillating Water Column device positioned in close proximity to multiple bottom standing and fully submerged breakwaters and trenches. The breakwaters and trenches are located on the leeward side of the Oscillating Water Column device. The structures are investigated in combination with a shore-fixed vertical wall. The analysis is carried out using the Boundary Element Method based on the linear potential flow theory. The results are compared with the existing analytical, numerical, and experiment results available in the literature. The effects of the various shape parameters of the submerged breakwaters/trenches and the shape parameters of the Oscillating Water Column device are investigated. The results show that the resonance effects on the efficiency performance increase as the number of breakwaters/trenches increases. The undulating bottom trench shape is effective in improving the efficiency of the Oscillating Water Column device compared to the breakwater. The efficiency bandwidth is greater in the case of a rectangular trench than in the case of a parabolic- or triangular-shaped trench. In addition, the first peak value in the efficiency curve for a lower frequency is higher in the case of a larger-draft Oscillating Water Column device front wall compared to that of the rear wall. This study demonstrates that in the long wave-length regime, a zero efficiency point is observed between two consecutive resonant peaks, whereas in the intermediate and short wave-length regimes, a trough and a zero efficiency point alternately occur between two consecutive resonance peaks. Various parameters relevant to the behavior of the Oscillating Water Column Wave Energy Converter, such as radiation susceptance, radiation conductance, hydrodynamic efficiency, and volume flux due to a scatter potential, are addressed. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

26 pages, 6588 KiB  
Article
Research on Quantitative Evaluation of Defects in Ferromagnetic Materials Based on Electromagnetic Non-Destructive Testing
by Xiangyi Hu, Ruijie Xie, Ruotian Wang, Jiapeng Wang, Haichao Cai, Xiaoqiang Wang, Xiang Li, Qingzhu Guan and Jianhua Zhang
Sensors 2025, 25(11), 3508; https://doi.org/10.3390/s25113508 - 2 Jun 2025
Viewed by 800
Abstract
Defects are a direct cause of failure in ferromagnetic components, which can be evaluated via electromagnetic non-destructive testing (ENDT) methods. However, the existing studies exhibit several limitations (e.g., inaccurate quantification, over-reliance on algorithms, and non-intuitive result presentation, among others) in quantitative defect evaluation. [...] Read more.
Defects are a direct cause of failure in ferromagnetic components, which can be evaluated via electromagnetic non-destructive testing (ENDT) methods. However, the existing studies exhibit several limitations (e.g., inaccurate quantification, over-reliance on algorithms, and non-intuitive result presentation, among others) in quantitative defect evaluation. To accurately describe the quantitative relationship between ENDT signals and defect dimensional parameters, the electromagnetic model and electromagnetic induction model are introduced in this paper to elucidate the physical mechanism of ENDT, as both models provide a basis for the selection of the constitutive relationship for simulation analysis. Then, a higher precision three-dimensional nonlinear finite element simulation model is established, and the effects of the excitation parameters and detection positions on signal characteristics are investigated. The simulation results indicate that the excitation frequency influences both the detection depth and sensitivity of ENDT, while the voltage amplitude affects the peak strength of the magnetic signal. Consequently, the excitation parameters are determined to be a 10 Hz frequency with a 25 V amplitude. Based on the characterization of signal peaks at positions of 0°, 90°, 180°, and 270°, the characteristic parameter KA of the peak electrical signal curve is proposed as a quantitative index for evaluating defects. The quantitative experimental results show that KA is related to the defect dimension. Specifically, the KA value monotonically decreases from a constant greater than 1 to a constant less than 1 as the defect length increases, KA is positively correlated with the defect width, and KA follows a parabolic trend (first increase and then decrease) as the defect depth increases. Notably, KA values associated with defect width and depth remain below 1. All the above findings provide a basis for evaluating defect dimensions. The results of this paper provide a novel ENDT method for evaluating defects, which is of great significance for improving the accuracy of ENDT and promoting its engineering applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

24 pages, 5378 KiB  
Article
Assessment of the Measured Mixing Time in a Water Model of Asymmetrical Gas-Stirred Ladle with a Low Gas Flowrate Part II: Effect of the Salt Solution Tracer Volume and Concentration
by Yansong Zhao, Xin Tao, Linbo Li, Zhijie Guo, Hongyu Qi, Jia Wang, Kun Yang, Wanming Lin, Jinping Fan and Chao Chen
Symmetry 2025, 17(5), 802; https://doi.org/10.3390/sym17050802 - 21 May 2025
Cited by 1 | Viewed by 507
Abstract
Mixing time, as a key parameter for evaluating ladle refining efficiency, has long attracted extensive attention from researchers. In typical experimental studies, salt solution tracers are introduced into ladle water models to assess the degree of mixing within the ladle. Previous studies have [...] Read more.
Mixing time, as a key parameter for evaluating ladle refining efficiency, has long attracted extensive attention from researchers. In typical experimental studies, salt solution tracers are introduced into ladle water models to assess the degree of mixing within the ladle. Previous studies have demonstrated that the volume of tracer can significantly influence the measured mixing time. However, the gas flow rates employed in these studies are generally relatively high, whereas, in industrial operations, especially during final composition adjustments, lower gas flow rates are often applied. To systematically investigate the effect of the salt solution tracer volume on the mixing efficiency in a ladle water model under asymmetrical gas stirring with a low gas flow rate, a 1:3-scaled water model was developed based on a 130-ton industrial ladle. The mixing behaviors corresponding to different tracer volumes were comprehensively analyzed. The results indicate that the relationship between tracer volume and mixing time is non-monotonic. As the tracer volume increases, the mixing time first decreases and then increases, reaching a minimum at 185 mL. When the tracer volume was small, the dimensionless concentration curves at Monitoring Point 4 exhibited two distinct patterns: A parabolic profile, which was when the tracer initially moved through the left and central regions and then slowly crossed the gas plume to reach the monitoring point. A sinusoidal profile, which was when the tracer predominantly circulated along the right side of the ladle. When the tracer volume exceeded 277 mL, the concentration curves at Monitoring Point 4 consistently exhibited a sinusoidal pattern. Compared with moderate gas flow conditions (8.3 L/min), the peak concentration at Monitoring Point 3 was significantly lower under a low gas flow (2.3 L/min), and the overall mixing time was longer, indicating reduced mixing efficiency. Based on the findings, a recommended tracer volume range of 185–277 mL is proposed for low gas flow conditions (2.3 L/min) to achieve accurate and efficient mixing time measurements with minimal disturbance to the flow field. It was also observed that when the tracer concentration was relatively low, the mixing behavior throughout the ladle became more uniform. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Fluid Mechanics)
Show Figures

Figure 1

14 pages, 10798 KiB  
Article
Flexible Surface Reflector Antenna for Small Satellites
by Dong-Seok Kang, Dong-Hun Keum, Jun-Hyeong Choi, Min-Hyuk Lee, Kitae Park, Hwa-Young Jung, Deok-Soo Kang, Ji-Hyeon Yun, Jae-Wook Lee and Jin-Ho Roh
Aerospace 2025, 12(5), 414; https://doi.org/10.3390/aerospace12050414 - 7 May 2025
Viewed by 653
Abstract
A novel deployable reflector antenna for small satellites has been designed, fabricated, and experimentally validated. The reflector utilizes a doubly curved flexible surface manufactured from a triaxially woven fabric-reinforced silicone (TWFS) composite. By leveraging high-strain composite materials, the design enables a highly compact [...] Read more.
A novel deployable reflector antenna for small satellites has been designed, fabricated, and experimentally validated. The reflector utilizes a doubly curved flexible surface manufactured from a triaxially woven fabric-reinforced silicone (TWFS) composite. By leveraging high-strain composite materials, the design enables a highly compact stowed configuration while maintaining precise surface accuracy upon deployment. The deployment mechanism is proposed to accommodate a 0.6 m diameter parabolic reflector within a minimal stowed volume, optimizing space efficiency for satellite integration. To validate this concept, a prototype of the reflector antenna has been fabricated and demonstrated the feasibility and effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Advanced Aerospace Composite Materials and Smart Structures)
Show Figures

Figure 1

15 pages, 778 KiB  
Article
Research on a Broadband Optical Monitoring Method with an Improved Error Compensation Mechanism
by Ming Ji, Yiming Guo, Yuhui Pei, Zhenjiang Qin, Weiji Liu and Chitin Hon
Coatings 2025, 15(5), 551; https://doi.org/10.3390/coatings15050551 - 5 May 2025
Viewed by 431
Abstract
In modern optical coating production, optical monitoring technology is an indispensable component. The traditional monochromatic monitoring technology used in current commercial and research institutions is usually only for a specific wavelength and cannot fully represent the characteristics of the film in the entire [...] Read more.
In modern optical coating production, optical monitoring technology is an indispensable component. The traditional monochromatic monitoring technology used in current commercial and research institutions is usually only for a specific wavelength and cannot fully represent the characteristics of the film in the entire spectral range. Moreover, for non-quarter-wave coating systems (such as multilayer or complex coating systems), a thickness change in a single coating may have a significant effect on the performance of the entire coating system. In this case, it may be difficult to use monochromatic monitoring to accurately determine the thickness of each layer, resulting in reduced monitoring accuracy. At present, although broadband optical monitoring can be monitored over a wide wavelength range, the stop-plating time may be misjudged due to error accumulation during the coating process. To solve these problems, a broadband optical monitoring method with an improved error compensation mechanism is proposed in this paper. An optimal function that combines the absolute error and shape similarity of the transmission spectrum is designed, and the transmission spectrum is optimized by the limited random search method. In addition, a breakpoint algorithm based on parabolic error curve prediction is designed for the first time in this paper, which avoids the problem of excessive deposition thickness encountered by traditional broadband monitoring methods in the automatic coating processes. To verify the effectiveness of the proposed method, a set of hardware verification platforms based on broadband optical monitoring is designed in this paper, and a 30-layer shortwave-pass filter is constructed as an example. Compared with the traditional time monitoring method (CTMM), the proposed broadband optical monitoring method (PBMM) has significant advantages in terms of the matching degree between the transmission spectrum and the target spectrum, as well as the average transmittance in the low-pass band. In summary, the broadband optical monitoring method with an improved error compensation mechanism proposed in this paper provides an effective solution for high-precision optical coating production and has high practical application value and research significance. Full article
(This article belongs to the Special Issue Developments in Optical Coatings and Thin Films)
Show Figures

Graphical abstract

18 pages, 12953 KiB  
Article
Microstructural Investigation and High-Temperature Oxidation Performance of K417G Alloy Prepared by Wide-Gap Brazing
by Zhun Cheng, Xin Lai, Jing He, Xiaoqiang Li, Jiafeng Fan and Fuqiang Lai
Crystals 2025, 15(5), 434; https://doi.org/10.3390/cryst15050434 - 2 May 2025
Viewed by 402
Abstract
K417G superalloy is widely applied in gas turbine components such as blades, vanes, and nozzles. In this work, the oxidation behavior and mechanism of K417G alloy prepared by wide-gap brazing were investigated in air at 800, 900, 1000, and 1100 °C. Microstructures of [...] Read more.
K417G superalloy is widely applied in gas turbine components such as blades, vanes, and nozzles. In this work, the oxidation behavior and mechanism of K417G alloy prepared by wide-gap brazing were investigated in air at 800, 900, 1000, and 1100 °C. Microstructures of the bonded joints differ in the wide-gap braze region (WGBR) and base metal (BM). The surface and cross-sectional morphology, composition, and structure of specimens were analyzed by XRD, SEM, and EDS after oxidation tests. The experimental data demonstrate that the WGBR (wide-gap brazed region) exhibits markedly superior oxidation resistance compared to the BM (base material) under elevated-temperature conditions exceeding 1000 °C. This performance disparity is quantitatively validated by oxidation kinetics analysis, where the weight gain curve of the WGBR demonstrates parabolic oxidation kinetics, as evidenced by its significantly lower parabolic rate constant relative to the BM. The oxide layers of the BM and WGBR are similar after oxidation at high temperatures of 800–900 °C, and they consist of an outermost layer of NiO, a middle mixed layer of Cr2O3, and an innermost layer of dendritic Al2O3. However, when the temperature is between 1000 and 1100 °C, the NiO on the surface of the BM spalls of due to thermal expansion coefficient mismatch in coarse-grained regions, resulting in oxidation mainly divided into outer layer Cr2O3 and inner layer Al2O3 and TiO2. Under high-temperature oxidation conditions (1000–1100 °C), a structural transition occurs in the oxide scale of the BM, with the underlying mechanism attributable to grain-coarsening-induced oxide scale destabilization. Specifically, the coarse-grained structure of the BM (characteristic grain size exceeding 50 μm) is exhibited. Therefore, the WGBR demonstrates outstanding oxidation resistance, as evidenced by the formation of a continuous Al2O3 scale with parabolic rate constants of about 1.38 × 10−3 mg2·cm−4·min−1 at 1100 °C. Full article
Show Figures

Figure 1

20 pages, 20736 KiB  
Article
Three-Dimensional Modified Cross-Section Hydrofoil Design and Performance Study
by Hongpeng Cao, Yudong Xie and Zilei Ji
Actuators 2025, 14(5), 217; https://doi.org/10.3390/act14050217 - 28 Apr 2025
Viewed by 488
Abstract
To improve the hydrodynamic performance of hydrofoils, this study combines the shape characteristics of flat and elliptical wings, uses parabolic function to fit the leading and trailing edges of hydrofoils, introduces the cross-section coefficient λ to characterize the cross-sectional size of hydrofoils along [...] Read more.
To improve the hydrodynamic performance of hydrofoils, this study combines the shape characteristics of flat and elliptical wings, uses parabolic function to fit the leading and trailing edges of hydrofoils, introduces the cross-section coefficient λ to characterize the cross-sectional size of hydrofoils along the spreading direction, and designs five hydrofoils with different cross-sections. The motion of the hydrofoil is simulated using the finite element analysis software Fluent to obtain the hydrodynamic performance curve of the hydrofoil and analyze the effect of different end face sizes on the performance of the hydrofoil. The results show that compared with the flat wing, the peak drag of the variable section hydrofoil with λ = 0.5 is reduced by 9.3%, the pitching moment is reduced by 23.1%, and the average power is raised by 17.4%. If the appropriate reduction in the cross-section coefficient is too small, it will exacerbate the wing tip vortex shedding, the hydrofoil surface pressure will be too concentrated, and the hydrofoil motion stability will be reduced. The lift coefficient, drag coefficient, and pitching moment coefficient of the hydrofoil are positively correlated with the cross-section coefficient λ, and positively correlated with the motion frequency. Full article
(This article belongs to the Special Issue Control System of Autonomous Surface Vehicle)
Show Figures

Figure 1

10 pages, 5272 KiB  
Article
Determination of the Fracture Locus of a Cor-Ten Steel at Low and High Triaxiality Ranges
by Axel Baruscotti, Nicholas Miori and Franco Concli
Appl. Sci. 2025, 15(7), 3569; https://doi.org/10.3390/app15073569 - 25 Mar 2025
Cited by 1 | Viewed by 337
Abstract
Cor-Ten steels, also known as weathering steels, are construction materials of growing importance in the field of architecture and crash barriers, not only due to their good mechanical and corrosion resistance properties but also for the appealing color of their oxides. However, a [...] Read more.
Cor-Ten steels, also known as weathering steels, are construction materials of growing importance in the field of architecture and crash barriers, not only due to their good mechanical and corrosion resistance properties but also for the appealing color of their oxides. However, a complete description of the fracture locus of Cor-Ten steels in both low and high triaxiality ranges is still lacking. The present study aims at integrating and extending the data available in the literature for this peculiar material by evaluating four different planar specimens with a mixed numerical–experimental methodology. A non-notched specimen was tested in terms of tension to calibrate the true stress–strain curve of the material after necking by means of an iterative process involving the FEM. Once the model had been calibrated, a tensile test of each specimen was simulated, and the corresponding results were validated using the experimental test data. From the FEM results, the quantities of interests, namely, the stress triaxiality, the equivalent plastic strain, and the normalized Lode angle, were extrapolated. Subsequently, the fracture locus of the Cor-Ten steel was determined through the interpolation of the experimental data collected in the present study as well as data available in the literature for low triaxiality ranges. The results confirmed the parabolic trend characterizing the fracture locus at low triaxiality suggested in the literature, and an exponential decreasing trend was found at higher triaxiality values after reaching a local maximum. The results thus confirm that the fracture locus of Cor-Ten steels, as generally found for metallic materials, cannot be completely described by a monotonic function. Moreover, it was found that the highly ductile behavior of the material induces a significant topology change in the specimens before failure, thus making it more complex to forecast the location of crack nucleation and, as a consequence, the stress state. Full article
Show Figures

Figure 1

16 pages, 10230 KiB  
Article
Numerical Simulation of Temperature Field Evolution and Distribution Range During Movement of Underground Coal Gasification Working Face
by Wei Li, Jian Liu, Lin Xin, Wei Li, Jianguo Fan, Xianmin Wang, Yan Ma, Weimin Cheng, Jiancai Sui and Maofei Niu
Energies 2025, 18(4), 931; https://doi.org/10.3390/en18040931 - 14 Feb 2025
Viewed by 496
Abstract
Studying temperature evolution and distribution range during underground coal gasification is essential to optimize process efficiency, ensure safe and stable operation and reduce environmental impact. In this paper, based on the Liyan Coal Mine underground gasification project, the moving grid setting is used [...] Read more.
Studying temperature evolution and distribution range during underground coal gasification is essential to optimize process efficiency, ensure safe and stable operation and reduce environmental impact. In this paper, based on the Liyan Coal Mine underground gasification project, the moving grid setting is used to simulate the moving heat transfer process of the underground coal gasification (UCG) flame working face (FWF). The results showed that the temperature distribution within the coal wall facing the flame is relatively narrow and remains concentrated within a limited range. Temperature distribution curves for T = 100 °C and T = 600 °C initially exhibit a nonlinear increase, reaching a maximum value, followed by a nonlinear decrease, ultimately trending towards a constant value. The maximum temperature influence ranges at ∆T = 10 °C (T = 30 °C) in the roof, left coal pillar, and floor are approximately 13.0 m, 9.0 m, and 10.1 m, respectively. The temperature values at the +1 m and +2 m positions on the roof exhibit a parabolic pattern, with the height and width of the temperature curve gradually increasing. By the end of the operation at t = 190 d, the length range of temperatures exceeding 600 °C at the +1 m position is 73 m, with a maximum temperature of approximately 825 °C, while at the +2 m position it is 31 m, with a maximum temperature of approximately 686 °C. Full article
(This article belongs to the Section H3: Fossil)
Show Figures

Figure 1

20 pages, 3734 KiB  
Article
Design and Pressure Pulsation Analysis of Pure Rolling External Helical Gear Pumps with Different Tooth Profiles
by Zhen Chen, Yingqi Li, Xiaoping Xiao, Chao He, Kai Zhu, Yangzhi Chen and Alfonso Fuentes-Aznar
Fluids 2025, 10(2), 44; https://doi.org/10.3390/fluids10020044 - 10 Feb 2025
Viewed by 724
Abstract
This paper investigates the design methodologies of pure rolling helical gear pumps with various tooth profiles, based on the active design of meshing lines. The transverse active tooth profile of a pure rolling helical gear end face is composed of various function curves [...] Read more.
This paper investigates the design methodologies of pure rolling helical gear pumps with various tooth profiles, based on the active design of meshing lines. The transverse active tooth profile of a pure rolling helical gear end face is composed of various function curves at key control points. The entire transverse tooth profile consists of the active tooth profile and the Hermite curve as the tooth root transition, seamlessly connecting at the designated control points. The tooth surface is created by sweeping the entire transverse tooth profile along the pure rolling contact curves. The fundamental design parameters, tooth profile equations, tooth surface equations, and a two-dimensional fluid model for pure rolling helical gears were established. The pressure pulsation characteristics of pure rolling helical gear pumps and CBB-40 involute spur gear pumps, each with different tooth profiles, were compared under specific working pressures. This comparison encompassed the maximum effective positive and negative pressures within the meshing region, pressure fluctuations at the midpoints of both inlet and outlet pressures, and pressure fluctuations at the rear sections of the inlet and outlet pressures. The results indicated that the proposed pure rolling helical gear pump with a parabolic tooth profile exhibited 42.81% lower effective positive pressure in the meshing region compared to the involute spur gear pump, while the maximum effective negative pressure was approximately 27 times smaller than that of the involute gear pump. Specifically, the pressure pulsations in the middle and rear regions of the inlet and outlet pressure zones were reduced by 33.1%, 6.33%, 57.27%, and 69.61%, respectively, compared to the involute spur gear pump. Full article
Show Figures

Figure 1

19 pages, 2373 KiB  
Article
Simplifying Data Processing in AFM Nanoindentation Experiments on Thin Samples
by Stylianos Vasileios Kontomaris, Anna Malamou and Andreas Stylianou
Eng 2025, 6(2), 32; https://doi.org/10.3390/eng6020032 - 8 Feb 2025
Viewed by 705
Abstract
When testing soft biological samples using the Atomic Force Microscopy (AFM) nanoindentation method, data processing is typically based on equations derived from Hertzian mechanics. To account for the finite thickness of the samples, precise extensions of Hertzian equations have been developed for both [...] Read more.
When testing soft biological samples using the Atomic Force Microscopy (AFM) nanoindentation method, data processing is typically based on equations derived from Hertzian mechanics. To account for the finite thickness of the samples, precise extensions of Hertzian equations have been developed for both conical and parabolic indenters. However, these equations are often avoided due to the complexity of the fitting process. In this paper, the determination of Young’s modulus is significantly simplified when testing soft, thin samples on rigid substrates. Using the weighted mean value theorem for integrals, an ‘average value’ of the correction function (symbolized as g(c)) due to the substrate effect for a specific indentation depth is derived. These values (g(c)) are presented for both conical and parabolic indentations in the domain 0 < r/H ≤ 1, where r is the contact radius between the indenter and the sample, and H is the sample’s thickness. The major advantage of this approach is that it can be applied using only the area under the force–indentation curve (which represents the work performed by the indenter) and the correction factor g(c). Examples from indentation experiments on fibroblasts, along with simulated data processed using the method presented in this paper, are also included. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

18 pages, 3504 KiB  
Article
Fluctuating Genetic Influences at Three Different Stages of Development of Dental Arches: A Complex System
by Toby Hughes, Zuliani Mahmood, Jamal Giri, Grant Townsend and Alan Henry Brook
Genes 2025, 16(2), 189; https://doi.org/10.3390/genes16020189 - 3 Feb 2025
Viewed by 1297
Abstract
Background/Objectives: The development of dental arches is a complex adaptive system with interactions between genetic and environmental factors. At different developmental stages, the relative contribution of these factors varies. The aims of this project were to identify the longitudinal changes of dental [...] Read more.
Background/Objectives: The development of dental arches is a complex adaptive system with interactions between genetic and environmental factors. At different developmental stages, the relative contribution of these factors varies. The aims of this project were to identify the longitudinal changes of dental arches in the primary, mixed and permanent dentition stages, using curve fitting methods on serial dental casts, and to investigate the contribution of the genotype to dental arch development. Methods: Longitudinal dental records from 125 monozygotic same-sex twin pairs, 89 dizygotic same-sex twin pairs, and 49 opposite-sex dizygotic twin pairs were used. Standardized model photographs were collected, and key landmarks were digitized. Fourth-order orthogonal polynomials were applied to the Cartesian data. Descriptive statistics were calculated, and structural equation models were developed to analyze the individual polynomial coefficients. The final models employed a genetic simplex framework, enabling the evaluation of how genetic and environmental influences changed over time. These changes were examined both quantitatively (e.g., variations in heritability) and qualitatively (e.g., the influence of different genes at various stages). Results: In the primary dentition, arches were typically parabolic, while in the permanent dentition, they tended to be more square-shaped. Asymmetry made a minor contribution to variation across all stages of development. Genetic analysis revealed that a core group of genes influenced arch shape over time, though their impact varied. Additionally, some genes were specific to certain developmental stages, with their relative contributions differing significantly. Notably, there was evidence of sexual heterogeneity in arch shape, particularly in the permanent dentition. Heritability was consistently high, both at individual developmental stages and throughout the overall developmental process. Conclusions: The degree of genetic influence at each developmental stage was substantial but it fluctuated between the primary, mixed, and permanent dentition stages. Full article
Show Figures

Graphical abstract

74 pages, 7040 KiB  
Article
The Lattice Boltzmann Method with Deformable Boundary for Colonic Flow Due to Segmental Circular Contractions
by Irina Ginzburg
Fluids 2025, 10(2), 22; https://doi.org/10.3390/fluids10020022 - 21 Jan 2025
Cited by 2 | Viewed by 1213
Abstract
We extend the 3D Lattice Boltzmann method with a deformable boundary (LBM-DB) for the computations of the full-volume colonic flow of the Newtonian fluid driven by the peristaltic segmented circular contractions which obey the three-step “intestinal law”: (i) deflation, (ii) inflation, and (iii) [...] Read more.
We extend the 3D Lattice Boltzmann method with a deformable boundary (LBM-DB) for the computations of the full-volume colonic flow of the Newtonian fluid driven by the peristaltic segmented circular contractions which obey the three-step “intestinal law”: (i) deflation, (ii) inflation, and (iii) elastic relaxation. The key point is that the LBM-DB accurately prescribes a curved deforming surface on the regular computational grid through precise and compact Dirichlet velocity schemes, without the need to recover for an adaptive boundary mesh or surface remesh, and without constraint of fluid volume conservation. The population “refill” of “fresh” fluid nodes, including sharp corners, is reformulated with the improved reconstruction algorithms by combining bulk and advanced boundary LBM steps with a local sub-iterative collision update. The efficient parallel LBM-DB simulations in silico then extend the physical experiments performed in vitro on the Dynamic Colon Model (DCM, 2020) to highly occlusive contractile waves. The motility scenarios are modeled both in a cylindrical tube and in a new geometry of “parabolic” transverse shape, which mimics the dynamics of realistic triangular lumen aperture. We examine the role of cross-sectional shape, motility pattern, occlusion scenario, peristaltic wave speed, elasticity effect, kinematic viscosity, inlet/outlet conditions and numerical compressibility on the temporal localization of pressure and velocity oscillations, and especially the ratio of retrograde vs antegrade velocity amplitudes, in relation to the major contractile events. The developed numerical approach could contribute to a better understanding of the intestinal physiology and pathology due to a possibility of its straightforward extension to the non-Newtonian chyme rheology and anatomical geometry. Full article
(This article belongs to the Special Issue Lattice Boltzmann Methods: Fundamentals and Applications)
Show Figures

Figure 1

23 pages, 7854 KiB  
Article
Microstructural Evolution and Oxidation Resistance of Fe-30Ni-15Cr Alloy for Internal Combustion Engine Valves Under Long-Term High-Temperature Exposure and Heat Treatment
by Yuguo Tu, Xueshan Xiao, Zhiyuan Zhu and Linzhen Zhou
Metals 2025, 15(1), 61; https://doi.org/10.3390/met15010061 - 12 Jan 2025
Viewed by 695
Abstract
Iron–nickel-based superalloy is an ideal substitute for the expensive Inconel 625 and Inconel 751 alloys. To elucidate the evolution of the microstructure and properties of Ni30 alloy under different thermal treatment conditions, a systematic study was conducted on the microstructural transformation of the [...] Read more.
Iron–nickel-based superalloy is an ideal substitute for the expensive Inconel 625 and Inconel 751 alloys. To elucidate the evolution of the microstructure and properties of Ni30 alloy under different thermal treatment conditions, a systematic study was conducted on the microstructural transformation of the alloy’s strengthening γ′ phase following solution treatment and aging, as well prolonged exposure at 750 °C, and the oxidation behavior of the Ni30 alloy was examined. During prolonged thermal exposure, grain growth occurs mainly in the initial stage, and after 200 h, the prolonged exposure time leads to a significant coarsening of γ′ precipitates, whose area fraction increases by more than 10 times compared to their unaged state. After 100 h of aging, the alloy reaches a peak tensile strength of 1270 MPa and a yield strength of 820 MPa; after 2000 h, the alloy maintains a relatively high strength with a slight decrease in ductility. The oxidation kinetic curve of Ni30 alloy follows the quasi-parabolic oxidation law at 750 °C, and its oxidation rate is consistently lower than 0.1 g·m−2·h−1 throughout the whole oxidation process, which indicates that it has excellent oxidation resistance. The external oxide layer of Ni30 alloy shows a bilayered structure, and no obvious surface porosity or flaking of oxidation products were observed throughout the high-temperature oxidation test. This study not only contributes to the improvement of material properties, but also promotes innovation and development in the field of high-temperature engineering applications that will help to meet the increasingly stringent requirements of high-temperature working environments. Full article
Show Figures

Figure 1

14 pages, 4751 KiB  
Article
The Influence of an Alternating Current Field on Pack Boriding for Medium Carbon Steel at Moderate Temperature
by Xiaoxiao Li, Wei Liu, Jianguang Yuan, Jiaye Yuan, Xiaobao Zhou, Taijun Pan and Yanjie Ren
Coatings 2025, 15(1), 39; https://doi.org/10.3390/coatings15010039 - 3 Jan 2025
Viewed by 799
Abstract
The influence of alternating current (AC) field on the pack boriding process for medium carbon steel was investigated through characterization of microstructure, phase composition, microhardness, and corrosion resistance of the boride layer and its mechanism was revealed. Results showed that the boride layer [...] Read more.
The influence of alternating current (AC) field on the pack boriding process for medium carbon steel was investigated through characterization of microstructure, phase composition, microhardness, and corrosion resistance of the boride layer and its mechanism was revealed. Results showed that the boride layer obtained by AC field boriding was composed of the outer FeB and the inner Fe2B phase, which was similar to that of conventional boriding. Meanwhile, the effective thickness of the boride layer and proportion of Fe2B increased gradually with increasing current during AC field boriding. The introduction of an AC field during the boriding process served dual purposes. First, it facilitated the decomposition of the boriding medium, leading to an elevation in the concentration of active boron atoms. Second, it reduced the activation energy required for atomic diffusion, thereby accelerating the diffusion of both boron and iron atoms. These combined effects significantly enhanced the hardness distribution and corrosion resistance of the steel. Further insights into the process were gained by fitting the parabolic kinetics curves, which confirmed that the boriding process in an AC field was exclusively controlled by diffusion. This study also clarified the growth mechanism of the boride layer within an AC field. Full article
Show Figures

Figure 1

Back to TopTop