Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (867)

Search Parameters:
Keywords = p38 Mitogen-Activated Protein Kinase (MAPK)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2972 KiB  
Article
Flavonoids from Cercidiphyllum japonicum Exhibit Bioactive Potential Against Skin Aging and Inflammation in Human Dermal Fibroblasts
by Minseo Kang, Sanghyun Lee, Dae Sik Jang, Sullim Lee and Daeyoung Kim
Curr. Issues Mol. Biol. 2025, 47(8), 631; https://doi.org/10.3390/cimb47080631 - 7 Aug 2025
Abstract
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a [...] Read more.
With increasing interest in natural therapeutic strategies for skin aging, plant-derived compounds have gained attention for their potential to protect against oxidative stress and inflammation. In this study, we investigated the anti-aging and anti-inflammatory effects of flavonoids isolated from Cercidiphyllum japonicum using a tumor necrosis factor-alpha (TNF-α)-stimulated normal human dermal fibroblast (NHDF) model. The aerial parts of C. japonicum were extracted and analyzed by high-performance liquid chromatography (HPLC), leading to the identification of four major compounds: maltol, chlorogenic acid, ellagic acid, and quercitrin. Each compound was evaluated for its antioxidant and anti-aging activities in TNF-α-stimulated NHDFs. Among them, ellagic acid exhibited the most potent biological activity and was selected for further mechanistic analysis. Ellagic acid significantly suppressed intracellular reactive oxygen species (ROS) generation and matrix metalloproteinase-1 (MMP-1) secretion (both p < 0.001), while markedly increasing type I procollagen production (p < 0.01). Mechanistic studies demonstrated that ellagic acid inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinases (MAPKs), downregulated cyclooxygenase-2 (COX-2), and upregulated heme oxygenase-1 (HO-1), a key antioxidant enzyme. Additionally, ellagic acid attenuated the mRNA expression of inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8 (IL-8), indicating its broad modulatory effects on oxidative and inflammatory pathways. Collectively, these findings suggest that ellagic acid is a promising plant-derived bioactive compound with strong antioxidant and anti-inflammatory properties, offering potential as a therapeutic agent for the prevention and treatment of skin aging. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 231 KiB  
Article
Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines
by Gorkem Ozdemir and Halil Mahir Kaplan
Curr. Issues Mol. Biol. 2025, 47(7), 574; https://doi.org/10.3390/cimb47070574 - 21 Jul 2025
Viewed by 270
Abstract
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers [...] Read more.
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers and contribute to their progression, we investigated Tempol’s anti-cancer potential in HT29 (colon) and CRL-1739 (gastric) cancer cells. Cells were treated with 2 mM Tempol for 48 h, with untreated cells as controls. We evaluated apoptosis (Bax, cleaved caspase-3, and Bcl-2), key signaling pathway activity (p-ERK, p-JNK, p-AKT, and p-mTOR), and levels of stress- and apoptosis-related proteins (WEE1, GADD153, GRP78, and AIF). Tempol significantly increased pro-apoptotic Bax and cleaved caspase-3 (p < 0.0001) and decreased anti-apoptotic Bcl-2 (p < 0.0001) in both cell lines. Furthermore, Tempol markedly reduced the activity of p-ERK, p-JNK, p-AKT, and p-mTOR (p < 0.0001) and significantly increased the protein levels of WEE1, GADD153, GRP78, and AIF (p < 0.0001). Tempol treatment also led to a significant increase in total oxidant status and a decrease in total antioxidant status. In conclusion, our findings suggest that Tempol exhibits its anti-cancer activity through multiple interconnected mechanisms, primarily inducing apoptosis and oxidative stress, while concurrently suppressing pro-survival signaling pathways. These results highlight Tempol’s potential as a therapeutic agent for gastric and colon cancers. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
17 pages, 2806 KiB  
Article
Death of Leukemia Cells and Platelets Induced by 3,3′-Dihydroxy-4,5-Dimethoxybibenzyl Is Mediated by p38 Mitogen-Activated Protein Kinase Pathway
by Natalia Rukoyatkina, Tatyana Sokolova, Nikita Pronin, Andrei Whaley, Anastasiia O. Whaley and Stepan Gambaryan
Molecules 2025, 30(14), 2965; https://doi.org/10.3390/molecules30142965 - 15 Jul 2025
Viewed by 341
Abstract
Bibenzyls are now recognized as compounds for use in cancer therapy, and many molecules from the bibenzyl group have shown promising anticancer activity; therefore, the characterization of new bibenzyls with strong biological activity is important for developing new anticancer drugs. In this study, [...] Read more.
Bibenzyls are now recognized as compounds for use in cancer therapy, and many molecules from the bibenzyl group have shown promising anticancer activity; therefore, the characterization of new bibenzyls with strong biological activity is important for developing new anticancer drugs. In this study, we compared the effects of three bibenzyls (3,3′-dihydroxy-4,5-dimethoxybibenzyl, 3,5-dihydroxy-4-methoxybibenzyl and 3,5,3′-trihydroxy-4-methoxybibenzyl) isolated from Empetrum nigrum and erianin on platelets and the MOLT-3 T-lymphoblast cell line. Among the studied bibenzyls, 3,3′-dihydroxy-4,5-dimethoxybibenzyl significantly reduced the viability of MOLT-3 cells and platelets and induced strong phosphatidylserine (PS) surface exposure. We showed that 3,3′-dihydroxy-4,5-dimethoxybibenzyl induced the death of MOLT-3 cells and platelets, which was not mediated by apoptosis, pyroptosis, necroptosis, autophagy, or calpain-dependent pathways, and that the p38 MAP kinase pathways are at least partly involved in the activity of 3,3′-dihydroxy-4,5-dimethoxybibenzyl. In conclusion, our data show that 3,3′-dihydroxy-4,5-dimethoxybibenzyl could be a promising candidate for future analysis as an anticancer drug. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

23 pages, 4624 KiB  
Review
Farnesoid X Receptor (FXR) Agonists and Protein Kinase Regulation in NAFLD and NASH: Mechanisms and Therapeutic Potential
by Ayan Saha, Emily Wood, Luna Omeragic, Maya Minkara, Kethain Marma, Shipan Das Gupta and Jannatul Ferdoush
Kinases Phosphatases 2025, 3(3), 16; https://doi.org/10.3390/kinasesphosphatases3030016 - 11 Jul 2025
Viewed by 766
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. Mitogen-activated protein kinases (MAPKs), protein kinase C (PKC), AMP-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K)/AKT, and mechanistic target of rapamycin (mTOR) are all involved in NAFLD and NASH progression. Emerging evidence indicates that Farnesoid X Receptor (FXR) agonists have therapeutic potential by modulating bile acid metabolism, lipid balance, and inflammatory responses. This review examines the mechanistic interplay between FXR agonists and important protein kinases in NAFLD and NASH. FXR agonists activate AMPK, which promotes fatty acid oxidation and reduces hepatic steatosis. They also regulate MAPK signaling, which reduces c-Jun NH2-terminal kinase (JNK)- and p38 MAPK-mediated inflammation. Furthermore, FXR agonists activate the PI3K/AKT pathway, enhancing insulin sensitivity and modulating mTOR signaling to reduce hepatic fibrosis. Clinical studies in NAFLD/NASH indicate that FXR agonists confer metabolic and anti-inflammatory benefits, although optimizing efficacy and minimizing adverse effects remain challenging. Future studies should focus on combination therapies targeting FXR alongside specific kinases to improve therapeutic outcomes. This review highlights the potential of FXR agonists to modulate protein kinase signaling, opening new avenues for targeted NAFLD/NASH therapy. Full article
Show Figures

Figure 1

20 pages, 2891 KiB  
Review
MAPK, PI3K/Akt Pathways, and GSK-3β Activity in Severe Acute Heart Failure in Intensive Care Patients: An Updated Review
by Massimo Meco, Enrico Giustiniano, Fulvio Nisi, Pierluigi Zulli and Emiliano Agosteo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 266; https://doi.org/10.3390/jcdd12070266 - 10 Jul 2025
Viewed by 657
Abstract
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular [...] Read more.
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular signal transduction cascades that translate extracellular stress into cellular responses. Among these, the mitogen-activated protein kinase (MAPK) pathways have received considerable attention due to their roles in mediating inflammation, apoptosis, hypertrophy, and adverse cardiac remodeling. The canonical MAPK cascades—including extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK)—are activated by upstream stimuli such as angiotensin II (Ang II), aldosterone, endothelin-1 (ET-1), and sustained catecholamine release. Additionally, emerging evidence highlights the role of receptor-mediated signaling, cellular stress, and myeloid cell-driven coagulation events in linking MAPK activation to fibrotic remodeling following myocardial infarction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade plays a central role in regulating cardiomyocyte survival, hypertrophy, energy metabolism, and inflammation. Activation of the PI3K/Akt pathway has been shown to confer cardioprotective effects by enhancing anti-apoptotic and pro-survival signaling; however, aberrant or sustained activation may contribute to maladaptive remodeling and progressive cardiac dysfunction. In the context of AHF, understanding the dual role of this pathway is crucial, as it functions both as a marker of compensatory adaptation and as a potential therapeutic target. Recent reviews and preclinical studies have linked PI3K/Akt activation with reduced myocardial apoptosis and attenuation of pro-inflammatory cascades that exacerbate heart failure. Among the multiple signaling pathways involved, glycogen synthase kinase-3β (GSK-3β) has emerged as a key regulator of apoptosis, inflammation, metabolic homeostasis, and cardiac remodeling. Recent studies underscore its dual function as both a negative regulator of pathological hypertrophy and a modulator of cell survival, making it a compelling therapeutic candidate in acute cardiac settings. While earlier investigations focused primarily on chronic heart failure and long-term remodeling, growing evidence now supports a critical role for GSK-3β dysregulation in acute myocardial stress and injury. This comprehensive review discusses recent advances in our understanding of the MAPK signaling pathway, the PI3K/Akt cascade, and GSK-3β activity in AHF, with a particular emphasis on mechanistic insights, preclinical models, and emerging therapeutic targets. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

22 pages, 17031 KiB  
Article
AZU1 as a DNA Methylation-Driven Gene: Promoting Oxidative Stress in High-Altitude Pulmonary Edema
by Qiong Li, Zhichao Xu, Qianhui Gong, Liyang Chen, Xiaobing Shen and Xiaowei Chen
Antioxidants 2025, 14(7), 835; https://doi.org/10.3390/antiox14070835 - 8 Jul 2025
Viewed by 399
Abstract
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA [...] Read more.
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA methylation chips, identifying key differentially methylated regions (DMRs). Targeted bisulfite sequencing (TBS) revealed significant abnormalities in DMRs of five genes, azurocidin 1 (AZU1), growth factor receptor bound protein 7 (GRB7), mannose receptor C-type 2 (MRC2), RUNX family transcription factor 3 (RUNX3), and septin 9 (SEPT9). The abnormal expression of AZU1 was validated using peripheral blood leukocytes from HAPE patients and normal controls, as well as rat lung tissue, indicating its potential importance in the pathogenesis of HAPE. To further validate the function of AZU1, we conducted experimental studies using a hypobaric hypoxia injury model in Human Umbilical Vein Endothelial Cells (HUVEC). The results showed that AZU1 was significantly upregulated under hypobaric hypoxia. Knocking down AZU1 mitigates the reduction in HUVEC proliferation, angiogenesis, and oxidative stress damage induced by acute hypobaric hypoxia. AZU1 induces cellular oxidative stress via the p38/mitogen-activated protein kinase (p38/MAPK) signaling pathway. This study is the first to elucidate the mechanism of AZU1 in HAPE via the p38/MAPK pathway, offering novel insights into the molecular pathology of HAPE and laying a foundation for future diagnostic and therapeutic strategies. Full article
Show Figures

Graphical abstract

23 pages, 3705 KiB  
Article
Revealing the Multi-Target Mechanisms of Fespixon Cream in Diabetic Foot Ulcer Healing: Integrated Network Pharmacology, Molecular Docking, and Clinical RT-qPCR Validation
by Tianbo Li, Dehua Wei, Jiangning Wang and Lei Gao
Curr. Issues Mol. Biol. 2025, 47(7), 485; https://doi.org/10.3390/cimb47070485 - 25 Jun 2025
Viewed by 770
Abstract
Objective: This study aims to elucidate the potential mechanisms by which Fespixon cream promotes diabetic foot ulcer (DFU) healing using network pharmacology, molecular docking, and RT-qPCR validation in clinical tissue samples. Methods: Active components of Fespixon cream were screened from the Traditional Chinese [...] Read more.
Objective: This study aims to elucidate the potential mechanisms by which Fespixon cream promotes diabetic foot ulcer (DFU) healing using network pharmacology, molecular docking, and RT-qPCR validation in clinical tissue samples. Methods: Active components of Fespixon cream were screened from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and relevant literature, and their corresponding targets were standardized using the Universal Protein Resource (UniProt) database. Diabetic foot ulcer (DFU)-related targets were retrieved and filtered from the GeneCards database and the Online Mendelian Inheritance in Man (OMIM) database. The intersection of drug and disease targets was identified, and a protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The interaction network was visualized using Cytoscape version 3.7.2 software. The potential mechanisms of the shared targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using R software packages, and results were visualized through Bioinformatics online tools. Molecular docking was performed to validate the binding between key active compounds of Fespixon cream and core DFU targets using AutoDock Vina version 1.1.2 and PyMOL software. Furthermore, RT-qPCR analysis was performed on wound edge tissue samples from DFU patients treated with Fespixon cream to experimentally verify the mRNA expression levels of predicted hub genes. Results: Network pharmacology analysis identified eight active compounds in Fespixon cream, along with 153 potential therapeutic targets related to diabetic foot ulcer (DFU). Among these, 21 were determined as core targets, with the top five ranked by degree value being RAC-αserine/threonine-protein kinase (AKT1), Cellular tumor antigen p53 (TP53), Tumor necrosis factor (TNF), Interleukin-6 (IL6), and Mitogen-activated protein kinase 1 (MAPK1). GO enrichment analysis indicated that the targets of Fespixon cream were primarily involved in various biological processes related to cellular stress responses. KEGG pathway enrichment revealed that these targets were significantly enriched in pathways associated with diabetic complications, atherosclerosis, inflammation, and cancer. Molecular docking confirmed stable binding interactions between the five major active compounds—quercetin, apigenin, rosmarinic acid, salvigenin, and cirsimaritin—and the five core targets (AKT1, TP53, TNF, IL6, MAPK1). Among them, quercetin exhibited the strongest binding affinity with AKT1. RT-qPCR validation in clinical DFU tissue samples demonstrated consistent expression trends with computational predictions: AKT1 was significantly upregulated, while TP53, TNF, IL6, and MAPK1 were markedly downregulated in the Fespixon-treated group compared to controls (p < 0.001), supporting the proposed multi-target therapeutic mechanism. Conclusions: Our study reveals the potential mechanisms by which Fespixon cream exerts therapeutic effects on DFUs. The efficacy of Fespixon cream in treating DFUs is attributed to the synergistic actions of its bioactive components through multiple targets and multiple signaling pathways. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 4101 KiB  
Article
Bimodal Genomic Approach Predicting Semaphorin 7A (SEMA7A) as Prognostic Biomarker in Adrenocortical Carcinoma
by Anjali Dhall, Daiki Taniyama, Fathi Elloumi, Augustin Luna, Sudhir Varma, Suresh Kumar, Lauren Escobedo, Yilun Sun, Mirit I. Aladjem, Christophe E. Redon, Nitin Roper, William C. Reinhold, Jaydira Del Rivero and Yves Pommier
Cancers 2025, 17(13), 2078; https://doi.org/10.3390/cancers17132078 - 21 Jun 2025
Viewed by 540
Abstract
Background: Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine malignancy with a high mortality and poor prognosis. To elucidate the genetic underpinnings of ACCs, we have analyzed the transcriptome profiles of ACC tumor samples from patients enrolled in the TCGA and NCI [...] Read more.
Background: Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine malignancy with a high mortality and poor prognosis. To elucidate the genetic underpinnings of ACCs, we have analyzed the transcriptome profiles of ACC tumor samples from patients enrolled in the TCGA and NCI cohorts. Methods: We developed a bimodal approach using Gaussian Mixture Models to identify genes with bimodal distribution in ACC samples. Among the 72 bimodally expressed genes that are used to stratify patients into prognostic groups, we focused on SEMA7A, as it encodes a glycosylphosphatidylinositol-anchored membrane glycoprotein (Semaphorin 7a) regulating integrin-mediated signaling, cell migration and immune responses. Results: Our findings reveal that high expression levels of SEMA7A gene are associated with poor prognosis (hazard ratio = 4.27; p-value < 0.001). In hormone-producing ACCs, SEMA7A expression is elevated and positively correlated with genes driving steroidogenesis, aldosterone and cortisol synthesis, including CYP17A1, CYP11A1, INHA, DLK1, NR5A1 and MC2R. Correlation analyses show that SEMA7A is co-expressed with the integrin-β1, FAK (focal adhesion kinase) and MAPK/ERK (mitogen-activated protein kinase/extracellular signal regulated kinases) signaling pathways. Immunohistochemistry (IHC) staining demonstrates the feasibility of evaluating SEMA7A in ACC tissues and shows a significant correlation between gene expression (RNA-Seq) and protein expression (IHC). Conclusions: These findings suggest SEMA7A as a candidate for further research in ACC biology and a candidate for cancer therapy, as well as a potential prognosis biomarker for ACC patients. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

17 pages, 4963 KiB  
Article
Characterization and Functional Analysis of a Novel Fungal Immunomodulatory Protein Gene from Ganoderma leucocontextum in B16-F10 Mouse Melanoma Cells
by Jiayi Yang, Mengyuan Jin, Lida Zhang, Yingying Wu and Xuanwei Zhou
Int. J. Mol. Sci. 2025, 26(11), 5063; https://doi.org/10.3390/ijms26115063 - 24 May 2025
Viewed by 536
Abstract
Ganoderma leucocontextum, a newly identified species from the Tibetan Plateau, has been mainly studied for its polysaccharides and triterpenoids, with no prior reports on fungal immunomodulatory proteins (FIPs). This study explores the biological activity of FIP-gle2, cloned from G. leucocontextum and expressed [...] Read more.
Ganoderma leucocontextum, a newly identified species from the Tibetan Plateau, has been mainly studied for its polysaccharides and triterpenoids, with no prior reports on fungal immunomodulatory proteins (FIPs). This study explores the biological activity of FIP-gle2, cloned from G. leucocontextum and expressed in Pichia pastoris. The effects and mechanisms of recombinant FIP-gle2 (rFIP-gle2) on cell activity and melanin synthesis in mouse melanoma B16-F10 cells were investigated in vitro. The results showed that the FIP-gle2 gene, with an open reading frame (ORF) of 333 bp, encodes a 111-amino acid polypeptide with a molecular weight of 12.60 kDa and an isoelectric point of 4.48. We achieved a yield of 184.18 mg/L of rFIP-gle2. In vitro functional experiments showed that rFIP-gle2 significantly inhibited the proliferation of B16-F10 melanoma cells and induced apoptosis in a dose-dependent manner, particularly at concentrations above 1 μg/mL. At 3 μg/mL, rFIP-gle2 effectively inhibited tyrosinase activity and reduced melanin content, downregulating microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related proteins (TRP-1 and TRP-2). Furthermore, RNA-seq analysis indicated that differentially expressed genes in treated cells were enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, with Western blotting confirming enhanced phosphorylation of JNK, ERK, and p38 proteins. Thus, P. pastoris is an effective host for rFIP-gle2 production, which shows potential for applications in pharmaceuticals, cosmeceuticals, and food fields. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery Based on Natural Products)
Show Figures

Graphical abstract

29 pages, 7418 KiB  
Article
Ferulic Acid Combines with Ascorbic Acid to Target MMP9 to Attenuate Cisplatin-Induced Ototoxicity Through the p38MAPK Signaling Pathway
by Guojun Yang, Na Hu, Jie Gao, Xinzhi Li, Bin Zhang and Ketao Ma
Antioxidants 2025, 14(6), 619; https://doi.org/10.3390/antiox14060619 - 22 May 2025
Viewed by 483
Abstract
Cisplatin (Cis) is a commonly used chemotherapeutic agent for the clinical management of malignant tumors, but its toxic side effects could cause hearing loss, and there is an urgent need to find drugs that ameliorate Cis ototoxicity. Previous studies have found that ferulic [...] Read more.
Cisplatin (Cis) is a commonly used chemotherapeutic agent for the clinical management of malignant tumors, but its toxic side effects could cause hearing loss, and there is an urgent need to find drugs that ameliorate Cis ototoxicity. Previous studies have found that ferulic acid (FA), a phenolic compound derived from natural plants, exerts antioxidant and anti-inflammatory effects by scavenging free radicals, preventing lipid peroxidation and cell death. Combination therapy, the use of multiple drugs to improve clinical outcomes, has multiple advantages compared to monotherapy. Another small-molecule ascorbic acid (AA) shows robust antioxidant function. However, the optimal route of administration, dosage, concentration, and effective time must be determined. More importantly, whether the combination of FA and AA can improve Cis ototoxicity and reduce the risk of large doses of AA is unclear. This study aims to evaluate the therapeutic potential of FA combined with AA in Cis-induced hearing impairment. In vitro and in vivo experiments were performed to observe the effects of FA, AA, and FA+AA on Cis-induced apoptosis. Compared with the Cis-only group, FA combined with AA ameliorated the Cis-induced decrease in cell viability, production of reactive oxygen species (ROS), and apoptosis of cells to varying degrees, respectively, and the improvement in cell viability, ROS, and apoptosis was even more pronounced with the combination of the two treatments. Network pharmacology combined with transcriptomics and molecular docking results showed that FA and AA could inhibit the Cis-induced apoptosis of cochlear hair cells through Matrix Metalloproteinase 9(MMP9)via the p38 Mitogen-Activated Protein Kinase (p38 MAPK) signaling pathway. In this study, we discovered that FA+AA reduced Cis ototoxicity by suppressing MMP9 in the MAPK signaling pathway. Full article
Show Figures

Figure 1

15 pages, 3422 KiB  
Article
Dihydrogeodin from Fennellia flavipes Modulates Platelet Aggregation via Downregulation of Calcium Signaling, αIIbβ3 Integrins, MAPK, and PI3K/Akt Pathways
by Abdul Wahab Akram, Dae-Cheol Choi, Hyung-Kyu Chae, Sung Dae Kim, Dongmi Kwak, Bong-Sik Yun and Man Hee Rhee
Mar. Drugs 2025, 23(5), 212; https://doi.org/10.3390/md23050212 - 17 May 2025
Viewed by 698
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, frequently arising from platelet hyperactivation and subsequent thrombus formation. Although conventional antiplatelet therapies are available, challenges, such as drug resistance and bleeding complications, require the development of novel agents. In this study, [...] Read more.
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, frequently arising from platelet hyperactivation and subsequent thrombus formation. Although conventional antiplatelet therapies are available, challenges, such as drug resistance and bleeding complications, require the development of novel agents. In this study, dihydrogeodin (DHG) was isolated from Fennellia flavipes and evaluated using platelets derived from Sprague–Dawley rats. Platelet aggregation induced by collagen, adenosine diphosphate, or thrombin was assessed by light transmission aggregometry; DHG significantly reduced aggregation in a dose-dependent manner. Further assays demonstrated that DHG suppressed intracellular calcium mobilization, adenosine triphosphate release, and integrin αIIbβ3-dependent fibrinogen binding, thereby impairing clot retraction. Western blot analysis revealed that DHG reduced the phosphorylation of mitogen-activated protein kinases (ERK, JNK, p38) and PI3K/Akt, indicating inhibition across multiple platelet-signaling pathways. Additionally, SwissADME-assisted pharmacokinetics predicted favorable properties without violations of the Lipinski (Pfizer) filter, Muegge (Bayer) filter, Ghose filter, Veber filter, and Egan filter, and network pharmacology revealed inhibition of calcium and MAPK pathways. These results highlight the potential of DHG as a novel antiplatelet agent with broad-spectrum activity and promising drug-like characteristics. Further studies are warranted to assess its therapeutic window, safety profile, and potential for synergistic use with existing antiplatelet drugs. Full article
Show Figures

Graphical abstract

14 pages, 7546 KiB  
Article
Role of Zinc Homeostasis in the Pathogenesis of Diabetic Osteoporosis in Mice
by Yoshinori Mizuno, Fuka Takeuchi, Marina Morimoto and Yukinori Tamura
Diabetology 2025, 6(5), 36; https://doi.org/10.3390/diabetology6050036 - 2 May 2025
Viewed by 594
Abstract
Background: Diabetes induces osteoporosis primarily by impairing osteoblast function. Intracellular zinc homeostasis, which is controlled by zinc transporters, plays a significant role in osteoblast differentiation. In the present study, we aimed to explore the role of zinc homeostasis in the pathogenesis of diabetic [...] Read more.
Background: Diabetes induces osteoporosis primarily by impairing osteoblast function. Intracellular zinc homeostasis, which is controlled by zinc transporters, plays a significant role in osteoblast differentiation. In the present study, we aimed to explore the role of zinc homeostasis in the pathogenesis of diabetic bone loss using a diabetic mouse model. Methods: Streptozotocin (STZ)-induced diabetic female mice were used for in vivo experiments. In vitro, the effects of zinc transporter knockdown using small interfering RNA was investigated in MC3T3E1 pre-osteoblastic cells. Results: STZ-induced diabetic mice exhibited severe bone loss and decreased expression of osteogenic genes, as well as a decrease in zinc content and the expression of several zinc transporters localized in the cellular membrane, including Zip6, Zip9, and Zip10 in the tibia. Moreover, the messenger RNA (mRNA) levels of Zip6, Zip9, and Zip10 were positively correlated with trabecular bone mineral density in the tibiae of diabetic mice. This in vitro study, using MC3T3E1 pre-osteoblastic cells, revealed that knockdown of Zip6 reduced the expression of osteogenic genes in pre-osteoblastic cells. Additionally, Zip6 knockdown downregulated protein levels of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in pre-osteoblastic cells, and this change was observed in the tibiae of diabetic mice. Conclusions: Our data suggest that the downregulation of zinc transporters localized in the cellular membrane, such as Zip6, may be involved in the impairment of osteoblastic differentiation through the inhibition of p38 MAPK signaling, leading to osteoporosis under diabetic conditions. Maintaining zinc homeostasis in bone tissues may be vital for preventing and treating diabetic bone loss, and zinc transporters may serve as novel therapeutic targets for diabetic osteoporosis. Full article
Show Figures

Figure 1

12 pages, 2868 KiB  
Article
miR-369-3p Ameliorates Inflammation and Apoptosis in Intestinal Epithelial Cells via the MEK/ERK Signaling Pathway
by Viviana Scalavino, Emanuele Piccinno, Gianluigi Giannelli and Grazia Serino
Int. J. Mol. Sci. 2025, 26(9), 4288; https://doi.org/10.3390/ijms26094288 - 1 May 2025
Cited by 2 | Viewed by 484
Abstract
Inflammatory Bowel Disease (IBD) is a group of chronic and recurrent inflammatory diseases characterized by prolonged inflammation of the intestinal tract. Although it has been proven that the immune system plays a crucial role in the pathogenesis of IBD, a defective intestinal epithelium [...] Read more.
Inflammatory Bowel Disease (IBD) is a group of chronic and recurrent inflammatory diseases characterized by prolonged inflammation of the intestinal tract. Although it has been proven that the immune system plays a crucial role in the pathogenesis of IBD, a defective intestinal epithelium is also responsible for chronic inflammation, hence causing an over-activation of the immune response. For this reason, a therapeutic approach that acts by improving impaired intestinal homeostasis could ensure a greater therapeutic efficacy in IBD. Mitogen-activated protein kinases (MAPKs) signaling pathways may be involved in the pathogenesis of IBD. It has been demonstrated that the inhibition of mitogen-activated protein kinase kinase 1 (MEK1) may be a potential treatment against IBD since it may restore the normal epithelial function and reduce apoptosis of intestinal epithelial cells (IECs). New therapeutic strategies are emerging including small molecules such as microRNAs (miRNAs). In this study, we aimed to demonstrate that miR-369-3p was able to modulate the MEK/ERK signaling pathway. As reported by in silico analysis, miR-369-3p was capable of pairing the 3’UTR of the MAP2K1 gene. In vitro analysis demonstrated that mimic transfection with miR-369-3p in epithelial cells downregulated the expression of MEK1, reduced the activation of ERK signaling, and modulated apoptosis of epithelial cells in response to TNF-α. Moreover, miR-369-3p significantly decreased the release of pro-inflammatory cytokine IL-8. These results support the potential of miR-369-3p to prevent apoptosis of IECs, responsible for a persistent inflammatory condition in IBD, highlighting its application value in the treatment of inflammatory disorders. Full article
(This article belongs to the Special Issue Inflammatory Diseases: From a Molecular Perspective)
Show Figures

Figure 1

12 pages, 3114 KiB  
Article
Fluorine-18-Labeled Positron Emission Tomography Probe Targeting Activated p38α: Design, Synthesis, and In Vivo Evaluation in Rodents
by Mikiya Futatsugi, Anna Miyazaki, Yasukazu Kanai, Naoya Kondo and Takashi Temma
Pharmaceuticals 2025, 18(4), 600; https://doi.org/10.3390/ph18040600 - 20 Apr 2025
Viewed by 811
Abstract
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in [...] Read more.
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in brown adipose tissue (BAT), and it contributes to the suppression of obesity and diabetes. The noninvasive imaging of activated p38α could help elucidate diverse pathological processes, including metabolic and inflammatory conditions. This study aimed to develop and evaluate a novel fluorine-18-labeled positron emission tomography (PET) probe for imaging activated p38α in vivo. Methods: We designed 6-(4-[18F]fluoro-2-fluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)-pyrido[2,3-d]pyrimidin-7(8H)-one ([18F]R1487) by replacing a fluorine atom in R1487, which is a highly selective p38α inhibitor, with 18F. A tributylstannyl precursor was reacted with [18F]KF in the presence of a copper catalyst to synthesize [18F]R1487. Biodistribution studies and PET/computed tomography (CT) were performed on normal mice to evaluate the in vivo potential of [18F]R1487. Results: [18F]R1487 was obtained with a decay-corrected radiochemical conversion of 30.6 ± 5.6% and a decay-corrected radiochemical yield of 6.9 ± 3.6% with a radiochemical purity of >99% after reversed-phase high-performance liquid chromatography purification. The biodistribution study demonstrated high and rapid radioactivity accumulation in BAT (16.3 ± 2.7 %ID/g at 5 min post-injection), with a consistently high BAT-to-blood ratio (>5 over 2 h post-injection). PET/CT imaging successfully visualized BAT with high contrast. Conclusions: These results suggest that [18F]R1487 is a promising PET probe for imaging activated p38α in vivo, which has potential applications for pathophysiological conditions such as inflammation, cancer, and metabolic disorders. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Graphical abstract

23 pages, 5803 KiB  
Article
Gene Expression Profile of Cultured Human Coronary Arterial Endothelial Cells Exposed to Serum from Chronic Kidney Disease Patients: Role of MAPK Signaling Pathway
by Angélica Rangel-López, Minerva Mata-Rocha, Oscar Alberto Pérez-González, Ricardo López-Romero, Dulce María López-Sánchez, Sergio Juárez-Méndez, Vanessa Villegas-Ruiz, Alfonso Méndez-Tenorio, Juan Manuel Mejía-Araguré, Oscar Orihuela-Rodríguez, Cleto Álvarez-Aguilar, Abraham Majluf-Cruz, Dante Amato, Sergio Zavala-Vega, Silvia Melchor-Doncel de la Torre, Ramón Paniagua-Sierra and José Arellano-Galindo
Int. J. Mol. Sci. 2025, 26(8), 3732; https://doi.org/10.3390/ijms26083732 - 15 Apr 2025
Viewed by 820
Abstract
Patients with end-stage renal disease (ESRD) are at increased risk of cardiovascular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial dysfunction are central to this process. In this exploratory study, we used the Affymetrix GeneChip microarray to investigate the gene [...] Read more.
Patients with end-stage renal disease (ESRD) are at increased risk of cardiovascular disease (CVD), such as myocardial infarction (MI). Uremic toxins and endothelial dysfunction are central to this process. In this exploratory study, we used the Affymetrix GeneChip microarray to investigate the gene expression profile in uremic serum-induced human coronary arterial endothelial cells (HCAECs) from ESRD patients with and without MI (UWI and UWOI groups) as an approach to its underlying mechanism. We also explored which pathways are involved in this process. We found 100 differentially expressed genes (DEGs) among the conditions of interest by supervised principal component analysis and hierarchical cluster analysis. The expressions of four major DEGs were validated by quantitative RT-PCR. Pathway analysis and molecular network were used to analyze the interaction and expression patterns. Ten pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were, among others, positive regulation of inflammatory response, positive regulation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, cardiac muscle cell development, highlighting positive regulation of mitogen-activated protein kinase (MAPK) activity (p = 0.00016). Up- and down-regulation of genes from HCAECs exposed to uremic serum could contribute to increased endothelial dysfunction and CVD in ESRD patients. Our study suggests that inflammation and the ERK-MAPK pathway are highly enriched in kidney disease patients with MI, suggesting their role in ESRD pathology. Further studies and approaches based on MAPK pathway interfering strategies are needed to confirm these data. Full article
Show Figures

Figure 1

Back to TopTop