Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (979)

Search Parameters:
Keywords = p-coumarates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 348 KB  
Article
Phytochemical Composition, Biological Activity and Application of Cymbopogon citratus In Vitro Microshoot Cultures in Cosmetic Formulations
by Ewelina Błońska-Sikora, Jakub Wawrzycki, Paulina Lechwar, Katarzyna Gaweł-Bęben, Paulina Żarnowiec, Klaudia Wojtaszek and Małgorzata Wrzosek
Appl. Sci. 2026, 16(3), 1158; https://doi.org/10.3390/app16031158 - 23 Jan 2026
Viewed by 78
Abstract
This study investigated the phytochemical composition and biological activity of Cymbopogon citratus microshoot cultures and evaluated their suitability for incorporation into a cosmetic formulation. Microshoot cultures were established on Murashige and Skoog media supplemented with plant growth regulators and served as a reproducible [...] Read more.
This study investigated the phytochemical composition and biological activity of Cymbopogon citratus microshoot cultures and evaluated their suitability for incorporation into a cosmetic formulation. Microshoot cultures were established on Murashige and Skoog media supplemented with plant growth regulators and served as a reproducible source of biomass. Methanolic and ethanolic extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Chemical composition was characterized using LC-MS/MS analysis, which revealed the presence of phenolic acids and flavonoids, with p-coumaric, caffeic, and ferulic acids being among the most abundant detected constituents. In biological assays, the extracts inhibited murine tyrosinase in a concentration-dependent manner and exhibited antimicrobial activity against selected oral and skin-associated microorganisms, including Streptococcus mutans, Streptococcus pyogenes, and Staphylococcus epidermidis, as well as showing fungistatic and fungicidal effects against Candida albicans. Cytotoxicity analysis performed on HaCaT keratinocytes confirmed biocompatibility within the tested concentration range. To assess formulation suitability, the microshoot extract was incorporated into an oil-in-water (O/W) cream, which maintained stable pH, viscosity, and physical properties while preserving the antioxidant activity of the extract. Overall, these findings indicate that C. citratus microshoot cultures represent a reproducible source of bioactive metabolites with potential application in cosmetic formulations. Full article
20 pages, 1702 KB  
Article
Artificial Neural Network Elucidates the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism
by Niaz Bahar Chowdhury, Mark Kathol, Nabia Shahreen and Rajib Saha
Metabolites 2026, 16(1), 86; https://doi.org/10.3390/metabo16010086 - 21 Jan 2026
Viewed by 70
Abstract
Background: Rhodopseudomonas palustris is a metabolically versatile bacterium with significant biotechnological potential, including the ability to catabolize lignin and its heterogeneous breakdown products. Understanding the molecular determinants of growth on lignin-derived compounds is essential for advancing lignin valorization strategies under both aerobic [...] Read more.
Background: Rhodopseudomonas palustris is a metabolically versatile bacterium with significant biotechnological potential, including the ability to catabolize lignin and its heterogeneous breakdown products. Understanding the molecular determinants of growth on lignin-derived compounds is essential for advancing lignin valorization strategies under both aerobic and anaerobic conditions. Methods: R. palustris was cultivated on multiple lignin breakdown products (LBPs), including p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, p-coumarate, sodium ferulate, and kraft lignin. Condition-specific transcriptomics and proteomics datasets were generated and used as input features to train machine-learning models, with experimentally measured growth rates as the prediction target. Artificial Neural Networks (ANNs), Random Forest (RF), and Support Vector Machine (SVM) models were evaluated and compared. Permutation feature importance analysis was applied to identify genes and proteins most influential for growth. Results: Among the tested models, ANNs achieved the highest predictive performance, with accuracies of 94% for transcriptomics-based models and 96% for proteomics-based models. Feature importance analysis identified the top twenty growth-associated genes and proteins for each omics layer. Integrating transcriptomic and proteomic results revealed eight key transport proteins that consistently influenced growth across LBP conditions. Re-training ANN models using only these eight transport proteins maintained high predictive accuracy, achieving 86% for proteomics and 76% for transcriptomics. Conclusions: This study demonstrates the effectiveness of ANN-based models for predicting growth-associated genes and proteins in R. palustris. The identification of a small set of key transport proteins provides mechanistic insight into lignin catabolism and highlights promising targets for metabolic engineering aimed at improving lignin utilization. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

42 pages, 1490 KB  
Review
A Review on Sasa quelpaertensis’s Phytochemical Profiles and Pharmacological Activities
by Varun Jaiswal and Hae-Jeung Lee
Plants 2026, 15(2), 319; https://doi.org/10.3390/plants15020319 - 21 Jan 2026
Viewed by 165
Abstract
Sasa quelpaertensis, a multipurpose bamboo plant endemic to Jeju Island in South Korea, is used by the population in traditional medicine for its anti-inflammatory, anti-diabetic, anti-gastritis, and diuretic activities. Studies have shown the potential of S. quelpaertensis against various diseases; its effects [...] Read more.
Sasa quelpaertensis, a multipurpose bamboo plant endemic to Jeju Island in South Korea, is used by the population in traditional medicine for its anti-inflammatory, anti-diabetic, anti-gastritis, and diuretic activities. Studies have shown the potential of S. quelpaertensis against various diseases; its effects include anticancer, anti-obesity, anti-diabetic, anti-inflammatory, antibacterial, antiviral, antioxidant, antidepressant, immunomodulating, and hepatoprotective effects. Several bioactive phytochemicals, including p-coumaric acid, tricin, naringenin, and vanillic acid, have been identified in S. quelpaertensis, further emphasizing its pharmacological potential. Molecular studies have identified crucial pharmacological targets of S. quelpaertensis, such as adenosine monophosphate-activated protein kinase (AMPK) and nuclear factor kappa B (NF-κB) signaling. The major challenges are that most pharmacological activities have been observed only in the preclinical stage, and that a compilation of its phytochemicals and pharmacological activities is missing from the literature. The studies with incomplete extract characterization or standardization limit the comparability across studies. Identification of active phytochemicals for specific activities and large-scale clinical trials for the majority of pharmacological effects are suggested. This review not only compiles the phytochemicals and pharmacological properties of S. quelpaertensis but also highlights current gaps and proposes solutions for its development as a therapeutic agent and/or supplement against major diseases. Full article
(This article belongs to the Special Issue Bio-Active Compounds in Horticultural Plants—2nd Edition)
Show Figures

Figure 1

19 pages, 1987 KB  
Review
Potential Bioactive Function of Microbial Metabolites as Inhibitors of Tyrosinase: A Systematic Review
by Sofia Barcenas-Giraldo, Vanessa Baez-Leguizamon, Laura Barbosa-Gonzalez, Angelica Leon-Rodriguez, Yovani Marrero-Ponce and Luis Diaz
Int. J. Mol. Sci. 2026, 27(2), 1016; https://doi.org/10.3390/ijms27021016 - 20 Jan 2026
Viewed by 117
Abstract
Tyrosinase (EC 1.14.18.1) is a binuclear copper enzyme responsible for the rate-limiting steps of melanogenesis, catalyzing the hydroxylation of L-tyrosine and oxidation of L-DOPA into o-quinones that polymerize melanin. Beyond its physiological role in pigmentation, tyrosinase is also implicated in food browning and [...] Read more.
Tyrosinase (EC 1.14.18.1) is a binuclear copper enzyme responsible for the rate-limiting steps of melanogenesis, catalyzing the hydroxylation of L-tyrosine and oxidation of L-DOPA into o-quinones that polymerize melanin. Beyond its physiological role in pigmentation, tyrosinase is also implicated in food browning and oxidative stress–related disorders, making it a key target in cosmetic, food, and biomedical industries. This systematic review, conducted following PRISMA guidelines, aimed to identify and analyze microbial metabolites with tyrosinase inhibitory potential as sustainable alternatives to conventional inhibitors such as hydroquinone and kojic acid. Literature searches in Scopus and Web of Science (March 2025) yielded 156 records; after screening and applying inclusion criteria, 11 studies were retained for analysis. The inhibitors identified include indole derivatives, phenolic acids, peptides, and triterpenoids, mainly produced by fungi (e.g., Ganoderma lucidum, Trichoderma sp.), actinobacteria (Streptomyces, Massilia), and microalgae (Spirulina, Synechococcus). Reported IC50 values ranged from micromolar to milli-molar levels, with methyl lucidenate F (32.23 µM) and p-coumaric acid (52.71 mM). Mechanisms involved competitive and non-competitive inhibition, as well as gene-level regulation. However, methodological heterogeneity, the predominance of mushroom tyrosinase assays, and limited human enzyme validation constrain translational relevance. Computational modeling, site-directed mutagenesis, and molecular dynamics are proposed to overcome these limitations. Overall, microbial metabolites exhibit promising efficacy, stability, and biocompatibility, positioning them as emerging preclinical candidates for the development of safer and more sustainable tyrosinase inhibitors. Full article
(This article belongs to the Special Issue Recent Advances in the Biological Function of Tyrosinase)
Show Figures

Figure 1

16 pages, 1115 KB  
Article
Classification of Beers Through Comprehensive Physicochemical Characterization and Multi-Block Chemometrics
by Paris Christodoulou, Eftichia Kritsi, Antonis Archontakis, Nick Kalogeropoulos, Charalampos Proestos, Panagiotis Zoumpoulakis, Dionisis Cavouras and Vassilia J. Sinanoglou
Beverages 2026, 12(1), 15; https://doi.org/10.3390/beverages12010015 - 15 Jan 2026
Viewed by 277
Abstract
This study addresses the ongoing challenge of accurately classifying beers by fermentation type and product category, an issue of growing importance for quality control, authenticity assessment, and product differentiation in the brewing sector. We applied a multiblock chemometric framework that integrates phenolic profiling [...] Read more.
This study addresses the ongoing challenge of accurately classifying beers by fermentation type and product category, an issue of growing importance for quality control, authenticity assessment, and product differentiation in the brewing sector. We applied a multiblock chemometric framework that integrates phenolic profiling obtained via GC–MS, antioxidant and antiradical activity derived from in vitro assays, and complementary colorimetric and physicochemical measurements. Principal Component Analysis (PCA) revealed clear compositional structuring within the dataset, with p-coumaric, gallic, syringic, and malic acids emerging as major contributors to variance. Supervised machine-learning classification demonstrated robust performance, achieving approximately 93% accuracy in discriminating top- from bottom-fermented beers, supported by a well-balanced confusion matrix (25 classified and 2 misclassified samples per group). When applied to ale–lager categorization, the model retained strong predictive ability, reaching 90% accuracy, largely driven by the C* chroma value and the concentrations of tyrosol, acetic acid, homovanillic acid, and syringic acid. The integration of multiple analytical blocks significantly enhanced class separation and minimized ambiguity between beer categories. Overall, these findings underscore the value of multi-block chemometrics as a powerful strategy for beer characterization, supporting brewers, researchers, and regulatory bodies in developing more reliable quality-assurance frameworks. Full article
Show Figures

Graphical abstract

17 pages, 5457 KB  
Article
Bioactive Compounds of Momordica charantia L. Downregulate the Protein Expression of ACE2 and TMPRSS2 In Vivo and In Vitro
by Che-Yi Chao, Woei-Cheang Shyu, Chih-Lung Lin, Wen-Ping Jiang, Atsushi Inose, Song-Jie Chiang, Wen-Liang Wu, Jaung-Geng Lin and Guan-Jhong Huang
Int. J. Mol. Sci. 2026, 27(2), 868; https://doi.org/10.3390/ijms27020868 - 15 Jan 2026
Viewed by 113
Abstract
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation [...] Read more.
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation that facilitates membrane fusion. Bitter melon (Momordica charantia L., MC), a traditional medicinal and edible plant widely used in tropical Asia, possesses notable anti-inflammatory, antioxidant, antitumor, and hypoglycemic properties. In this study, the ethanol extract of bitter melon (EMC) markedly downregulated ACE2 and TMPRSS2 expression in both in vitro and in vivo models without inducing cytotoxicity. Furthermore, phytochemicals isolated from EMC—including p-coumaric acid, rutin, and quercetin—exhibited comparable inhibitory effects. These results indicate that EMC and its bioactive constituents may interfere with SARS-CoV-2 entry by modulating the ACE2/TMPRSS2 axis, highlighting their potential as natural adjuncts for COVID-19 prevention or management. Full article
Show Figures

Figure 1

17 pages, 719 KB  
Article
Phenolic Composition and Antioxidant Properties of Bee Bread Collected in Three Consecutive Beekeeping Seasons in Poland
by Teresa Szczęsna, Katarzyna Jaśkiewicz, Natalia Skubij and Jacek Jachuła
Molecules 2026, 31(2), 304; https://doi.org/10.3390/molecules31020304 - 15 Jan 2026
Viewed by 198
Abstract
Bee bread contains numerous bioactive compounds, including phenolic compounds, which have been associated with antioxidant properties. In this study, we determined the phenolic composition of Polish bee bread collected over three consecutive years using HPLC-DAD. We also measured total phenolic content (TPC) and [...] Read more.
Bee bread contains numerous bioactive compounds, including phenolic compounds, which have been associated with antioxidant properties. In this study, we determined the phenolic composition of Polish bee bread collected over three consecutive years using HPLC-DAD. We also measured total phenolic content (TPC) and antioxidant activity, expressed as DPPH radical scavenging activity. The highest concentrations were observed for p-coumaric, trans-ferulic, and caffeic acids, as well as for two flavonoids—rutin and hesperidin. The contents of individual phenolic compounds varied across the years of sample collection, with the exception of p-coumaric and vanillic acids. Despite year-to-year differences in TPC, no significant correlation with antioxidant activity (>90% in all samples) was observed, indicating a substantial contribution of non-phenolic compounds to antioxidant capacity. Principal Component Analysis revealed that almost all samples clustered into three groups according to their year of collection. We conclude that the year-to-year variation in phenolic compound content in bee bread is likely attributable to differences in available pollen sources. Our findings expand the current knowledge of the nutritional value of bee bread produced in Poland and strengthen the premises for its use as a functional food. Full article
(This article belongs to the Special Issue Biological Activity and Chemical Composition of Honeybee Products)
Show Figures

Figure 1

19 pages, 6238 KB  
Article
Transcriptional and Metabolic Networks Underlying Melanin Deposition in Silkie Chicken Muscle: A Multi-Omics Insights
by Yuxian Pan, Lin Zhang, Xin Yue, Zhen Sun, Huaiyong Zhang, Xuemeng Si, Rui Zheng, Wen Chen, Meng Zhang and Yanqun Huang
Animals 2026, 16(2), 252; https://doi.org/10.3390/ani16020252 - 14 Jan 2026
Viewed by 124
Abstract
Silkie (SK) chickens, valued for dark meat, serve as a model to study melanin deposition in muscle. Integrated transcriptomics and metabolomics of SK vs. Arbor Acres (AA) broiler pectoralis were used to identify key molecular drivers of meat color. All birds were cage-raised [...] Read more.
Silkie (SK) chickens, valued for dark meat, serve as a model to study melanin deposition in muscle. Integrated transcriptomics and metabolomics of SK vs. Arbor Acres (AA) broiler pectoralis were used to identify key molecular drivers of meat color. All birds were cage-raised under standardized temperature and light conditions with free access to feed and water. Pectoralis muscle samples were collected from 24-day-old healthy SK and AA chickens (n = 6). Transcriptome profiling identified 488 differentially expressed genes in SK chickens, with seven conserved melanogenesis genes (TYRP1, MLANA, TYR, MLPH, EDNRB2, PMEL, GPNMB) consistently upregulated across dark-pectoralis breeds, and melanogenesis and WNT pathways were activated. Co-expression network analysis highlighted SOX10 as a key hub regulator. Metabolomics quantified 129 differentially abundant metabolites. A critical finding was the significant depletion of L-tyrosine and its derivatives in SK muscle, despite upregulated melanogenesis genes. It indicates intense metabolic flux toward pigment synthesis. Integrated analyses converged on tyrosine metabolism and redox pathways: oxidized glutathione and p-coumaric acid correlated negatively with pigment deposition, while ADP-ribose and pyridoxal correlated positively. Additionally, novel inhibitors PNMT and HIBADH may modulate melanin deposition. These findings reveal a trade-off between pigment deposition and redox balance, providing molecular markers for poultry melanin-related trait improvement. Full article
(This article belongs to the Special Issue Livestock and Poultry Genetics and Breeding Management)
Show Figures

Figure 1

23 pages, 2220 KB  
Article
Amaryllidaceae Alkaloids and Phenolic Acids Identification in Leucojum aestivum L. Plant Cultures Exposed to Different Temperature Conditions
by Agata Ptak, Marzena Warchoł, Emilia Morańska, Dominique Laurain-Mattar, Rosella Spina, François Dupire, Piotr Waligórski and Magdalena Simlat
Molecules 2026, 31(2), 258; https://doi.org/10.3390/molecules31020258 - 12 Jan 2026
Viewed by 254
Abstract
Amaryllidaceae alkaloids are of notable pharmacological relevance. For instance, galanthamine is used in the treatment of Alzheimer’s disease, while other alkaloids (lycorine, crinine, etc.) derived from Amaryllidaceae plants are also of great interest because they exhibit antitumour, antiviral, antibacterial, antifungal, antimalarial, analgesic and [...] Read more.
Amaryllidaceae alkaloids are of notable pharmacological relevance. For instance, galanthamine is used in the treatment of Alzheimer’s disease, while other alkaloids (lycorine, crinine, etc.) derived from Amaryllidaceae plants are also of great interest because they exhibit antitumour, antiviral, antibacterial, antifungal, antimalarial, analgesic and cytotoxic properties. Phenolic acids comprise a group of natural bioactive substances that have commercial value in the cosmetic, food and medicinal industries due to their antioxidant, anticancer, anti-inflammatory and cardioprotective potential. In the present study, the effect of temperature (15, 20, 25 and 30 °C) on Amaryllidaceae alkaloid and phenolic acid biosynthesis in Leucojum aestivum in vitro plant cultures was investigated. The highest diversity of alkaloids (i.e., galanthamine, crinan-3-ol, demethylmaritidine, crinine, 11-hydroxyvitattine, lycorine, epiisohaemanthamine, chlidanthine) was noted in plants cultured at 30 °C. By contrast, ismine and tazettine were only present in plants cultured at 15 °C. Temperatures of 20 °C and 30 °C were found to stimulate galanthamine accumulation. The highest lycorine content was noted in plants grown at temperatures of 15 and 30 °C, and it was negatively correlated with the expression of the gene that encodes the cytochrome P450 96T (CYP96T) enzyme which catalyses a key step in the biosynthesis of different types of Amaryllidaceae alkaloids. This observation may reflect temperature-induced shifts in metabolic flux among different branches of Amaryllidaceae alkaloid biosynthesis. The observed stimulating effect of a 15 °C temperature on the chlorogenic, caffeic, p-coumaric, sinapic, ferulic and isoferulic acid content was in line with the highest expression of a gene that encodes the tyrosine decarboxylase (TYDC) enzyme, which is involved in plant stress response mechanisms. At 30 °C, however, the highest content of the caffeic, vanillic, p-coumaric and isoferulic acids was noted. Full article
Show Figures

Figure 1

30 pages, 6438 KB  
Article
The Role of Zinc Oxide Nanoparticles in Boosting Tomato Leaf Quality and Antimicrobial Potency
by Mostafa Ahmed, Sally I. Abd-El Fatah, Abdulrhman Sayed Shaker, Zoltán Tóth and Kincső Decsi
Oxygen 2026, 6(1), 2; https://doi.org/10.3390/oxygen6010002 - 8 Jan 2026
Viewed by 221
Abstract
Salt stress is a major agricultural issue. A promising modern agriculture method is the foliar treatment of zinc oxide nanoparticles (ZnONPs). This approach has shown promise in boosting challenged tomato yields, fruit quality, and leaf extract antibacterial activity against pathogens. A greenhouse experiment [...] Read more.
Salt stress is a major agricultural issue. A promising modern agriculture method is the foliar treatment of zinc oxide nanoparticles (ZnONPs). This approach has shown promise in boosting challenged tomato yields, fruit quality, and leaf extract antibacterial activity against pathogens. A greenhouse experiment was conducted. The previously synthesized and characterized ZnONPs were used to alleviate the harmful effects of NaCl stress. Tomato fruit weight from different treatments was determined, and the gas–liquid chromatography device was used to observe the changes in fatty acid production. The antimicrobial activities of the aqueous and diethyl ether extracts from tomato leaves were determined against six bacterial and six fungal strains. The plants that were salinity-stressed and sprayed with 0.075 and 0.15 g/L ZnONPs showed a better improvement compared to the salinity-stressed plants. Also, the sprayed plants that were not stressed at all showed promising results compared to the control and the other different treatments. Through the process of molecular docking, it was shown that caffeic acid, ferulic acid, p-coumaric acid, sinapic acid, and apigenin-7-glucoside are essential chemicals that possess antibacterial and antifungal effects against the DNA Gyrase inhibitor and the sterol 14-alpha demethylase (CYP51) enzyme, respectively. It is concluded that salt stress can negatively affect the growth, quality, and variant plant features. However, the foliar application of ZnONPs is able to overcome those adverse effects in the stressed plants, and enhance the non-stressed as well. Full article
Show Figures

Figure 1

19 pages, 2750 KB  
Article
The Metabolic Diversity of Different Salsola Species Valorized Through Untargeted Metabolomics and In Vitro Bioassays: The Importance of Phenolic Constituents
by Hajar Salehi, Marco Armando De Gregorio, Gokhan Zengin, Sakina Yagi, Gunes Ak, Enver Saka, Fevzi Elbasan, Evren Yildiztugay, Leilei Zhang, Stefano Dall’Acqua and Luigi Lucini
Plants 2026, 15(2), 199; https://doi.org/10.3390/plants15020199 - 8 Jan 2026
Viewed by 276
Abstract
Five Salsola species have been studied as sources of bioactive compounds using a comprehensive, untargeted metabolomic and bioactivity assessment. Plant material was extracted using ethyl acetate (EA), water, and methanol (MeOH). S. ruthenica exhibited the highest total phenolic content (46.04 mg GAE/g, MeOH [...] Read more.
Five Salsola species have been studied as sources of bioactive compounds using a comprehensive, untargeted metabolomic and bioactivity assessment. Plant material was extracted using ethyl acetate (EA), water, and methanol (MeOH). S. ruthenica exhibited the highest total phenolic content (46.04 mg GAE/g, MeOH extract) and antioxidant capacity (DPPH: 47.21 mg TE/g; ABTS: 97.40 mg TE/g; CUPRAC: 141.38 mg TE/g; FRAP: 80.30 mg TE/g). Extracts of S. stenoptera and S. ruthenica showed potent cholinesterase inhibition, while S. crassa was notably active against tyrosinase. A total of 265 metabolites were annotated, revealing strong solvent- and species-specific differences in phenolic composition, as confirmed by AMOPLS analysis. Flavanols, anthocyanins, and lignans emerged as the major chemotaxonomic markers, based on PCA, contributing the most to the total variance. Strong correlations were observed between TPC and CUPRAC (r = 0.93) and between flavanols and DPPH (r = 0.70), suggesting functional relevance of these compounds in redox activity, confirming the importance of different classes of phenolic constituents. VIP markers also revealed species- and solvent-specific enrichments of metabolites. Regularized canonical correlation analysis (rCCA) further linked specific metabolites, namely Quercetin 3-O-glucosyl-xyloside and 6″-O-Acetylgenistin, the flavanone sakuranetin, the lignans Secoisolariciresinol, Anhydro-secoisolariciresinol, and Medioresinol, and p-Coumaric acid ethyl ester, with antioxidant functions. These findings underscore the pharmacological potential of Salsola species and highlight the importance of valorizing metabolic diversity in the search for new sources of health-promoting natural compounds. Furthermore, the work shows the need for a tailored solvent selection in bioactivity-guided phytochemical research. Full article
Show Figures

Graphical abstract

18 pages, 2502 KB  
Article
Synthesis and Photocatalytic Evaluation of CoPc/g-C3N4 and CuPc/g-C3N4 Catalysts for Efficient Degradation of Chlorinated Phenols
by Cagla Akkol, Yasemin Caglar and Ece Tugba Saka
Molecules 2026, 31(2), 213; https://doi.org/10.3390/molecules31020213 - 8 Jan 2026
Viewed by 223
Abstract
The oxidation of chlorophenolic compounds is essential for converting these persistent and toxic pollutants into less harmful products, thereby reducing their environmental and health impacts. In this study, a p-coumaric acid ester derivative was employed as the starting material to synthesize the corresponding [...] Read more.
The oxidation of chlorophenolic compounds is essential for converting these persistent and toxic pollutants into less harmful products, thereby reducing their environmental and health impacts. In this study, a p-coumaric acid ester derivative was employed as the starting material to synthesize the corresponding phthalonitrile precursor (EnCA-CN), followed by the preparation of non-peripherally substituted Co(II) and Cu(II) phthalocyanine complexes (EnCA-Copc and EnCA-CuPc). These complexes were subsequently characterized using a range of spectroscopic techniques and designed to engage in π–π interactions with graphitic carbon nitride to form efficient photocatalytic materials. The structures of the two effective catalysts were characterized by FT-IR, SEM, and XRD analyses, after which their photocatalytic performance and recyclability in the degradation of 2-chlorophenol, 2,3-dichlorophenol, and 2,3,6-trimethylphenol were evaluated. The optimum catalyst loading for the MPc/g-C3N4 composites was determined to be 0.5 g/L, yielding the highest photocatalytic efficiency. The EnCA-CoPc/g-C3N4 catalyst achieved 90.8% product selectivity and 82.6% conversion in the oxidation of 2-chlorophenol, whereas the EnCA-CuPc/g-C3N4 catalyst exhibited approximately 80.0% pollutant removal. The degradation efficiencies followed the order 2-CP > 2,3-DCP > 2,3,6-TCP, with benzoquinone derivatives identified as the major oxidation products. In recyclability tests, both catalysts retained more than 50% of their activity after five cycles; EnCA-CoPc/g-C3N4 maintained 68% conversion in the 5th cycle, while EnCA-CuPc/g-C3N4 retained 60% conversion in the 4th cycle. Full article
(This article belongs to the Special Issue Advances in Porphyrinoid-Based Functional Materials)
Show Figures

Figure 1

18 pages, 2323 KB  
Article
Evaluation of Callistemon citrinus Compounds to Reduce Brain Oxidative Stress in Rats Fed High-Fat-Sucrose Diet
by Aram Josué García-Calderón, Oliver Rafid Magaña-Rodríguez, Luis Alberto Ayala-Ruiz, José Armando Hernández-Soto, Jonathan Saúl Piñón-Simental, Luis Gerardo Ortega-Pérez, Asdrubal Aguilera-Méndez and Patricia Ríos-Chávez
Metabolites 2026, 16(1), 24; https://doi.org/10.3390/metabo16010024 - 25 Dec 2025
Viewed by 349
Abstract
Background: The association between oxidative stress and inflammation in obesity motivates investigation of the effects of d-limonene, gallic acid, ellagic acid, p-coumaric acid, and their mixture, which are major compounds of Callistemon citrinus, on oxidative stress and inflammation in the brains [...] Read more.
Background: The association between oxidative stress and inflammation in obesity motivates investigation of the effects of d-limonene, gallic acid, ellagic acid, p-coumaric acid, and their mixture, which are major compounds of Callistemon citrinus, on oxidative stress and inflammation in the brains of rats fed a high-fat-sucrose diet. This study aimed to identify the specific bioactive compounds in C. citrinus leaf extract responsible for its neuroprotective effects against diet-induced oxidative stress and neuroinflammation. Methods: Forty-eight male Wistar rats were randomly divided into eight groups (n = 6). Group 1 (control) received a standard diet, while group 2 received a high-fat, high-sucrose diet (HFSD). Groups 3, 4, 5, 6, 7, and 8 were also fed HFSD supplemented with C. citrinus extract, its main compounds, and a mixture of these compounds administered once daily via oral cannula for 23 weeks. The antioxidant and pro-inflammatory enzymes, along with oxidative biomarkers, were evaluated in the brains of the rats. Results:C. citrinus leaf extract and its four main components, both separately and together, modulated the activities of catalase, superoxide dismutase, glutathione peroxidase, and paraoxonase-1. They also affected levels of reduced glutathione while decreasing the amounts of advanced oxidative protein products, malondialdehyde, and 4-hydroxynonenal. Additionally, they decreased the activities of cyclooxygenase (COX-1 and COX-2), 5-lipoxygenase, xanthine oxidase, and myeloperoxidase in the brains of rats, despite a high-fat-sucrose diet. Conclusions: These results show that the main compounds in C. citrinus leaf extract are essential for its antioxidant and anti-inflammatory effects, which help protect against oxidative stress in the brains of rats on a high-calorie diet. Full article
(This article belongs to the Special Issue Bioactive Compounds in Obesity and Its Metabolic Complications)
Show Figures

Graphical abstract

26 pages, 3831 KB  
Article
Design, Sustainable Processing and Nanoliposome Encapsulation of Red Grape Pomace Rich in Polyphenolic Compounds with Antioxidant Activity
by Katarzyna Hałdys, Agnieszka Ciechanowska and Agnieszka Lewińska
Molecules 2026, 31(1), 72; https://doi.org/10.3390/molecules31010072 - 24 Dec 2025
Viewed by 491
Abstract
In this study, we aimed to investigate the potential of utilizing red grape pomace as a source of polyphenolic compounds in the growing, fragmented winemaking sector in Poland. For polyphenol extraction, we compared two methods: conventional extraction using water and alcohol solutions, and [...] Read more.
In this study, we aimed to investigate the potential of utilizing red grape pomace as a source of polyphenolic compounds in the growing, fragmented winemaking sector in Poland. For polyphenol extraction, we compared two methods: conventional extraction using water and alcohol solutions, and the supercritical CO2 technique with ethanol as a cosolvent. The conventional method yielded at least 30% more polyphenols compared to the advanced SC-CO2 technique. Experimentally chosen conditions, including a solvent composition of ethanol–water (1:1; v/v) containing 3% HCl, a liquid-to-solid ratio of 25:1 mL/g, and 2 min of ultrasound pretreatment and conventional extraction at a temperature of 30 °C over 4.5 h, enabled an extraction efficiency of 101 mg of total polyphenols per 1 g of raw material used, with an antioxidant capacity equivalent to 600 µmol of Trolox. According to HPLC analyses, the main components of the investigated biomass were epicatechin, anthocyanins and p-coumaric acid. The extract was encapsulated in liposomes, revealing no negative effect on their stability or aggregation under the conditions tested (21 days). The study suggests that conventional water–ethanol extraction can be a relatively safe and effective method for managing winemaking residuals, increasing the competitiveness of small producers through the production of high-value antioxidant additives. Full article
(This article belongs to the Special Issue Lipids and Surfactants in Delivery Systems)
Show Figures

Graphical abstract

17 pages, 1421 KB  
Article
Bassia indica Attenuates Cardiotoxicity in a Rat Model via Anti-Inflammatory, Antioxidant, and Keap1/Nrf2 Modulation
by Fayyaz Anjum, Saad Touqeer, QurratUlAin Jamil, Ayesha Rida, Hafiz Muhammad Zubair, Adeel Sarfraz, Saleh Alfuraih, Waad Alrohily, Ali F. Almutairy, Ashfaq Ahmad, Mohammed Aufy and Shahid Muhammad Iqbal
Pharmaceuticals 2025, 18(12), 1907; https://doi.org/10.3390/ph18121907 - 18 Dec 2025
Cited by 1 | Viewed by 359
Abstract
Background: Drug-induced cardiotoxicity is a primary concern in clinical practice, especially in the context of oxidative stress induced by anti-cancer, antiviral, and antidiabetic drugs. Several strategies are devised to limit cardiotoxicity, which are supportive and provide symptomatic relief. This highlights the need [...] Read more.
Background: Drug-induced cardiotoxicity is a primary concern in clinical practice, especially in the context of oxidative stress induced by anti-cancer, antiviral, and antidiabetic drugs. Several strategies are devised to limit cardiotoxicity, which are supportive and provide symptomatic relief. This highlights the need to develop cardioprotective agents that circumvent the oxidative stress. Bassia indica is a cardiotonic plant with antioxidant properties traditionally used in Africa, South Asia, and China. We investigated its cardioprotective effects against doxorubicin-induced cardiotoxicity (DIC). Methods: B. indica extract (BiE) was analyzed by GC-MS and HPLC. Several antioxidant assays, including DPPH, FRAP, CUPRAC, NO, and H2O2 scavenging, were performed. In vivo attenuation of DIC was assessed in a rat model. Results: BiE contained several bioactive flavonoids, including 2-methoxy-4-vinylphenol, ferulic acid, gallic acid, kaempferol, and coumaric acid. Antioxidant assays demonstrated potent free-radical scavenging and antioxidant activity of BiE, providing mechanistic evidence for its in vivo amelioration of DIC. BiE treatment reduced myocardial oxidative stress by increasing endogenous antioxidant levels (p < 0.01), including SOD, CAT, and GSH. It upregulated Nrf2 and lowered Keap1 levels. This was also reflected in the restoration of cardiac tissue architecture and modulation of inflammatory markers, including IL-1β and TNF-α (p < 0.01). Cardiac tissue biomarkers were also improved. Conclusions: These findings conclude that BiE exerts cardiac protection by reducing oxidative stress and inflammation through modulation of the Keap1/Nrf2 pathway and decreasing the expression of IL-1β and TNF-α. Full article
Show Figures

Figure 1

Back to TopTop