Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = ozone mixing ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2486 KiB  
Article
An Experimental Study on the Novel Ozone-Electro-Fenton Coupled Reactor for Treating Ofloxacin-Containing Industrial Wastewater
by Yifeng Han, Lifen Zhang, Keyan Liu, Jinliang Tao and Feng Wei
Water 2025, 17(11), 1649; https://doi.org/10.3390/w17111649 - 29 May 2025
Viewed by 463
Abstract
Industrial organic wastewater, with its complex composition, high biological toxicity, and recalcitrance, has become a major challenge in water pollution control. This is especially true for antibiotic-containing wastewater, such as ofloxacin wastewater, for which there is an urgent need to develop effective treatment [...] Read more.
Industrial organic wastewater, with its complex composition, high biological toxicity, and recalcitrance, has become a major challenge in water pollution control. This is especially true for antibiotic-containing wastewater, such as ofloxacin wastewater, for which there is an urgent need to develop effective treatment technologies. Conventional treatment processes are insufficiently efficient, while individual advanced oxidation processes (AOPs) have drawbacks such as poor oxidation selectivity and catalyst deactivation. To address these issues, researchers have explored the coupling of different AOPs and found that such combinations can enhance the oxidation performance, achieve complementary advantages, reduce the equipment costs, and offer great development potential. An experiment was conducted to evaluate the performance of an Ozone-Electro-Fenton coupled process in treating ofloxacin industrial wastewater. The results demonstrated that under the same conditions, after four hours of treatment, the coupled process achieved a 70% reduction in the UV absorption peak of the wastewater, compared to less than 20% for individual processes, indicating a significant synergistic effect. Further optimization of the ozone aeration structure revealed that with a hole size of 0.5 mm, single-layer aeration holes, and six holes, the COD removal rate reached 96% after six hours, the ozone utilization improved to 85%, and the gas holdup stabilized at 4.6%. Under these conditions, the mixture of ozone and air bubbles formed mixed bubbles. Influenced by the electric field and electrode plate wall effects, the bubble residence time was prolonged. The bubble size was approximately 2.8 mm, the gas flow horizontal velocity was about 18.5 m/s, and after a horizontal displacement of 0.17 mm in the wastewater, the lateral velocity became zero. The ratio of the distance between the bubble center and the wall to the equivalent bubble diameter was approximately 3.45. The bubbles were subject to a strong wall effect, which extended their residence time. This not only facilitated the removal of small bubbles from the electrode plates but also enhanced the ion diffusion near the plates, thereby boosting pollutant degradation. This study shows that the Ozone-Electro-Fenton coupled process is highly effective in degrading ofloxacin industrial wastewater, offering an innovative solution for treating other antibiotic-containing wastewater. Future research will focus on further optimizing the process, improving its adaptability to complex matrix wastewater, and validating it at the pilot scale to promote its engineering application. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 12484 KiB  
Article
Comparative Study on the Catalytic Ozonation of Biotreated Landfill Leachate Using γ-Al2O3-Based Catalysts Loaded with Different Metals
by Jiancheng Li, Liya Fu, Yin Yu, Yue Yuan, Hongbo Xi and Changyong Wu
Sustainability 2025, 17(10), 4376; https://doi.org/10.3390/su17104376 - 12 May 2025
Viewed by 407
Abstract
Global municipal solid waste (~2B tons/year) affects sustainability, as landfill and incineration face persistent leachate contamination, demanding effective management to advance water recycling and circular economies. Accelerated investigation of hybrid biocatalytic ozonation systems is imperative to enhance contaminant removal efficiency for stringent discharge [...] Read more.
Global municipal solid waste (~2B tons/year) affects sustainability, as landfill and incineration face persistent leachate contamination, demanding effective management to advance water recycling and circular economies. Accelerated investigation of hybrid biocatalytic ozonation systems is imperative to enhance contaminant removal efficiency for stringent discharge compliance. This study investigates the catalytic ozonation effects of γ-Al2O3-based catalysts loaded with different metals (Cu, Mn, Zn, Y, Ce, Fe, Mg) on the biochemical effluent of landfill leachate. The catalysts were synthesized via a mixed method and subsequently characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pseudo-second-order kinetics revealed active metal loading’s impact on adsorption capacity, with Cu/γ-Al2O3 and Mg/γ-Al2O3 achieving the highest Qe (0.85). To elucidate differential degradation performance among the catalysts, the ozone/oxygen gas mixture was introduced at a controlled flow rate. Experimental results demonstrate that the Cu/γ-Al2O3 catalyst, exhibiting optimal comprehensive degradation performance, achieved COD and TOC removal efficiencies of 84.5% and 70.9%, respectively. UV–vis absorbance ratios revealed the following catalytic disparities: Mg/γ-Al2O3 achieved the highest aromatic compound removal efficiency; Ce/γ-Al2O3 excelled in macromolecular organics degradation. EEM-PARAFAC analysis revealed differential fluorophore removal: Cu/γ-Al2O3 exhibited broad efficacy across all five components, while Mg/γ-Al2O3 demonstrated optimal removal of C2 and C4, but showed limited efficacy toward C5. These findings provide important insights into selecting catalysts in practical engineering applications for landfill leachate treatment. This study aims to elucidate catalyst formulation-dependent degradation disparities, guiding water quality-specific catalyst selection to ultimately enhance catalytic ozonation efficiency. Full article
Show Figures

Figure 1

13 pages, 1409 KiB  
Article
Comparison of the Chemical Composition of the Middle Atmosphere During Energetic Particle Precipitation in January 2005 and 2012
by Grigoriy Doronin, Irina Mironova and Eugene Rozanov
Atmosphere 2025, 16(5), 506; https://doi.org/10.3390/atmos16050506 - 27 Apr 2025
Viewed by 540
Abstract
We compare enhancements of mesospheric volume mixing ratios of hydroperoxyl radical HO2 and nitric acid HNO3, as well as ozone depletion in the Northern Hemisphere (NH) polar night regions during energetic particle precipitation (EPP) in January of 2005 and 2012. [...] Read more.
We compare enhancements of mesospheric volume mixing ratios of hydroperoxyl radical HO2 and nitric acid HNO3, as well as ozone depletion in the Northern Hemisphere (NH) polar night regions during energetic particle precipitation (EPP) in January of 2005 and 2012. We utilize mesospheric observations of HO2, HNO3, and ozone from the Microwave Limb Sounder (MLS/Aura). During the second half of January 2005 and 2012, the GOES satellite identified strong solar proton events with virtually the same proton flux parameters. Geomagnetic disturbances in January of 2005 were stronger, with Dst decreasing up to 100 nT compared to January 2012 while the Dst drop did not exceed 70 nT. Comparison of observations made with the MLS/Aura shows the highest change of HO2 and HNO3 concentrations and also the deepest ozone destruction at the latitudinal range from 60 NH to 80 NH inside the north polar vortex right after the spike in energetic particle flux registered by GOES satellites. MLS/Aura observations show HNO3 maximum enhancements of about 1.90 ppb and 1.66 ppb around 0.5 hPa (about 55 km) in January 2005 and January 2012, respectively. The HOx increases lead to short-term ozone destruction in the mesosphere, which is seen in MLS/Aura ozone data. The maximum HO2 enhancement is about 1.05 ppb and 1.62 ppb around 0.046 hPa (about 70 km) after the onset of EPP in the second half of January 2005 and January 2012, respectively. Ozone maximum depletion is observed around 0.02 hPa (about 75 km). Ozone recovery after EPP was much faster in January 2005 than in January 2012. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 4041 KiB  
Article
Sources and Trends of CO, O3, and Aerosols at the Mount Bachelor Observatory (2004–2022)
by Noah Bernays, Jakob Johnson and Daniel Jaffe
Atmosphere 2025, 16(1), 85; https://doi.org/10.3390/atmos16010085 - 15 Jan 2025
Viewed by 827
Abstract
Understanding baseline O3 is important as it defines the fraction of O3 coming from global sources and not subject to local control. We report the occurrence and sources of high baseline ozone days, defined as a day where the daily maximum [...] Read more.
Understanding baseline O3 is important as it defines the fraction of O3 coming from global sources and not subject to local control. We report the occurrence and sources of high baseline ozone days, defined as a day where the daily maximum 8 h average (MDA8) exceeds 70 ppb, as observed at the Mount Bachelor Observatory (MBO, 2.8 km asl) in Central Oregon from 2004 to 2022. We used various indicators and enhancement ratios to categorize each high-O3 day: carbon monoxide (CO), aerosol scattering, the water vapor mixing ratio (WV), the aerosol scattering-to-CO ratio, backward trajectories, and the NOAA Hazard Mapping System Fire and Smoke maps. Using these, we identified four causes of high-O3 days at the MBO: Upper Troposphere/Lower Stratosphere intrusions (UTLS), Asian long-range transport (ALRT), a mixed UTLS/ALRT category, and events enhanced by wildfire emissions. Wildfire sources were further divided into two categories: smoke transported in the boundary layer to the MBO and smoke transported in the free troposphere from more distant fires. Over the 19-year period, 167 high-ozone days were identified, with an increasing fraction due to contributions from wildfire emissions and a decreasing fraction of ALRT events. We further evaluated trends in the O3 and CO data distributions by season. For O3, we found an overall increase in the mean and median values of 2.2 and 1.5 ppb, respectively, from the earliest part of the record (2004–2013) compared to the later part (2014–2022), but no significant linear trends in any season. For CO, we found a significant positive trend in the summer 95th percentiles, associated with increasing fires in the Western U.S., and a strong negative trend in the springtime values at all percentiles (1.6% yr−1 for 50th percentile). This decline was likely associated with decreasing emissions from East Asia. Overall, our findings are consistent with the positive trend in wildfires in the Western United States and the efforts in Asia to decrease emissions. This work demonstrates the changing influence of these two source categories on global background O3 and CO. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

20 pages, 9121 KiB  
Article
Attempt to Explore Ozone Mixing Ratio Data from Reanalyses for Trend Studies
by Peter Krizan
Atmosphere 2024, 15(11), 1298; https://doi.org/10.3390/atmos15111298 - 29 Oct 2024
Viewed by 1287
Abstract
In this paper, we use ozone mixing ratio data from the MERRA-2, ERA-5 and JRA-55 reanalyses from 500 hPa to 1 hPa in the period 1980–2020 with the aim of assessing their suitability for trend analysis. We found that these data are not [...] Read more.
In this paper, we use ozone mixing ratio data from the MERRA-2, ERA-5 and JRA-55 reanalyses from 500 hPa to 1 hPa in the period 1980–2020 with the aim of assessing their suitability for trend analysis. We found that these data are not suitable for trend studies due to huge differences in trend values and large differences in the variance of the ozone mixing ratio between reanalyses, and due to strong discrepancies between the ozone mixing ratio from reanalyses and that from the reliable ozonesonde at Hohenpeissenberg. These large differences can be caused by satellite replacement or by the assimilation of imperfect homogeneous data. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

26 pages, 5335 KiB  
Article
Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China
by Junyang Ma, Jianrong Bi, Bowen Li, Di Zhu, Xiting Wang, Zhaozhao Meng and Jinsen Shi
Remote Sens. 2024, 16(5), 929; https://doi.org/10.3390/rs16050929 - 6 Mar 2024
Cited by 4 | Viewed by 1854
Abstract
The vertical profiles of aerosol optical properties are vital to clarify their transboundary transport, climate forcing and environmental health influences. Based on synergistic measurements of multiple advanced detection techniques, this study investigated aerosol vertical structure and optical characteristics during two dust and haze [...] Read more.
The vertical profiles of aerosol optical properties are vital to clarify their transboundary transport, climate forcing and environmental health influences. Based on synergistic measurements of multiple advanced detection techniques, this study investigated aerosol vertical structure and optical characteristics during two dust and haze events in Lanzhou of northwest China. Dust particles originated from remote deserts traveled eastward at different altitudes and reached Lanzhou on 10 April 2020. The trans-regional aloft (~4.0 km) dust particles were entrained into the ground, and significantly modified aerosol optical properties over Lanzhou. The maximum aerosol extinction coefficient (σ), volumetric depolarization ratio (VDR), optical depth at 500 nm (AOD500), and surface PM10 and PM2.5 concentrations were 0.4~1.5 km−1, 0.15~0.30, 0.5~3.0, 200~590 μg/m3 and 134 μg/m3, respectively, under the heavy dust event, which were 3 to 11 times greater than those at the background level. The corresponding Ångström exponent (AE440–870), fine-mode fraction (FMF) and PM2.5/PM10 values consistently persisted within the ranges of 0.10 to 0.50, 0.20 to 0.50, and 0.20 to 0.50, respectively. These findings implied a prevailing dominance of coarse-mode and irregular non-spherical particles. A severe haze episode stemming from local emissions appeared at Lanzhou from 30 December 2020 to 2 January 2021. The low-altitude transboundary transport aerosols seriously deteriorated the air quality level in Lanzhou, and aerosol loading, surface air pollutants and fine-mode particles strikingly increased during the gradual strengthening of haze process. The maximum AOD500, AE440–870nm, FMF, PM2.5 and PM10 concentrations, and PM2.5/PM10 were 0.65, 1.50, 0.85, 110 μg/m3, 180 μg/m3 and 0.68 on 2 January 2021, respectively, while the corresponding σ and VDR at 0.20–0.80 km height were maintained at 0.68 km−1 and 0.03~0.12, implying that fine-mode and spherical small particles were predominant. The profile of ozone concentration exhibited a prominent two-layer structure (0.60–1.40 km and 0.10–0.30 km), and both concentrations at two heights always remained at high levels (60~72 μg/m3) during the entire haze event. Conversely, surface ozone concentration showed a significant decrease during severe haze period, with the peak value of 20~30 μg/m3, which was much smaller than that before haze pollution (~80 μg/m3 on 30 December). Our results also highlighted that the vertical profile of aerosol extinction coefficient was a good proxy for evaluating mass concentrations of surface particulate matters under uniform mixing layers, which was of great scientific significance for retrieving surface air pollutants in remote desert or ocean regions. These statistics of the aerosol vertical profiles and optical properties under heavy dust and haze events in Lanzhou would contribute to investigate and validate the transboundary transport and radiative forcing of aloft aerosols in the application of climate models or satellite remote sensing. Full article
Show Figures

Figure 1

22 pages, 2812 KiB  
Article
Impact of Atmospheric Conditions and Source Identification of Gaseous Polycyclic Aromatic Hydrocarbons (PAHs) during a Smoke Haze Period in Upper Southeast Asia
by Wittaya Tala, Pavidarin Kraisitnitikul and Somporn Chantara
Toxics 2023, 11(12), 990; https://doi.org/10.3390/toxics11120990 - 5 Dec 2023
Cited by 1 | Viewed by 2158
Abstract
Gaseous polycyclic aromatic hydrocarbons were measured in northern Thailand. No previous studies have provided data on gaseous PAHs until now, so this study determined the gaseous PAHs during two sampling periods for comparison, and then they were used to assess the correlation with [...] Read more.
Gaseous polycyclic aromatic hydrocarbons were measured in northern Thailand. No previous studies have provided data on gaseous PAHs until now, so this study determined the gaseous PAHs during two sampling periods for comparison, and then they were used to assess the correlation with meteorological conditions, other pollutants, and their sources. The total concentrations of 8-PAHs (i.e., NAP, ACY, ACE, FLU, PHE, ANT, FLA, and PYR) were 125 ± 22 ng m−3 and 111 ± 21 ng m−3, with NAP being the most pronounced at 67 ± 18 ng m−3 and 56 ± 17 ng m−3, for morning and afternoon, respectively. High temperatures increase the concentrations of four-ring PAHs, whereas humidity and pressure increase the concentrations of two- and three-ring PAHs. Moreover, gaseous PAHs were estimated to contain more toxic derivatives such as nitro-PAH, which ranged from 0.02 ng m−3 (8-Nitrofluoranthene) to 10.46 ng m−3 (1-Nitronaphthalene). Therefore, they could be one of the causes of local people’s health problems that have not been reported previously. Strong correlations of gaseous PAHs with ozone indicated that photochemical oxidation influenced four-ring PAHs. According to the Pearson correlation, diagnostic ratios, and principal component analysis, mixed sources including coal combustion, biomass burning, and vehicle emissions were the main sources of these pollutants. Full article
Show Figures

Figure 1

21 pages, 7254 KiB  
Article
Ground-Based Microwave Measurements of Mesospheric Ozone Variations over Moscow Region during the Solar Eclipses of 20 March 2015 and 25 October 2022
by Sergey Rozanov, Alexander Ignatyev and Alexey Zavgorodniy
Remote Sens. 2023, 15(13), 3440; https://doi.org/10.3390/rs15133440 - 7 Jul 2023
Cited by 1 | Viewed by 1262
Abstract
An increase in the ozone content in the mesosphere over the Moscow region during the solar eclipses of 20 March 2015 and 25 October 2022 was observed by means of a ground-based microwave radiometer operated at frequencies of the ozone spectral line of [...] Read more.
An increase in the ozone content in the mesosphere over the Moscow region during the solar eclipses of 20 March 2015 and 25 October 2022 was observed by means of a ground-based microwave radiometer operated at frequencies of the ozone spectral line of 142.175 GHz. Changes in ozone mixing ratio (OMR) at altitudes of 90 km and 65 km were estimated and compared with diurnal ozone variations measured on the dates closest to the events. It was found that the observed increase in the OMR at 90 km during the 20 March 2015 eclipse was almost two times greater than during the 25 October 2022 eclipse, although the maximum Sun’s obscurations of these eclipses were close to each other (0.625 and 0.646). Most likely, this difference can be explained by the difference in concentration of atomic hydrogen, which plays an important role in ozone destruction at altitudes of around 90 km and above. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

16 pages, 5498 KiB  
Article
Long-Term Trends in Inferred Continental Background Ozone in Eastern Australia
by Matthew L. Riley, Ningbo Jiang, Hiep Nguyen Duc and Merched Azzi
Atmosphere 2023, 14(7), 1104; https://doi.org/10.3390/atmos14071104 - 1 Jul 2023
Cited by 4 | Viewed by 1863
Abstract
A better understanding of background tropospheric ozone delivers multiple benefits. Robust estimates of regional background ozone are required to understand the limits of anthropogenic emissions controlling ozone reduction. Long-term estimates of background ozone assist in characterising changes in atmospheric composition and can help [...] Read more.
A better understanding of background tropospheric ozone delivers multiple benefits. Robust estimates of regional background ozone are required to understand the limits of anthropogenic emissions controlling ozone reduction. Long-term estimates of background ozone assist in characterising changes in atmospheric composition and can help quantify the influence of human activity on the atmosphere. Background tropospheric ozone measurements representative of continental air masses are scarce in Australia. Here, we use k-means clustering to identify a cluster of measurements from the long-term air quality monitoring station at Oakdale, NSW, which are likely to be representative of background air. The cluster is associated with NOx-limited air masses of continental origin. From this analysis, we estimate background ozone representative of Eastern Australia. We find recent (2017–2022) mean ozone mixing ratios of 28.5 ppb and identify a statistically significant (α = 0.05) trend in the mean of +1.8 (1.0–2.8) ppb/decade. Our methods demonstrate that some long-term monitoring stations within or near urban areas can provide suitable conditions and datasets for regional Global Atmosphere Watch monitoring. Full article
Show Figures

Figure 1

18 pages, 11383 KiB  
Article
Emission Ratios and Diurnal Variability of Volatile Organic Compounds and Influence of Industrial Emissions in Two Texas Cities
by Sujan Shrestha, Subin Yoon, Sergio L. Alvarez, Yuxuan Wang, James H. Flynn, Sascha Usenko and Rebecca J. Sheesley
Atmosphere 2023, 14(6), 1006; https://doi.org/10.3390/atmos14061006 - 10 Jun 2023
Cited by 3 | Viewed by 2145
Abstract
Changing urban emission landscapes and increasing population make it imperative to understand the driving forces for air quality in growing urban areas. Recent field studies in an industrial area in Houston and a semiurban area in San Antonio reveal unique emission signatures for [...] Read more.
Changing urban emission landscapes and increasing population make it imperative to understand the driving forces for air quality in growing urban areas. Recent field studies in an industrial area in Houston and a semiurban area in San Antonio reveal unique emission signatures for these two growing Texas cities. A comparison of benzene, toluene, xylenes, isoprene, and methyl ethyl ketone (MEK) was conducted for these two Texas locations and previous studies in other megacities. It was found that San Antonio had similar emission ratios as these megacities for benzene, toluene, and xylenes (1.10, 4.57, and 3.60 pptv ppbv−1 of CO, respectively), likely indicating a similar traffic emission source. Isoprene and MEK were of biogenic origin in San Antonio. However, analysis of emission ratios, diurnal trends, and comparison with emission inventories indicated that benzene, toluene, and MEK were likely associated with fugitive and stack emissions in the industrial corridor in Houston. Isoprene in Houston appeared to have mixed fugitive and biogenic sources in Houston, based on diurnal trends and emission ratio. The peak nighttime concentrations for benzene, toluene, xylene, isoprene, and MEK observed during the campaign were 66, 533, 21, 138, and 731 ppbv, respectively, in the Houston site. The emission ratio for xylenes (3.37 pptv ppbv−1 of CO) for the Houston site was similar to Paris, London, and Mexico City, despite emission inventories indicating high fugitive and stack emissions. The conditional probability function (CPF) analysis closely matched the direction of the industrial sources with the highest recorded emission levels as listed in the emission inventory for the Houston site. The estimated ozone production efficiency (OPE) for the industrial area in Houston indicated volatile organic compound (VOC)–limited conditions in the morning, which transitioned to nitrogen oxide (NOx)–limited conditions in the afternoon. Texas cities have complex emission scenarios, and future efforts to mitigate ozone and particulate matter may have to consider a variety of emission reduction strategies. Full article
(This article belongs to the Section Air Quality)
Show Figures

Graphical abstract

19 pages, 2153 KiB  
Article
Technical, Environmental, and Cost Assessment of Granite Sludge Valorisation
by Elena Surra, João Sousa, Manuela Correia, João Carvalheiras, João A. Labrincha, José C. Marques, Nuno Lapa and Cristina Delerue-Matos
Appl. Sci. 2023, 13(7), 4513; https://doi.org/10.3390/app13074513 - 2 Apr 2023
Cited by 8 | Viewed by 2330
Abstract
The granite sludge (GS) produced during block sawing can be exploited as alternative raw material in ceramic and concrete industries. Based on the case study of a Portuguese granite processing plant, this work analysed, by experimental tests and Environmental and Cost Life Cycle [...] Read more.
The granite sludge (GS) produced during block sawing can be exploited as alternative raw material in ceramic and concrete industries. Based on the case study of a Portuguese granite processing plant, this work analysed, by experimental tests and Environmental and Cost Life Cycle analyses, the feasibility of GS valorisation as a substitute (i) for feldspar in a ceramic paste and (ii) fine–medium inert filler in structural concrete. The results demonstrated that both the valorisation pathways are more advantageous than GS landfilling. Due to granulometric, mineralogical composition and shrinkage, GS can substitute feldspar in sandstone tiles or tableware products, although its tinting effect can limit noble whitish ceramic applications. In structural concrete mixes, 5% w/w GS instead of fine inert filler reduces the compressive strength and increases the water:cement ratio. The GS generates lower environmental impacts as a substitute for inert filler than as a substitute for feldspar in most of the impact categories analysed, even though the latter valorisation pathway provides higher benefits in Climate Change and the Depletion of Fossil resources, Water, and Ozone. If no monetary value is recognised for GS valorisation by the market, the sustainability of GS life cycle cost decreases when compared to its landfilling. Full article
(This article belongs to the Special Issue Solid Waste Management in a Life Cycle Analysis Perspective)
Show Figures

Figure 1

17 pages, 9999 KiB  
Article
MAX-DOAS Measurements of Tropospheric NO2 and HCHO Vertical Profiles at the Longfengshan Regional Background Station in Northeastern China
by Shuyin Liu, Siyang Cheng, Jianzhong Ma, Xiaobin Xu, Jinguang Lv, Junli Jin, Junrang Guo, Dajiang Yu and Xin Dai
Sensors 2023, 23(6), 3269; https://doi.org/10.3390/s23063269 - 20 Mar 2023
Cited by 7 | Viewed by 2375
Abstract
The vertical profiles of nitrogen dioxide (NO2) and formaldehyde (HCHO) in the troposphere at the Longfengshan (LFS) regional atmospheric background station (127°36′ E, 44°44′ N, 330.5 m above sea level) from 24 October 2020 to 13 October 2021 were retrieved from [...] Read more.
The vertical profiles of nitrogen dioxide (NO2) and formaldehyde (HCHO) in the troposphere at the Longfengshan (LFS) regional atmospheric background station (127°36′ E, 44°44′ N, 330.5 m above sea level) from 24 October 2020 to 13 October 2021 were retrieved from solar scattering spectra by multi-axis differential optical absorption spectroscopy (MAX-DOAS). We analyzed the temporal variations of NO2 and HCHO as well as the sensitivity of ozone (O3) production to the concentration ratio of HCHO to NO2. The largest NO2 volume mixing ratios (VMRs) occur in the near-surface layer for each month, with high values concentrated in the morning and evening. HCHO has an elevated layer around the altitude of 1.4 km consistently. The means ± standard deviations of vertical column densities (VCDs) and near-surface VMRs were 4.69 ± 3.72 ×1015 molecule·cm−2 and 1.22 ± 1.09 ppb for NO2, and they were 1.19 ± 8.35 × 1016 molecule·cm−2 and 2.41 ± 3.26 ppb for HCHO. The VCDs and near-surface VMRs for NO2 were high in the cold months and low in the warm months, while HCHO presented the opposite. The larger near-surface NO2 VMRs appeared in the condition associated with lower temperature and higher humidity, but this relationship was not found between HCHO and temperature. We also found the O3 production at the Longfengshan station was mainly in the NOx-limited regime. This is the first study presenting the vertical distributions of NO2 and HCHO in the regional background atmosphere of northeastern China, which are significant to enhancing the understanding of background atmospheric chemistry and regional ozone pollution processes. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

18 pages, 5296 KiB  
Article
Seasonal and Diurnal Variability of Monoterpenes in the Eastern Mediterranean Atmosphere
by Evangelia Tzitzikalaki, Nikos Kalivitis, Giorgos Kouvarakis, Nikos Mihalopoulos and Maria Kanakidou
Atmosphere 2023, 14(2), 392; https://doi.org/10.3390/atmos14020392 - 17 Feb 2023
Cited by 2 | Viewed by 2070
Abstract
Monoterpenes significantly affect air quality and climate as they participate in tropospheric ozone formation, new particle formation (NPF), and growth through their oxidation products. Vegetation is responsible for most biogenic volatile organic compound (BVOC) emissions released into the atmosphere, yet the contribution of [...] Read more.
Monoterpenes significantly affect air quality and climate as they participate in tropospheric ozone formation, new particle formation (NPF), and growth through their oxidation products. Vegetation is responsible for most biogenic volatile organic compound (BVOC) emissions released into the atmosphere, yet the contribution of shrub and regional transport to the ambient monoterpene mixing ratios is not sufficiently documented. In this study, we present one-year systematic observations of monoterpenes in the Eastern Mediterranean at a remote coastal site, affected mainly by the typical phrygana vegetation found on the Island of Crete in Greece. A total of 345 air samples were collected in absorption tubes and analyzed by a GC-FID system during three intensive campaigns (in spring 2014, summer 2014, and spring 2015) in addition to the systematic collection of one diurnal cycle per week from October 2014 to April 2015. Limonene, α-pinene and 1,8-cineol have been detected. The mixing ratios of α-pinene during spring and summer show a cycle that is typical for biogenic compounds, with high levels during the night and early morning, followed by an abrupt decrease around midday, which results from the strong photochemical depletion of this compound. Limonene was the most abundant monoterpene, with average mixing ratios of 36.3 ± 66 ppt. The highest mixing ratios were observed during autumn and spring, with a maximum mixing ratio in the early afternoon. The spring and autumn maxima could be attributed to the seasonal behavior of vegetation growth at Finokalia. The green period starts in late autumn when phrygana vegetation grows because of the rainfall; the temperature is still high at this time, as Finokalia is located in the southeast part of Europe. Statistical analyses of the observations showed that limonene and α-pinene have different sources, and none of the studied monoterpenes is correlated with the anthropogenic sources. Finally, the seasonality of the new particle formation (NPF) events and monoterpene mixing ratios show similarities, with a maximum occurring in spring, indicating that monoterpenes may contribute to the production of new particles. Full article
(This article belongs to the Special Issue Ammonia Emission and Particulate Matter)
Show Figures

Figure 1

13 pages, 14673 KiB  
Communication
Wuhan MST Radar Observations of a Tropopause Descent Event during Heavy Rain on 1–2 June 2015
by Hao Qi, Gang Chen, Yiming Lin, Wanlin Gong, Feilong Chen, Yaxian Li and Xiaoming Zhou
Remote Sens. 2022, 14(24), 6272; https://doi.org/10.3390/rs14246272 - 10 Dec 2022
Cited by 1 | Viewed by 1927
Abstract
During heavy rain on 1–2 June 2015 in central China, the Wuhan mesosphere–stratosphere–troposphere (MST) radar was applied to record the atmospheric responses to the rain with a 30 min period. According to the vertical gradient of the echo power above 500 hPa, the [...] Read more.
During heavy rain on 1–2 June 2015 in central China, the Wuhan mesosphere–stratosphere–troposphere (MST) radar was applied to record the atmospheric responses to the rain with a 30 min period. According to the vertical gradient of the echo power above 500 hPa, the tropopause height could be determined by MST radar detection. The tropopause descent was clearly observed by the Wuhan MST radar a few hours before the rain, and then the tropopause recovered to usual heights during the rain. The observation of the radiosonde in Wuhan was in line with that of the radar. Both the potential vorticity and the ozone mass mixing ratio variations at 100 hPa level implied the fall of the tropopause. During the tropopause decent, enhanced radar echoes appeared in the upper troposphere, the echo spectral widths became broader, and the large vertical wind velocities were recorded and indicated the occurrence of strong convective activities. The relative humidity was also found to increase at all tropospheric heights, including the region close to the tropopause. The convective flow may have transported water vapor to the tropopause heights, and a temperature decrease in this region was also recorded. It is very likely that water vapor cooling induced the tropopause descent. Full article
(This article belongs to the Special Issue Atmospheric Dynamics with Radar Observations)
Show Figures

Figure 1

11 pages, 1074 KiB  
Article
Exposure to Ambient Air Pollution and the Incidence of Dementia in the Elderly of England: The ELSA Cohort
by Dylan Wood, Dimitris Evangelopoulos, Sean Beevers, Nutthida Kitwiroon and Klea Katsouyanni
Int. J. Environ. Res. Public Health 2022, 19(23), 15889; https://doi.org/10.3390/ijerph192315889 - 29 Nov 2022
Cited by 10 | Viewed by 2783
Abstract
Increasing evidence suggests an adverse association between ambient air pollution and the incidence of dementia in adult populations, although results at present are mixed and further work is required. The present study investigated the relationships between NO2, PM10, PM [...] Read more.
Increasing evidence suggests an adverse association between ambient air pollution and the incidence of dementia in adult populations, although results at present are mixed and further work is required. The present study investigated the relationships between NO2, PM10, PM2.5 and ozone on dementia incidence in a cohort of English residents, aged 50 years and older, followed up between 2004 and 2017 (English Longitudinal Study of Ageing; n = 8525). Cox proportional hazards models were applied to investigate the association between time to incident dementia and exposure to pollutants at baseline. Hazard ratios (HRs) were calculated per 10 μg/m3. Models were adjusted for age, gender, physical activity, smoking status and level of education (the latter as a sensitivity analysis). A total of 389 dementia cases were identified during follow-up. An increased risk of developing dementia was suggested with increasing exposure to PM2.5 (HR: 1.10; 95% confidence interval (CI): 0.88, 1.37), whilst NO2, PM10 and ozone exhibited no discernible relationships. Hazard ratios were 0.97 (CI: 0.89, 1.05) for NO2; 0.98 (CI: 0.89, 1.08) for PM10; 1.01 (CI: 0.94, 1.09) for ozone. In the London sub-sample (39 dementia cases), a 10 μg/m3 increase in PM10 was found to be associated with increased risk of dementia by 16%, although not statistically significant (HR: 1.16; CI: 0.90, 1.48), and the magnitude of effect for PM2.5 increased, whilst NO2 and ozone exhibited similar associations as observed in the England-wide study. Further work is required to fully elucidate the potentially adverse associations between air pollution exposure and dementia incidence. Full article
(This article belongs to the Special Issue Mental Health Consequences of Air and Noise Pollution)
Show Figures

Figure 1

Back to TopTop