Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China
Abstract
:1. Introduction
2. Site Description and Measurement
2.1. Site Information
2.2. Sun-Sky-Lunar Photometer Measurements
2.3. Ozone and Aerosol Lidar System
2.4. Air Quality and Reanalysis Data
2.5. Backward Trajectory Model
3. Methodology
3.1. Calculation of Aerosol Optical Depth
3.2. Lunar Langley Calibration Method
3.3. Spectral Deconvolution Algorithm (SDA)
3.4. Retrieval of Aerosol Vertical Profiles
4. Results and Analysis
4.1. Two Heavy Dust Events Detected by Ground-Based Ozone Lidar
4.2. Aerosol Vertical Profiles and Optical Properties Affected by Dust Events
4.3. A Serious Haze Episode Identified by Ground-based Ozone Lidar
4.4. Aerosol Vertical Profiles and Optical Properties Affected by Haze Episode
4.5. Retrieval of Surface Particulate Mass Concentration
4.6. Source and Aerosol Types during Dust Haze Events
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Wang, T.; Wang, W.; Li, Z.; Yan, H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Bi, J.; Huang, J.; Holben, B.; Zhang, G. Comparison of key absorption and optical properties between pure and transported anthropogenic dust over East and Central Asia. Atmos. Chem. Phys. 2016, 16, 15501–15516. [Google Scholar] [CrossRef]
- Li, Z.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Lin, B.; Wang, T.; Yi, Y.; Hu, Y.; Sun-Mack, S.; Ayers, K. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett. 2006, 33, L06824. [Google Scholar] [CrossRef]
- Creamean, J.M.; Suski, K.J.; Rosenfeld, D.; Cazorla, A.; DeMott, P.J.; Sullivan, R.C.; White, A.B.; Ralph, F.M.; Minnis, P.; Comstock, J.M.; et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science 2013, 339, 1572–1578. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhang, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. 2008, 113, D23212. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; Wang, F.; Huang, J.; Xia, F.; Luo, M.; Wu, Y.; Jiang, J.H.; Xie, T.; Zhaxi, Y.; et al. Three-Dimensional Structure of Aerosol in China: A Perspective from Multi-Satellite Observations. Atmos. Res. 2016, 178–179, 580–589. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Jin, Q.; Ma, Y.; Yang, B. Modeling Dust Sources, Transport, and Radiative Effects at Different Altitudes over the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 1507–1529. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Liu, Z.; Winker, D.; Trepte, C. A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res. 2008, 113, D16214. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Bi, J.; Wang, G.; Wang, W.; Fu, Q.; Li, Z.; Tsay, S.-C.; Shi, J. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China–U.S. joint dust field experiment. J. Geophys. Res. 2010, 115, D00K15. [Google Scholar] [CrossRef]
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian dust transported one full circuit around the globe. Nature Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Sheng, Z.; Che, H.; Chen, Q.; Xia, X.; Liu, D.; Wang, Z.; Zhao, H.; Gui, K.; Zheng, Y.; Sun, T.; et al. Aerosol vertical distribution and optical properties of different pollution events in Beijing in autumn 2017. Atmos. Res. 2019, 215, 193–207. [Google Scholar] [CrossRef]
- Sun, T.; Che, H.; Qi, B.; Wang, Y.; Dong, Y.; Xia, X.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.; et al. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: Effect of the regional transport of different aerosol types over eastern China. Atmos. Chem. Phys. 2018, 18, 2949–2971. [Google Scholar] [CrossRef]
- Qin, K.; He, Q.; Zhang, Y.; Cohen, J.B.; Tiwari, P.; Lolli, S. Aloft Transport of Haze Aerosols to Xuzhou, Eastern China: Optical Properties, Sources, Type, and Components. Remote Sens. 2022, 14, 1589. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Z.; Ding, A. Impact of aerosol-PBL interaction on haze pollution-multiyear observational evidences in north China: Multiyear observational evidences in North China. Geophys. Res. Lett. 2018, 45, 8596–8603. [Google Scholar] [CrossRef]
- Wang, S.; Feng, X.; Zeng, X.; Ma, Y.; Shang, K. A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos. Environ. 2009, 43, 2823–2828. [Google Scholar] [CrossRef]
- Chen, C.H.; Huang, J.G.; Ren, Z.H.; Peng, X.A. Meteorological conditions of photochemical smog pollution during summer in Xigu industrial area. Acta Sci. Circumst. 1986, 6, 334–342. (In Chinese) [Google Scholar]
- Zhao, S.P.; Yu, Y.; Qin, D.H. From highly polluted inland city of China to “Lanzhou Blue”: The air-pollution characteristics. Sci. Cold Arid Reg. 2018, 10, 12–26. [Google Scholar]
- Zhao, S.; Yu, Y.; Li, J.; Yin, D.; Qi, S.; Qin, D. Response of particle number concentrations to the clean air action plan: Lessons from the first long-term aerosol measurements in a typical urban valley in western China. Atmos. Chem. Phys. 2021, 21, 14959–14981. [Google Scholar] [CrossRef]
- Chu, P.C.; Chen, Y.; Lu, S. Atmospheric effects on winter SO2 pollution in Lanzhou, China. Atmos. Res. 2008, 89, 365–373. [Google Scholar] [CrossRef]
- Ta, W.; Wang, T.; Xiao, H.; Zhu, X.; Xiao, Z. Gaseous and particulate air pollution in the Lanzhou Valley, China. Sci. Total Environ. 2004, 320, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pu, W.; Shi, J.; Bi, J.; Zhou, T.; Zhang, X.; Ren, Y. A comparison of the physical and optical properties of anthropogenic air pollutants and mineral dust over Northwest China. J. Meteorol. Res. 2015, 29, 180–200. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D. Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: Insights from high-resolution aerosol mass spectrometry. Atmos. Chem. Phys. 2014, 14, 12593–12611. [Google Scholar] [CrossRef]
- Bi, J.; Huang, J.; Fu, Q.; Wang, X.; Shi, J.; Zhang, W.; Huang, Z.; Zhang, B. Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 346–360. [Google Scholar] [CrossRef]
- Che, H.; Zhang, X.-Y.; Xia, X.; Goloub, P.; Holben, B.; Zhao, H.; Wang, Y.; Zhang, X.-C.; Wang, H.; Blarel, L.; et al. Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013. Atmos. Chem. Phys. 2015, 15, 7619–7652. [Google Scholar] [CrossRef]
- Cao, X.; Liang, J.; Tian, P.; Zhang, L.; Quan, X.; Liu, W. The mass concentration and optical properties of black carbon aerosols over a semi-arid region in the northwest of China. Atmos. Pollut. Res. 2014, 5, 601–609. [Google Scholar] [CrossRef]
- Zhao, S.; Yin, D.; Qu, J. Identifying sources of dust based on CALIPSO, MODIS satellite data and backward trajectory model. Atmos. Pollut. Res. 2015, 6, 36–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.Y. A study of the relationship between air pollutants and inversion in the ABL over the city of Lanzhou. Adv. Atmos. Sci. 2011, 28, 879–886. [Google Scholar] [CrossRef]
- Barreto, Á.; Cuevas, E.; Granados-Munñoz, M.-J.; Alados-Arboledas, L.; Romero, P.M.; Gröbner, J.; Kouremeti, N.; Almansa, A.F.; Stone, T.; Toledano, C.; et al. The new Sun-sky-lunar Cimel CE318-T multiband photometer-a comprehensive performance evaluation. Atmos. Meas. Tech. 2016, 9, 631–654. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Barreto, Á.; Román, R.; Cuevas, E.; Pérez-Ramírez, D.; Berjón, A.J.; Kouremeti, N.; Kazadzis, S.; Gröbner, J.; Mazzola, M.; Toledano, C.; et al. Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmos. Environ. 2019, 202, 190–211. [Google Scholar] [CrossRef]
- Bi, J.; Li, Z.; Zuo, D.; Yang, F.; Li, B.; Ma, J.; Huang, Z.; He, Q. Dust aerosol vertical profiles in the hinterland of Taklimakan Desert during summer 2019. Front. Environ. Sci. 2022, 10, 203. [Google Scholar] [CrossRef]
- He, Y.; Li, L.; Wang, H.; Xu, X.; Li, Y.; Fan, S. A cold front induced co-occurrence of O3 and PM2.5 pollution in a Pearl River Delta city: Temporal variation, vertical structure, and mechanism. Environ. Pollut. 2022, 306, 119464. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B.; et al. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Kieffer, H.H.; Stone, T.C. The spectral irradiance of the moon. Astron. J. 2005, 129, 2887–2901. [Google Scholar] [CrossRef]
- Wehrli, C. Spectral Solar Irradiance Data; WMO: Geneva, Switzerland, 1986. [Google Scholar]
- Pérez-Ramírez, D.; Lyamani, H.; Olmo, F.J.; Whiteman, D.N.; Navas-Guzmán, F.; Alados-Arboledas, L. Cloud screening and quality control algorithm for star photometer data: Assessment with lidar measurements and with all-sky images. Atmos. Meas. Tech. 2012, 5, 1585–1599. [Google Scholar] [CrossRef]
- Barreto, Á.; Cuevas, E.; Damiri, B.; Guirado, C.; Berkoff, T.; Berjón, A.J.; Hernández, Y.; Almansa, F.; Gil, M. A new method for nocturnal aerosol measurements with a lunar photometer prototype. Atmos. Meas. Tech. 2013, 6, 585–598. [Google Scholar] [CrossRef]
- Che, H.; Xia, X.; Zhao, H.; Dubovik, O.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Estelles, V.; Wang, Y.; Zhu, J.; et al. Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network. Atmos. Chem. Phys. 2019, 19, 11843–11864. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Dubovik, O.; Eck, T.F. A modified Ångström coefficient for the characterization of sub-micron aerosols. Appl. Opt. 2001, 40, 2368–2374. [Google Scholar] [CrossRef]
- O’Neill, N.T.; Eck, T.F.; Smirnov, A.; Holben, B.N.; Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. 2003, 108, 4559–4573. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Ackermann, J. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Ocean. Technol. 1998, 15, 1043–1050. [Google Scholar] [CrossRef]
- Liu, Z.; Sugimoto, N.; Murayama, T. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman Lidar. Appl. Opt. 2002, 41, 2760–2767. [Google Scholar] [CrossRef] [PubMed]
- Ansmann, A.; Engelmann, R.; Althausen, D.; Wandinger, U. High aerosol load over the Pearl River Delta, South China, observed with Raman lidar and Sun photometer. Geophys. Res. Lett. 2005, 32, L13815. [Google Scholar] [CrossRef]
- Cattrall, C.; Reagan, J.; Thome, K.; Dubovik, O. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected AERONET locations. J. Geophys. Res. 2005, 110, D10S11. [Google Scholar] [CrossRef]
- Hu, Y.; Vaughan, M.; Liu, Z.; Lin, B.; Yang, P.; Flittner, D.; Hunt, B.; Kuehn, R.; Huang, J.; Wu, D.; et al. The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express 2007, 15, 5327–5332. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Huang, J.; Huang, Z.; Liu, J.; Wang, W.; Lin, L. The depolarization-attenuated backscatter relationship for dust plumes. Opt. Express 2013, 21, 15195–15204. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; E87950; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Sawyer, V.; Li, Z. Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos. Environ. 2013, 79, 518–528. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Shao, J.; Li, B.; Hong, J.; Liu, D.; Li, D.; Wei, P.; Li, W.; Li, L.; et al. Remote Sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements. Remote Sens. Environ. 2016, 173, 59–68. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, Y.; Wang, J.; Wang, W. Inter-comparison of WPSTM-TEOMTM-MOUDITM and investigation on particle density. Environ. Sci. 2007, 28, 1929–1934. [Google Scholar]
Specification | Parameter |
---|---|
Principle | Differential absorption of ozone at different UV wavelengths |
Laser transmitter | Nd:YAG laser pulse |
Channels | 266 nm, 289 nm, 316 nm, 532 nm |
Maximum pulse energy | 50 mJ@266 nm, 10 mJ@289, 355 and 532 nm |
Spatial resolution | 7.5 m |
Temporal resolution | 15 min |
Receiving signals | 266, 289, 316 and 532 nm ‖; 532 nm ⊥ |
Blind zone | 100 m |
Incomplete-overlap zone | 100~200 m |
Height (km) | The Fitting Formulae (RH < 80%) | Correlation Coefficient, R | ||
---|---|---|---|---|
PM2.5 | PM10 | PM2.5 | PM10 | |
0.09 | y = 286.41x + 28.96 | y = 1094.50x + 45.74 | 0.709 | 0.683 |
0.12 | y = 176.53x + 26.75 | y = 656.52x + 39.87 | 0.657 | 0.620 |
0.15 | y = 142.95x + 25.22 | y = 530.44x + 34.32 | 0.648 | 0.610 |
0.18 | y = 129.41x + 24.96 | y = 476.84x + 33.32 | 0.639 | 0.602 |
0.21 | y = 121.68x + 25.16 | y = 452.42x + 33.99 | 0.630 | 0.594 |
Height (km) | Fitting Formulae (RH < 80%) | Correlation Coefficient, R | ||
---|---|---|---|---|
PM2.5 | PM10 | PM2.5 | PM10 | |
0.09 | y = 421.21x − 5.10 | y = 669.56x + 14.88 | 0.744 | 0.794 |
0.12 | y = 281.94x − 3.42 | y = 440.86x + 2.99 | 0.826 | 0.868 |
0.15 | y = 214.69x − 3.74 | y = 332.93x + 3.30 | 0.869 | 0.906 |
0.18 | y = 181.05x − 1.63 | y = 279.78x + 6.92 | 0.890 | 0.925 |
0.21 | y = 164.01x − 0.46 | y = 253.34x + 10.17 | 0.900 | 0.934 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Bi, J.; Li, B.; Zhu, D.; Wang, X.; Meng, Z.; Shi, J. Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China. Remote Sens. 2024, 16, 929. https://doi.org/10.3390/rs16050929
Ma J, Bi J, Li B, Zhu D, Wang X, Meng Z, Shi J. Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China. Remote Sensing. 2024; 16(5):929. https://doi.org/10.3390/rs16050929
Chicago/Turabian StyleMa, Junyang, Jianrong Bi, Bowen Li, Di Zhu, Xiting Wang, Zhaozhao Meng, and Jinsen Shi. 2024. "Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China" Remote Sensing 16, no. 5: 929. https://doi.org/10.3390/rs16050929
APA StyleMa, J., Bi, J., Li, B., Zhu, D., Wang, X., Meng, Z., & Shi, J. (2024). Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China. Remote Sensing, 16(5), 929. https://doi.org/10.3390/rs16050929