Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = oxyfluoride glass-ceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2797 KiB  
Article
Controllable Nano-Crystallization in Fluoroborosilicate Glass Ceramics for Broadband Visible Photoluminescence
by Yuanhang Xiang, Yi Long, Peiying Cen, Sirang Liu, Zaijin Fang and Renjie Jiao
Nanomaterials 2025, 15(2), 144; https://doi.org/10.3390/nano15020144 - 20 Jan 2025
Viewed by 1029
Abstract
A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of B2O3 into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 [...] Read more.
A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of B2O3 into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF3 and KYb3F10 in fluoroborosilicate glass ceramics enhanced the emission of Mn2+ and Mn2+–Yb3+ dimers by 6.7 and 54 times, respectively. Moreover, the upconversion emission color of glass ceramic could be modulated from yellow to white and blue by adjusting the Yb3+ concentration. The well-designed glass ceramic is a novel and significant compound to simultaneously provide efficiently coordinated sites for transition metal and rare earth ions. More importantly, the design strategy opens a new way for engineering high-quality oxy-fluoride glass ceramics with properties of excellent stability, controllable nano-crystallization and high-efficiency photoluminescence. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

9 pages, 1446 KiB  
Article
A Study of PbF2 Nanoparticles Crystallization Mechanism in Mixed Oxyde-Fluoride Glasses
by Saule Dyussembekova, Ekaterina Trusova, Sergey Kichanov, Kiril Podbolotov and Denis Kozlenko
Ceramics 2023, 6(3), 1508-1516; https://doi.org/10.3390/ceramics6030093 - 11 Jul 2023
Cited by 2 | Viewed by 1664
Abstract
Samples of nanocrystalline PbF2 glass ceramics were obtained by heat-treating SiO2–GeO2–PbO–PbF2–CdF2 glasses. The Ho2O3 and Tm2O3 doping effects on the structural features of PbF2 nanoparticles were studied using [...] Read more.
Samples of nanocrystalline PbF2 glass ceramics were obtained by heat-treating SiO2–GeO2–PbO–PbF2–CdF2 glasses. The Ho2O3 and Tm2O3 doping effects on the structural features of PbF2 nanoparticles were studied using small-angle X-ray scattering and X-ray diffraction methods. The enlargements of the average sizes of nanoparticles and the sizes of local areas of density fluctuations have been found to be correlated with an increase in concentrations of Ho2O3 and Tm2O3 in initial glasses. A variation in the concentrations of Ho2O3 and Tm2O3 does not affect the morphology and fractal dimension of the formed PbF2 nanoparticles. Full article
(This article belongs to the Special Issue Advanced Glasses and Glass-Ceramics)
Show Figures

Figure 1

16 pages, 3031 KiB  
Article
Novel Sol-Gel Route to Prepare Eu3+-Doped 80SiO2-20NaGdF4 Oxyfluoride Glass-Ceramic for Photonic Device Applications
by María Eugenia Cruz, Thi Ngoc Lam Tran, Alessandro Chiasera, Alicia Durán, Joaquín Fernandez, Rolindes Balda and Yolanda Castro
Nanomaterials 2023, 13(5), 940; https://doi.org/10.3390/nano13050940 - 5 Mar 2023
Cited by 4 | Viewed by 2312
Abstract
Oxyfluoride glass-ceramics (OxGCs) with the molar composition 80SiO2-20(1.5Eu3+: NaGdF4) were prepared with sol-gel following the “pre-crystallised nanoparticles route” with promising optical results. The preparation of 1.5 mol % Eu3+-doped NaGdF4 nanoparticles, named 1.5Eu3+ [...] Read more.
Oxyfluoride glass-ceramics (OxGCs) with the molar composition 80SiO2-20(1.5Eu3+: NaGdF4) were prepared with sol-gel following the “pre-crystallised nanoparticles route” with promising optical results. The preparation of 1.5 mol % Eu3+-doped NaGdF4 nanoparticles, named 1.5Eu3+: NaGdF4, was optimised and characterised using XRD, FTIR and HRTEM. The structural characterisation of 80SiO2-20(1.5Eu3+: NaGdF4) OxGCs prepared from these nanoparticles’ suspension was performed by XRD and FTIR revealing the presence of hexagonal and orthorhombic NaGdF4 crystalline phases. The optical properties of both nanoparticles’ phases and the related OxGCs were studied by measuring the emission and excitation spectra together with the lifetimes of the 5D0 state. The emission spectra obtained by exciting the Eu3+-O2− charge transfer band showed similar features in both cases corresponding the higher emission intensity to the 5D07F2 transition that indicates a non-centrosymmetric site for Eu3+ ions. Moreover, time-resolved fluorescence line-narrowed emission spectra were performed at a low temperature in OxGCs to obtain information about the site symmetry of Eu3+ in this matrix. The results show that this processing method is promising for preparing transparent OxGCs coatings for photonic applications. Full article
Show Figures

Figure 1

14 pages, 2060 KiB  
Article
Europium (II)-Doped CaF2 Nanocrystals in Sol-Gel Derived Glass-Ceramic: Luminescence and EPR Spectroscopy Investigations
by Corina Secu, Arpad-Mihai Rostas and Mihail Secu
Nanomaterials 2022, 12(17), 3016; https://doi.org/10.3390/nano12173016 - 31 Aug 2022
Cited by 5 | Viewed by 2256
Abstract
The remarkable properties of Eu2+-activated phosphors, related to the broad and intense luminescence of Eu2+ ions, showed a high potential for a wide range of optical-related applications. Oxy-fluoride glass-ceramic containing Europium (II)-doped CaF2 nanocrystals embedded in silica matrix were [...] Read more.
The remarkable properties of Eu2+-activated phosphors, related to the broad and intense luminescence of Eu2+ ions, showed a high potential for a wide range of optical-related applications. Oxy-fluoride glass-ceramic containing Europium (II)-doped CaF2 nanocrystals embedded in silica matrix were produced in two steps: glass-ceramization in air at 800° with Eu3+-doped CaF2 nanocrystals embedded followed by Eu3+ to Eu2+ reduction during annealing in reducing atmosphere. The broad, blue luminescence band at 425 nm and with the long, weak tail in the visible range is assigned to the d → f type transition of the Eu2+ located inside the CaF2 nanocrystals in substitutional and perturbed sites, respectively; the photoluminescence quantum yield was about 0.76. The X-ray photoelectron spectroscopy and Electron paramagnetic spectroscopy confirmed the presence of Eu2+ inside the CaF2 nanocrystals. Thermoluminescence curves recorded after X-ray irradiation of un-doped and Eu2+-doped glass-ceramics showed a single dominant glow peak at 85 °C related to the recombination between F centers and Eu2+ related hole within the CaF2 nanocrystals. The applicability of the procedure can be tested to obtain an oxy-fluoride glass-ceramic doped with other divalent ions such as Sm2+, Yb2+, as nanophosphors for radiation detector or photonics-related applications. Full article
(This article belongs to the Special Issue Recent Developments in Luminescent Nanomaterials)
Show Figures

Figure 1

19 pages, 8110 KiB  
Article
Highlighting of LaF3 Reactivity with SiO2 and GeO2 at High Temperature
by Hussein Fneich, Manuel Vermillac, Daniel R. Neuville, Wilfried Blanc and Ahmad Mehdi
Ceramics 2022, 5(2), 182-200; https://doi.org/10.3390/ceramics5020016 - 6 May 2022
Cited by 8 | Viewed by 3347
Abstract
LaF3 is commonly added to oxide glass, in particular to silica, to form oxyfluoride glass. After appropriate thermal treatment at a temperature lower than 800 °C, usually, glass ceramics are obtained. Recently, LaF3 nanoparticles have been used as precursors to obtain [...] Read more.
LaF3 is commonly added to oxide glass, in particular to silica, to form oxyfluoride glass. After appropriate thermal treatment at a temperature lower than 800 °C, usually, glass ceramics are obtained. Recently, LaF3 nanoparticles have been used as precursors to obtain amorphous nanoparticles of undefined composition in optical fiber. However, fiber fabrication necessitates temperature much higher (typically up to 2000 °C) than the one required for bulk glass. In this article, we report on the reactivity of fluoride ions in LaF3 with SiO2 and GeO2 (a common dopant used to dope optical fiber) powders at high temperature. TGA, EDX-SEM, XRD and Raman analyses were performed. Above 1000 °C, LaF3 starts to react, preferentially with SiO2, to form SiF4 gaseous species. The remaining lanthanum ions form La2Si2O7 and La2Ge2O7 phases. These results could contribute to improve material development for the fiber optics community. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

16 pages, 2564 KiB  
Communication
Luminescence of SiO2-BaF2:Tb3+, Eu3+ Nano-Glass-Ceramics Made from Sol–Gel Method at Low Temperature
by Natalia Pawlik, Barbara Szpikowska-Sroka, Tomasz Goryczka, Ewa Pietrasik and Wojciech A. Pisarski
Nanomaterials 2022, 12(2), 259; https://doi.org/10.3390/nano12020259 - 14 Jan 2022
Cited by 12 | Viewed by 2550
Abstract
The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped [...] Read more.
The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol–gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol–gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D47FJ (J = 6–3)) and Eu3+ (5D07FJ (J = 0–4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials for Energy Applications)
Show Figures

Figure 1

15 pages, 5027 KiB  
Article
In Situ Synthesis of β-Na1.5Y1.5F6: Er3+ Crystals in Oxyfluoride Silicate Glass for Temperature Sensors and Their Spectral Conversion and Optical Thermometry Analysis
by Rajesh Dagupati, Robert Klement, Ramaraghavulu Rajavaram, José J. Velázquez and Dušan Galusek
Molecules 2021, 26(22), 6901; https://doi.org/10.3390/molecules26226901 - 16 Nov 2021
Cited by 9 | Viewed by 2261
Abstract
Transparent oxyfluoride glass-ceramics (GCs) with embedded β-Na1.5Y1.5F6 crystals doped with Er3+ ions were fabricated by a melt-quenching method with subsequent heat-treatment. The structural characterizations and spectroscopic techniques were performed to verify the precipitation [...] Read more.
Transparent oxyfluoride glass-ceramics (GCs) with embedded β-Na1.5Y1.5F6 crystals doped with Er3+ ions were fabricated by a melt-quenching method with subsequent heat-treatment. The structural characterizations and spectroscopic techniques were performed to verify the precipitation of β-Na1.5Y1.5F6 crystals and partition of the Er3+ dopant into the crystals. Bright green up-conversion (UC) emission was achieved in Er3+-doped glass-ceramic (Er-GC). Furthermore, the temperature-dependent visible UC behavior based on thermally coupled energy levels (TCLs) and non-thermally coupled energy levels (NTCLs) was also examined in the temperature range 298 k to 823 K with maximum relative sensitivity (Sr) of 1.1% K−1 at 298 K for TCLs in Er-G and Er-GC samples. Full article
(This article belongs to the Special Issue Glass-Ceramic Functional Materials: Synthesis and Applications)
Show Figures

Figure 1

23 pages, 6411 KiB  
Review
Optical Properties of Transparent Rare-Earth Doped Sol-Gel Derived Nano-Glass Ceramics
by Mihail Secu, Corina Secu and Cristina Bartha
Materials 2021, 14(22), 6871; https://doi.org/10.3390/ma14226871 - 14 Nov 2021
Cited by 17 | Viewed by 4042
Abstract
Rare-earth doped oxyfluoride glass ceramics represent a new generation of tailorable optical materials with high potential for optical-related applications such as optical amplifiers, optical waveguides, and white LEDs. Their key features are related to the high transparency and remarkable luminescence properties, while keeping [...] Read more.
Rare-earth doped oxyfluoride glass ceramics represent a new generation of tailorable optical materials with high potential for optical-related applications such as optical amplifiers, optical waveguides, and white LEDs. Their key features are related to the high transparency and remarkable luminescence properties, while keeping the thermal and chemical advantages of oxide glasses. Sol-gel chemistry offers a flexible synthesis approach with several advantages, such as lower processing temperature, the ability to control the purity and homogeneity of the final materials on a molecular level, and the large compositional flexibility. The review will be focused on optical properties of sol-gel derived nano-glass ceramics related to the RE-doped luminescent nanocrystals (fluorides, chlorides, oxychlorides, etc.) such as photoluminescence, up-conversion luminescence, thermoluminescence and how these properties are influenced by their specific processing, mostly focusing on the findings from our group and similar ones in the literature, along with a discussion of perspectives, potential challenges, and future development directions. Full article
(This article belongs to the Special Issue Optical Properties of Rare-Earth Doped Nanostructured Materials)
Show Figures

Figure 1

11 pages, 3984 KiB  
Article
Crystallization Process and Site-Selective Excitation of Nd3+ in LaF3/NaLaF4 Sol–Gel-Synthesized Transparent Glass-Ceramics
by María E. Cruz, Jing Li, Giulio Gorni, Alicia Durán, Glenn C. Mather, Rolindes Balda, Joaquín Fernández and Yolanda Castro
Crystals 2021, 11(5), 464; https://doi.org/10.3390/cryst11050464 - 22 Apr 2021
Cited by 8 | Viewed by 3125
Abstract
In this study, transparent oxyfluoride glass-ceramics (GCs) with NaLaF4 nanocrystals (NCs) were prepared by the sol–gel method for the first time. Three different molar ratios of La(CH3COO)3/Na(CH3COO) were used to obtain the GCs, which were sintered [...] Read more.
In this study, transparent oxyfluoride glass-ceramics (GCs) with NaLaF4 nanocrystals (NCs) were prepared by the sol–gel method for the first time. Three different molar ratios of La(CH3COO)3/Na(CH3COO) were used to obtain the GCs, which were sintered at 450, 550 and 650 °C for 1 min. X-ray diffraction (XRD) was employed to follow the evolution of the xerogel during the heat treatments and to study crystal growth for the three temperatures. In all cases, the LaF3 crystalline phase was present, but crystallization of NaLaF4 was only promoted at 650 °C. Thermogravimetric and thermodifferential analysis (TGA-DTA) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the crystallization process. High-resolution transmission electron microscopy (HRTEM) was employed to confirm NaLaF4 crystallization and determine the size distribution. The incorporation of Nd3+ ion into NaLaF4 and LaF3 nanocrystals was confirmed by site-selective emission and excitation spectra. The Nd3+ emission intensities in both phases depend not only on the NaLaF4/LaF3 ratio but also on their emission efficiencies. Full article
(This article belongs to the Special Issue Glass-Ceramics: Improving Glass Properties through Crystallization)
Show Figures

Graphical abstract

22 pages, 5044 KiB  
Article
Studies of Sol-Gel Evolution and Distribution of Eu3+ Ions in Glass–Ceramics Containing LaF3 Nanocrystals Depending on Initial Sols Composition
by Natalia Pawlik, Barbara Szpikowska-Sroka, Tomasz Goryczka and Wojciech A. Pisarski
Int. J. Mol. Sci. 2021, 22(3), 996; https://doi.org/10.3390/ijms22030996 - 20 Jan 2021
Cited by 8 | Viewed by 2709
Abstract
In this work, we performed a systematic analysis of the impact of selected chemical reagents used in sol-gel synthesis (i.e., N,N-dimethylformamide) and different catalyst agents (i.e., CH3COOH, HNO3) on the formation and luminescence of Eu3+-doped SiO2 [...] Read more.
In this work, we performed a systematic analysis of the impact of selected chemical reagents used in sol-gel synthesis (i.e., N,N-dimethylformamide) and different catalyst agents (i.e., CH3COOH, HNO3) on the formation and luminescence of Eu3+-doped SiO2–LaF3 nano-glass–ceramics. Due to the characteristic nature of intra-configurational electronic transitions of Eu3+ ions within the 4f6 manifold (5D07FJ, J = 0–4), they are frequently used as a spectral probe. Thus, the changes in the photoluminescence profile of Eu3+ ions could identify the general tendency of rare earth materials to segregate inside low-phonon energy fluoride nanocrystals, which allows us to assess their application potential in optoelectronics. Fabricated sol-gel materials, from sols to gels and xerogels to nano-glass–ceramics, were examined using several experimental techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR), and luminescence measurements. It was found that the distribution of Eu3+ ions between the amorphous silicate sol-gel host and LaF3 nanocrystals is strictly dependent on the initial composition of the obtained sols, and the lack of N,N-dimethylformamide significantly promotes the segregation of Eu3+ ions inside LaF3 nanocrystals. As a result, we detected long-lived luminescence from the 5D0 excited state equal to 6.21 ms, which predisposes the obtained glass–ceramic material for use as an optical element in reddish-orange emitting devices. Full article
(This article belongs to the Special Issue New Hybrid Materials for Nonlinear Optics)
Show Figures

Figure 1

15 pages, 4210 KiB  
Article
Transparent Glasses and Glass-Ceramics in the Ternary System TeO2-Nb2O5-PbF2
by Juliana Santos Barbosa, Gislene Batista, Sylvain Danto, Evelyne Fargin, Thierry Cardinal, Gael Poirier and Fabia Castro Cassanjes
Materials 2021, 14(2), 317; https://doi.org/10.3390/ma14020317 - 9 Jan 2021
Cited by 15 | Viewed by 3091
Abstract
Transparent fluorotellurite glasses were prepared by melt-quenching in the ternary system TeO2-Nb2O5-PbF2. The synthesis conditions were adjusted to minimize fluorine loss monitored as HF release. It was found that 10 mol% of Nb2O [...] Read more.
Transparent fluorotellurite glasses were prepared by melt-quenching in the ternary system TeO2-Nb2O5-PbF2. The synthesis conditions were adjusted to minimize fluorine loss monitored as HF release. It was found that 10 mol% of Nb2O5 is the optimum content for PbF2 incorporation up to 35 mol% in the tellurite matrix without loss of glass forming ability. Such glass compositions exhibit a wide optical window from 380 nm to about 6 μm. Crystallization properties were carefully investigated by thermal analysis and compositions with higher PbF2 contents exhibit preferential precipitation of lead oxyfluoride Pb2OF2 at lower temperatures. The lead oxyfluoride crystallization mechanism is also governed by a volume nucleation, barely reported in tellurite glasses. Eu3+ doping of these glass compositions also promotes a more efficient nucleation step under suitable heat-treatments, resulting in transparent Eu3+-doped glass-ceramics whereas undoped glass-ceramics are translucent. Finally, Eu3+ spectroscopy pointed out a progressive, more symmetric surrounding around the rare earth ions with increasing PbF2 contents as well as higher quantum efficiencies. These new fluorotellurite glass compositions are promising as luminescent hosts working in the middle infrared. Full article
(This article belongs to the Special Issue Glass-Ceramics: Structural Investigations and Luminescence Properties)
Show Figures

Figure 1

13 pages, 4667 KiB  
Article
Non-Linear Optical Properties of Er3+–Yb3+-Doped NaGdF4 Nanostructured Glass–Ceramics
by José J. Velázquez, Giulio Gorni, Rolindes Balda, Joaquin Fernández, Laura Pascual, Alicia Durán and Maria J. Pascual
Nanomaterials 2020, 10(7), 1425; https://doi.org/10.3390/nano10071425 - 21 Jul 2020
Cited by 9 | Viewed by 3628
Abstract
Transparent oxyfluoride glass–ceramics containing NaGdF4 nanocrystals were prepared by melt-quenching and doped with Er3+ (0.5 mol%) and different amounts of Yb3+ (0–2 mol%). The selected dopant concentration the crystallization thermal treatments were chosen to obtain the most efficient visible up-conversion [...] Read more.
Transparent oxyfluoride glass–ceramics containing NaGdF4 nanocrystals were prepared by melt-quenching and doped with Er3+ (0.5 mol%) and different amounts of Yb3+ (0–2 mol%). The selected dopant concentration the crystallization thermal treatments were chosen to obtain the most efficient visible up-conversion emissions, together with near infrared emissions. The crystal size increased with dopant content and treatment time. NaGdF4 NCs with a size ranging 9–30 nm were obtained after heat treatments at Tg + 20–80 °C as confirmed by X-ray diffraction and high-resolution transmission electron microscopy. Energy dispersive X-ray analysis shows the incorporation of rare earth ions into the NaGdF4 nanocrystals. Near-infrared emission spectra, together with the up-conversion emissions were measured. The optical characterization of the glass–ceramics clearly shows that Er3+ and Yb3+ ions are incorporated in the crystalline phase. Moreover, visible up-conversion emissions could be tuned by controlling the nanocrystals size through appropriated heat treatment, making possible a correlation between structural and optical properties. Full article
Show Figures

Figure 1

31 pages, 10024 KiB  
Article
Spectroscopic Properties of Erbium-Doped Oxyfluoride Phospho-Tellurite Glass and Transparent Glass-Ceramic Containing BaF2 Nanocrystals
by Magdalena Lesniak, Jacek Zmojda, Marcin Kochanowicz, Piotr Miluski, Agata Baranowska, Gabriela Mach, Marta Kuwik, Joanna Pisarska, Wojciech A. Pisarski and Dominik Dorosz
Materials 2019, 12(20), 3429; https://doi.org/10.3390/ma12203429 - 20 Oct 2019
Cited by 33 | Viewed by 4316
Abstract
The ErF3-doped oxyfluoride phospho-tellurite glasses in the (40-x) TeO2-10P2O5-45 (BaF2-ZnF2) -5Na2O-xErF3 system (where x = 0.25, 0.50, 0.75, 1.00, and 1.25 mol%) have been prepared by the conventional [...] Read more.
The ErF3-doped oxyfluoride phospho-tellurite glasses in the (40-x) TeO2-10P2O5-45 (BaF2-ZnF2) -5Na2O-xErF3 system (where x = 0.25, 0.50, 0.75, 1.00, and 1.25 mol%) have been prepared by the conventional melt-quenching method. The effect of erbium trifluoride addition on thermal, structure, and spectroscopic properties of oxyfluoride phospho-tellurite precursor glass was studied by differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and Raman spectroscopy as well as emission measurements, respectively. The DSC curves were used to investigate characteristic temperatures and thermal stability of the precursor glass doped with varying content of ErF3. FTIR and Raman spectra were introduced to characterize the evolution of structure and phonon energy of the glasses. It was found that the addition of ErF3 up to 1.25 mol% into the chemical composition of phospho-tellurite precursor glass enhanced 2.7 µm emission and upconversion. By controlled heat-treatment process of the host glass doped with the highest content of erbium trifluoride (1.25 mol%), transparent erbium-doped phospho-tellurite glass-ceramic (GC) was obtained. X-ray diffraction analysis confirmed the presence of BaF2 nanocrystals with the average 16 nm diameter in a glass matrix. Moreover, MIR, NIR, and UC emissions of the glass-ceramic were discussed in detail and compared to the spectroscopic properties of the glass doped with 1.25 mol% of ErF3 (the base glass). Full article
(This article belongs to the Special Issue Cutting-Edge Research in Nano-Optics)
Show Figures

Figure 1

16 pages, 3175 KiB  
Article
Transparent Sol-Gel Oxyfluoride Glass-Ceramics with High Crystalline Fraction and Study of RE Incorporation
by Giulio Gorni, Jose J. Velázquez, Jadra Mosa, Glenn C. Mather, Aida Serrano, María Vila, Germán R. Castro, David Bravo, Rolindes Balda, Joaquín Fernández, Alicia Durán and Yolanda Castro
Nanomaterials 2019, 9(4), 530; https://doi.org/10.3390/nano9040530 - 3 Apr 2019
Cited by 24 | Viewed by 3395
Abstract
Transparent oxyfluoride glass-ceramic films and self-supported layers with composition 80SiO2-20LaF3 doped with Er3+ have been successfully synthesized by sol-gel process for the first time. Crack-free films and self-supported layer with a maximum thickness up to 1.4 µm were obtained [...] Read more.
Transparent oxyfluoride glass-ceramic films and self-supported layers with composition 80SiO2-20LaF3 doped with Er3+ have been successfully synthesized by sol-gel process for the first time. Crack-free films and self-supported layer with a maximum thickness up to 1.4 µm were obtained after heat treatment at the low temperature of 550 °C for 1 min, resulting in a LaF3 crystal fraction of 18 wt%, as confirmed by quantitative Rietveld refinement. This is the highest value reported up to now for transparent oxyfluoride glass-ceramics prepared by sol-gel. This work provides a new synthesis strategy and opens the way to a wide range of potential applications of oxyfluoride glass-ceramics. The characterization by a wide range of techniques revealed the homogeneous precipitation of LaF3 nanocrystals into the glass matrix. X-ray absorption spectroscopy and electron paramagnetic resonance confirmed that the Er3+ ions are preferentially embedded in the low phonon-energy LaF3 nanocrystals. Moreover, photoluminescence (PL) measurements confirmed the incorporation of dopants in the LaF3 nanocrystals. The effective concentration of rare-earth ions in the LaF3 nanocrystals is also estimated by X-ray absorption spectroscopy. Full article
(This article belongs to the Special Issue Rare Earth Doped Materials at the Nanoscale)
Show Figures

Graphical abstract

30 pages, 16142 KiB  
Article
Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials
by Giulio Gorni, Jose J. Velázquez, Jadra Mosa, Rolindes Balda, Joaquin Fernández, Alicia Durán and Yolanda Castro
Materials 2018, 11(2), 212; https://doi.org/10.3390/ma11020212 - 30 Jan 2018
Cited by 58 | Viewed by 7956
Abstract
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used [...] Read more.
Transparent glass-ceramics have shown interesting optical properties for several photonic applications. In particular, compositions based on oxide glass matrices with fluoride crystals embedded inside, known as oxyfluoride glass-ceramics, have gained increasing interest in the last few decades. Melt-quenching is still the most used method to prepare these materials but sol-gel has been indicated as a suitable alternative. Many papers have been published since the end of the 1990s, when these materials were prepared by sol-gel for the first time, thus a review of the achievements obtained so far is necessary. In the first part of this paper, a review of transparent sol-gel glass-ceramics is made focusing mainly on oxyfluoride compositions. Many interesting optical results have been obtained but very little innovation of synthesis and processing is found with respect to pioneering papers published 20 years ago. In the second part we describe the improvements in synthesis and processing obtained by the authors during the last five years. The main achievements are the preparation of oxyfluoride glass-ceramics with a much higher fluoride crystal fraction, at least double that reported up to now, and the first synthesis of NaGdF4 glass-ceramics. Moreover, a new SiO2 precursor was introduced in the synthesis, allowing for a reduction in the treatment temperature and favoring hydroxyl group removal. Interesting optical properties demonstrated the incorporation of dopant ions in the fluoride crystals, thus obtaining crystal-like spectra along with higher efficiencies with respect to xerogels, and hence demonstrating that these materials are a suitable alternative for photonic applications. Full article
(This article belongs to the Special Issue Sol-Gel Chemistry Applied to Materials Science)
Show Figures

Figure 1

Back to TopTop