Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = oxy-fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6611 KiB  
Article
Study on Flow and Heat Transfer Characteristics of Reheating Furnaces Under Oxygen-Enriched Conditions
by Maolong Zhao, Xuanxuan Li and Xianzhong Hu
Processes 2025, 13(8), 2454; https://doi.org/10.3390/pr13082454 - 3 Aug 2025
Viewed by 134
Abstract
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow [...] Read more.
A computational fluid dynamics (CFD) numerical simulation methodology was implemented to model transient heating processes in steel industry reheating furnaces, targeting combustion efficiency optimization and carbon emission reduction. The effects of oxygen concentration (O2%) and different fuel types on the flow and heat transfer characteristics were investigated under both oxygen-enriched combustion and MILD oxy-fuel combustion. The results indicate that MILD oxy-fuel combustion promotes flue gas entrainment via high-velocity oxygen jets, leading to a substantial improvement in the uniformity of the furnace temperature field. The effect is most obvious at O2% = 31%. MILD oxy-fuel combustion significantly reduces NOx emissions, achieving levels that are one to two orders of magnitude lower than those under oxygen-enriched combustion. Under MILD conditions, the oxygen mass fraction in flue gas remains below 0.001 when O2% ≤ 81%, indicating effective dilution. In contrast, oxygen-enriched combustion leads to a sharp rise in flame temperature with an increasing oxygen concentration, resulting in a significant increase in NOx emissions. Elevating the oxygen concentration enhances both thermal efficiency and the energy-saving rate for both combustion modes; however, the rate of improvement diminishes when O2% exceeds 51%. Based on these findings, MILD oxy-fuel combustion using mixed gas or natural gas is recommended for reheating furnaces operating at O2% = 51–71%, while coke oven gas is not. Full article
Show Figures

Figure 1

20 pages, 2735 KiB  
Article
Techno-Economic Assessment of Electrification and Hydrogen Pathways for Optimal Solar Integration in the Glass Industry
by Lorenzo Miserocchi and Alessandro Franco
Solar 2025, 5(3), 35; https://doi.org/10.3390/solar5030035 - 1 Aug 2025
Viewed by 95
Abstract
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel [...] Read more.
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel container glass furnace with a specific energy consumption of 4.35 GJ/t. A mixed-integer linear programming formulation is developed to evaluate specific melting costs, carbon emissions, and renewable energy self-consumption and self-production rates across three scenarios: direct solar coupling, battery storage, and a hydrogen-based infrastructure. Battery storage achieves the greatest reductions in specific melting costs and emissions, whereas hydrogen integration minimizes electricity export to the grid. By incorporating capital investment considerations, the study quantifies the cost premiums and capacity requirements under varying decarbonization targets. A combination of 30 MW of solar plant and 9 MW of electric boosting enables the realization of around 30% carbon reduction while increasing total costs by 25%. Deeper decarbonization targets require more advanced systems, with batteries emerging as a cost-effective solution. These findings offer critical insights into the economic and environmental trade-offs, as well as the technical constraints associated with renewable energy adoption in the glass industry, providing a foundation for strategic energy and decarbonization planning. Full article
Show Figures

Figure 1

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 391
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

23 pages, 3863 KiB  
Article
Optimal Scheduling of Integrated Energy Systems Considering Oxy-Fuel Power Plants and Carbon Trading
by Hui Li, Xianglong Bai, Hua Li and Liang Bai
Energies 2025, 18(14), 3814; https://doi.org/10.3390/en18143814 - 17 Jul 2025
Viewed by 230
Abstract
To reduce carbon emission levels and improve the low-carbon performance and economic efficiency of Integrated Energy Systems (IESs), this paper introduces oxy-fuel combustion technology to transform traditional units and proposes a low-carbon economic dispatch method. Considering the stepwise carbon trading mechanism, it provides [...] Read more.
To reduce carbon emission levels and improve the low-carbon performance and economic efficiency of Integrated Energy Systems (IESs), this paper introduces oxy-fuel combustion technology to transform traditional units and proposes a low-carbon economic dispatch method. Considering the stepwise carbon trading mechanism, it provides new ideas for promoting energy conservation, emission reduction, and economic operation of integrated energy systems from both technical and policy perspectives. Firstly, the basic principles and energy flow characteristics of oxy-fuel combustion technology are studied, and a model including an air separation unit, an oxygen storage tank, and carbon capture equipment is constructed. Secondly, a two-stage power-to-gas (P2G) model is established to build a joint operation framework for oxy-fuel combustion and P2G. On this basis, a stepwise carbon trading mechanism is introduced to further constrain the carbon emissions of the system, and a low-carbon economic dispatch model with the objective of minimizing the total system operation cost is established. Finally, multiple scenarios are set up for simulation analysis, which verifies that the proposed low-carbon economic optimal dispatch strategy can effectively reduce the system operation cost by approximately 21.4% and improve the system’s carbon emission level with a total carbon emission reduction of about 38.3%. Meanwhile, the introduction of the stepwise carbon trading mechanism reduces the total cost by 12.3% and carbon emissions by 2010.19 tons, increasing the carbon trading revenue. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

31 pages, 5892 KiB  
Article
RANS Simulation of Turbulent Flames Under Different Operating Conditions Using Artificial Neural Networks for Accelerating Chemistry Modeling
by Tobias Reiter, Jonas Volgger, Manuel Früh, Christoph Hochenauer and Rene Prieler
Processes 2025, 13(7), 2220; https://doi.org/10.3390/pr13072220 - 11 Jul 2025
Viewed by 522
Abstract
Combustion modeling using computational fluid dynamics (CFD) offers detailed insights into the flame structure and thermo-chemical processes. Furthermore, it has been extensively used in the past to optimize industrial furnaces. Despite the increasing computational power, the prediction of the reaction kinetics in flames [...] Read more.
Combustion modeling using computational fluid dynamics (CFD) offers detailed insights into the flame structure and thermo-chemical processes. Furthermore, it has been extensively used in the past to optimize industrial furnaces. Despite the increasing computational power, the prediction of the reaction kinetics in flames is still related to high calculation times, which is a major drawback for large-scale combustion systems. To speed-up the simulation, artificial neural networks (ANNs) were applied in this study to calculate the chemical source terms in the flame instead of using a chemistry solver. Since one ANN may lack accuracy for the entire input feature space (temperature, species concentrations), the space is sub-divided into four regions/ANNs. The ANNs were tested for different fuel mixtures, degrees of turbulence, and air-fuel/oxy-fuel combustion. It was found that the shape of the flame and its position were well predicted in all cases with regard to the temperature and CO. However, at low temperature levels (<800 K), in some cases, the ANNs under-predicted the source terms. Additionally, in oxy-fuel combustion, the temperature was too high. Nevertheless, an overall high accuracy and a speed-up factor for all simulations of 12 was observed, which makes the approach suitable for large-scale furnaces. Full article
Show Figures

Figure 1

18 pages, 7681 KiB  
Article
Microstructure, Phase Components, and Tribological Properties of Al65Cu20Fe15 Quasicrystal Coatings Deposited by HVOF
by Sherzod Kurbanbekov, Tulkinzhon Gaipov, Pulat Saidakhmetov, Alibek Tazhibayev, Sherzod Ramankulov, Sattarbek Bekbayev, Arai Abdimutalip and Dilnoza Baltabayeva
Lubricants 2025, 13(7), 297; https://doi.org/10.3390/lubricants13070297 - 6 Jul 2025
Viewed by 461
Abstract
Quasicrystalline coatings based on Al65Cu20Fe15 are of increasing interest as potential alternatives to conventional wear-resistant materials due to their unique structural and tribological properties. This study explores the influence of air pressure during high-velocity oxy-fuel (HVOF) spraying on [...] Read more.
Quasicrystalline coatings based on Al65Cu20Fe15 are of increasing interest as potential alternatives to conventional wear-resistant materials due to their unique structural and tribological properties. This study explores the influence of air pressure during high-velocity oxy-fuel (HVOF) spraying on the phase composition, morphology, and wear behavior of Al65Cu20Fe15 coatings deposited on U8G tool steel. Coatings were applied at a fixed spraying distance of 350 mm using three air pressures (1.9, 2.1, and 2.3 bar), with constant propane (2.0 bar) and oxygen (2.1 bar) supply. X-ray diffraction analysis identified the formation of Al78Cu48Fe14 and Al0.5Fe1.5 phases, while scanning electron microscopy revealed a dense, uniform microstructure with low porosity and homogeneous element distribution across all samples. Tribological testing using the ball-on-disk method showed wear track widths ranging from 853.47 to 952.50 µm, depending on the air pressure applied. These findings demonstrate that fine-tuning the air pressure during HVOF spraying significantly influences the structural characteristics and wear resistance of the resulting quasicrystalline coatings, highlighting their promise for advanced surface engineering applications. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

16 pages, 13161 KiB  
Article
Experimental Assessment of the Effects of Gas Composition on Volatile Flames of Coal and Biomass Particles in Oxyfuel Combustion Using Multi-Parameter Optical Diagnostics
by Tao Li, Haowen Chen and Benjamin Böhm
Processes 2025, 13(6), 1817; https://doi.org/10.3390/pr13061817 - 8 Jun 2025
Viewed by 474
Abstract
This experimental study examines the particle-level combustion behavior of high-volatile bituminous coal and walnut shell particles in oxyfuel environments, with a particular focus on the gas-phase ignition characteristics and the structural development of volatile flames. Particles with similar size and shape distributions (a [...] Read more.
This experimental study examines the particle-level combustion behavior of high-volatile bituminous coal and walnut shell particles in oxyfuel environments, with a particular focus on the gas-phase ignition characteristics and the structural development of volatile flames. Particles with similar size and shape distributions (a median diameter of about 126 µm and an aspect ratio of around 1.5) are combusted in hot flows generated using lean, flat flames, where the oxygen mole fraction is systematically varied in both CO2/O2 and N2/O2 atmospheres while maintaining comparable gas temperatures and particle heating rates. The investigation employs a high-speed multi-camera diagnostic system combining laser-induced fluorescence of OH, diffuse backlight-illumination, and Mie scattering to simultaneously measure the particle size, shape, and velocity; the ignition delay time; and the volatile flame dynamics during early-stage volatile combustion. Advanced detection algorithms enable the extraction of these multiple parameters from spatiotemporally synchronized measurements. The results reveal that the ignition delay time decreases with an increasing oxygen mole fraction up to 30 vol%, beyond which point further oxygen enrichment no longer accelerates the ignition, as the process becomes limited by the volatile release rate. In contrast, the reactivity of volatile flames shows continuous enhancement with an increasing oxygen mole fraction, indicating non-premixed flame behavior governed by the diffusion of oxygen toward the particles. The analysis of the flame stand-off distance demonstrates that volatile flames burn closer to the particles at higher oxygen mole fractions, consistent with the expected scaling of O2 diffusion with its partial pressure. Notably, walnut shell and coal particles exhibit remarkably similar ignition delay times, volatile flame sizes, and OH-LIF intensities. The substitution of N2 with CO2 produces minimal differences, suggesting that for 126 µm particles under high-heating-rate conditions, the relatively small variations in the heat capacity and O2 diffusivity between these diluents have negligible effects on the homogeneous combustion phenomena observed. Full article
(This article belongs to the Special Issue Experiments and Diagnostics in Reacting Flows)
Show Figures

Figure 1

21 pages, 3684 KiB  
Article
Integrated CFD and Experimental Analysis of Coke Oxidation in FCC Catalyst Regeneration Under O2/N2 and O2/CO2
by Ahmad Alsuwaidi, Sasha Yang, Alfred Bekoe Appiagyei, John Nikko V. Salvilla, Nauman Ahmad, Haitao Song, Qianqian Liu, Fei Ren, Zhenyu Chen, Shibo Kuang and Lian Zhang
Processes 2025, 13(6), 1718; https://doi.org/10.3390/pr13061718 - 30 May 2025
Viewed by 678
Abstract
This study investigated the combustion profiles and oxidation mechanisms of coke on spent FCC catalysts from two Sinopec refineries and compared the effects of O2/N2 and O2/CO2 atmospheres. Using the Coats–Redfern method combined with nonlinear regression, the [...] Read more.
This study investigated the combustion profiles and oxidation mechanisms of coke on spent FCC catalysts from two Sinopec refineries and compared the effects of O2/N2 and O2/CO2 atmospheres. Using the Coats–Redfern method combined with nonlinear regression, the kinetics of coke oxidation were analyzed for the activation energies derived from the modified D3 and F2 models. Both these models yielded results that agreed with the previous reports. Selection of the suitable kinetic model was significantly influenced by specific properties of the coke on spent FCC catalysts. Furthermore, a computational model revealed that on an industrial scale, external mass transfer predominated the intrinsic kinetics; the differences observed in the O2/N2 and O2/CO2 environments were primarily due to variations in oxygen diffusion. These findings highlight the potential of optimizing FCC catalyst regeneration processes through alternative oxidation environments and the use of catalytic additives. Full article
Show Figures

Figure 1

44 pages, 15119 KiB  
Review
Review of Ammonia Oxy-Combustion Technologies: Fundamental Research and Its Various Applications
by Novianti Dwi, Kurniawati Ischia and Yonmo Sung
Energies 2025, 18(9), 2252; https://doi.org/10.3390/en18092252 - 28 Apr 2025
Cited by 1 | Viewed by 1079
Abstract
The combustion of ammonia with oxygen presents a promising pathway for global energy transformation using carbon dioxide-neutral energy solutions and carbon capture. Ammonia, a carbon-free fuel, offers several benefits, owing to its non-explosive nature, high octane rating, and ease of storage and distribution. [...] Read more.
The combustion of ammonia with oxygen presents a promising pathway for global energy transformation using carbon dioxide-neutral energy solutions and carbon capture. Ammonia, a carbon-free fuel, offers several benefits, owing to its non-explosive nature, high octane rating, and ease of storage and distribution. However, challenges such as low flammability and excessive nitrogen oxide (NOx) emissions must be addressed. This paper explores the recent advances in ammonia oxy-combustion and highlights recent experimental and numerical research on NOx emission traits, combustion, and flame propagation across various applications, including gas furnaces, internal combustion engines, and boilers. Furthermore, this review discusses the diverse approaches to overcoming the challenges of ammonia combustion, including oxygen enrichment, fuel blending, plasma assistance, preheating, multiple injections, and burner design modifications. By summarizing the advancements in ammonia oxy-combustion investigation, this paper aims to provide valuable insights that can serve as reference information for prospective ammonia oxy-combustion research and applications toward the transition to sustainable energy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 1151 KiB  
Article
Comparative Analysis of the Oxy-Fuel Kinetic Mechanisms by the Ignition Delay Time of Methane
by Sergey Osipov, Vladimir Sokolov, Vadim Yakovlev, Muhammad Maaz Shaikh and Nikolay Rogalev
Energies 2025, 18(9), 2155; https://doi.org/10.3390/en18092155 - 23 Apr 2025
Viewed by 533
Abstract
Supercritical oxy-fuel combustion, which allows for the high efficiency of power generation with near-zero CO2 emissions, is considered a promising method to reduce the carbon footprint in the power energy sector. One of the problems in the widespread use of oxy-fuel combustion [...] Read more.
Supercritical oxy-fuel combustion, which allows for the high efficiency of power generation with near-zero CO2 emissions, is considered a promising method to reduce the carbon footprint in the power energy sector. One of the problems in the widespread use of oxy-fuel combustion is a lack of comparative studies on the existing oxy-fuel combustion kinetic mechanisms depending on mixture composition, which complicates the choice of a kinetic mechanism for modeling oxy-fuel combustion. In this paper, a comparative verification of the kinetic mechanisms of GRI-Mech 3.0, UoS sCO2 2.0, OXY-NG, and Skeletal was performed using published experimental data on the ignition delay time of methane under conditions of oxy-fuel combustion. A comparative numerical study of the kinetic mechanisms in the wide range of pressures, CO2 mass fractions in oxidizer (γ), and excess oxidizer ratios (α) by the ignition delay time is also carried out. It was found that the limits of applicability of all of the mechanisms studied are absent when modeling the ignition delay time, the most accurate mechanism to model the IDT of methane in oxy-fuel conditions being UoS sCO2 2.0, while the other three mechanisms are overall much inferior to it in terms of accuracy. However, Skeletal and GRI-Mech 3.0 mechanisms can be used to model the IDT during the oxy-fuel combustion of methane under both atmospheric and supercritical conditions, although only in a narrow range of γ. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

22 pages, 55728 KiB  
Article
Microstructure, Tribological, and Corrosion Behavior of HVOF-Sprayed (Cr3C2-NiCr+Ni) Coatings on Ductile Cast Iron
by Marzanna Ksiazek and Lukasz Boron
Materials 2025, 18(8), 1856; https://doi.org/10.3390/ma18081856 - 18 Apr 2025
Viewed by 550
Abstract
The HVOF (High Velocity Oxy-Fuel) thermal spraying method is widely used in surface engineering to produce coatings with high hardness, low porosity, and excellent crack resistance. Composite coatings with chromium carbide (Cr3C2) in a nickel–chromium (NiCr) matrix are commonly [...] Read more.
The HVOF (High Velocity Oxy-Fuel) thermal spraying method is widely used in surface engineering to produce coatings with high hardness, low porosity, and excellent crack resistance. Composite coatings with chromium carbide (Cr3C2) in a nickel–chromium (NiCr) matrix are commonly applied in demanding environments, such as the energy and transport sectors. This study compares the microstructure, mechanical, tribological, and corrosion properties of two coatings—Cr3C2-25(Ni20Cr)-10(Ni) and Cr3C2-25(Ni20Cr)—deposited on ductile cast iron using HVOF. The addition of 10 wt.% Ni enhances coating integrity, mechanical performance, and environmental resistance by improving ductility, reducing residual stress, enhancing wettability, and balancing hardness with improved crack, wear, and corrosion resistance. Microstructure analysis via LM (Light Microscopy) and SEM (Scanning Electron Microscopy), along with chemical and phase characterization using EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction), revealed that the Ni-enriched Cr3C2-25(Ni20Cr)-10(Ni) coating exhibited a denser structure, lower porosity, and high hardness. Its microstructure consists of large, partially melted Ni particles and fine Cr3C2 and Cr7C3 carbides embedded in the NiCr matrix, some at submicron scales. Performance tests, including indentation (HIT, EIT, KIC), scratch, and corrosion resistance assessments, confirmed that Ni addition improves crack resistance, wear durability, and corrosion protection. Consequently, these coatings demonstrate superior operational durability, making them more effective in challenging environments. Full article
Show Figures

Figure 1

39 pages, 1475 KiB  
Review
The Integration of Carbon Capture, Utilization, and Storage (CCUS) in Waste-to-Energy Plants: A Review
by Luigi Acampora, Serena Grilletta and Giulia Costa
Energies 2025, 18(8), 1883; https://doi.org/10.3390/en18081883 - 8 Apr 2025
Cited by 1 | Viewed by 2267
Abstract
This paper provides a comprehensive review of the integration of carbon capture, utilization, and storage (CCUS) technologies in waste-to-energy (WtE) plants, specifically focusing on incineration, the most adopted process for managing residual waste fractions that cannot be recycled. The review examines the current [...] Read more.
This paper provides a comprehensive review of the integration of carbon capture, utilization, and storage (CCUS) technologies in waste-to-energy (WtE) plants, specifically focusing on incineration, the most adopted process for managing residual waste fractions that cannot be recycled. The review examines the current CO2 capture technologies, including the widely used monoethanolamine (MEA) absorption method, and explores emerging alternatives such as molten carbonate fuel cells and oxyfuel combustion. Additionally, the paper discusses the management options for the captured CO2, exploring both storage (CCS) and utilization (CCU) options, with a focus on current storage projects involving CO2 from WtE plants and the potential for its use in sectors like chemicals, construction materials, and synthetic fuels. Currently, only four large-scale WtE plants worldwide have successfully implemented carbon capture technologies, with a combined capacity of approximately 78,000 tons of CO2 per year. However, numerous feasibility studies and pilot-scale projects are ongoing, particularly in northern Europe, with countries such as Norway, the Netherlands, Sweden, the United Kingdom, and Finland leading the way in the development of CO2 capture, storage, and utilization strategies within the WtE sector. The paper further discusses techno-economic issues for CCUS implementation, including energy demands and associated costs. The use of MEA systems in WtE plants leads to significant energy penalties, reducing plant efficiency by up to 40%. However, alternative technologies, such as advanced amines and calcium looping, could provide more cost-effective solutions by improving energy efficiency and reducing the overall costs. Life cycle assessment studies indicate that CCUS has the potential to significantly reduce CO2 emissions, but the achievable environmental benefits depend on factors such as energy consumption, process efficiency, and system integration. Overall, while the implementation of CCUS in WtE plants presents CO2 mitigation potential and may also be exploited to achieve other benefits, energy requirements and economic viability remain challenging. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

18 pages, 49144 KiB  
Article
Stability and Flame Structure Analysis of a Semi-Industrial Swirl-Stabilized Oxy-Fuel Combustion Chamber System for Biomass
by Dominik König, Marcel Richter, Jochen Ströhle and Bernd Epple
Energies 2025, 18(6), 1513; https://doi.org/10.3390/en18061513 - 19 Mar 2025
Cited by 1 | Viewed by 593
Abstract
Oxy-fuel combustion is a promising way to avoid process-based CO2 emissions. In this paper, the operational range of a new semi-industrial oxy-fuel combustion chamber for pulverized biomass is analyzed. This approach is used to gain a deeper understanding of the combustion setup [...] Read more.
Oxy-fuel combustion is a promising way to avoid process-based CO2 emissions. In this paper, the operational range of a new semi-industrial oxy-fuel combustion chamber for pulverized biomass is analyzed. This approach is used to gain a deeper understanding of the combustion setup and to examine the differences between air and oxy-fuel combustion on an industrial scale. Both analyzed parameters—flame spread and temperature distribution—have a significant influence on heat transfer in commercial boilers. The stability of various operating conditions is assessed by monitoring the CO content in the flue gas via a gas analyzer unit. For stable operation using walnut shells as fuel in an air atmosphere, an overall air-to-fuel ratio of 1.57–1.75 and a local air-to-fuel ratio of 0.75–0.95 provide the most stable conditions. A high swirl number of 0.9 is found to be critical for stability, as the increased fuel momentum entering the combustion chamber promotes a fuel jet-dominated swirl flame. For the corresponding oxy-fuel combustion with the same volume flows and three different oxygen concentrations between 27% and 33%, stable combustion behavior is also observed. Using a camera setup to analyze flame shape and spread, it is observed that the flame formed with an oxygen content of 33% most closely resembles the flame shape achieved under air combustion conditions. However, the combustion temperatures most closely match those of the air operating condition when the oxygen content is 27%. Overall, it is shown that the approach for corresponding oxy-fuel conditions features similar flame shapes to oxy-fuel combustion with flue gas recirculation in a semi-industrial combustion chamber. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy)
Show Figures

Figure 1

24 pages, 7771 KiB  
Article
In-Flight Particle Oxidation Evolution in HVAF: A Numerical Study
by Sokhna Awa Bousso Diop, Aleksandra Nastic, Ali Dolatabadi, Reza Attarzadeh and Christian Moreau
Coatings 2025, 15(2), 215; https://doi.org/10.3390/coatings15020215 - 11 Feb 2025
Viewed by 981
Abstract
Oxygen present in the High Velocity Air-Fuel (HVAF) process can react with the in-flight metallic particles and cause their oxidation. A grown brittle oxide shell on metallic micro-size particles can reduce their deposition efficiency and impair the coating’s final deposited properties/microstructure. In the [...] Read more.
Oxygen present in the High Velocity Air-Fuel (HVAF) process can react with the in-flight metallic particles and cause their oxidation. A grown brittle oxide shell on metallic micro-size particles can reduce their deposition efficiency and impair the coating’s final deposited properties/microstructure. In the current study, the oxide growth of MCrAlY particles, where M stands for Nickel (Ni) and Cobalt (Co), during their flight in the HVAF process has been numerically modeled and validated with experimental single-particle depositions. A thorough theoretical oxide layer growth background is also presented. The utilized oxidation development follows the Mott–Cabrera theory for very thin films, which uses the particle surrounding temperature and oxygen partial pressure to track and describe the oxide growth. The obtained results provide a good correlation between the HVAF system design, the operating conditions, and surface oxidation phenomena observed using focus ion beam scanning electron microscope (FIB/SEM) analysis on collected particles. Furthermore, the particle’s degree of oxidation in HVAF is compared to High Velocity Oxy-Fuel (HVOF) to demonstrate the influence of combustion processes on oxidation level. Full article
Show Figures

Figure 1

20 pages, 15883 KiB  
Article
Tribology and Hot Corrosion Behavior of MCrAlY-Based Multicomponent Coatings Containing Copper
by Bruno C. N. M. de Castilho, Navid Sharifi, Mary Makowiec, Pantcho Stoyanov, Christian Moreau and Richard R. Chromik
Lubricants 2025, 13(2), 73; https://doi.org/10.3390/lubricants13020073 - 7 Feb 2025
Viewed by 1136
Abstract
The use of composite coatings containing solid lubricants is widely reported in the literature, in particular thermally sprayed coatings containing silver. However, these coatings are often limited in their maximum operating temperature due to the melting point of silver and due to reactions [...] Read more.
The use of composite coatings containing solid lubricants is widely reported in the literature, in particular thermally sprayed coatings containing silver. However, these coatings are often limited in their maximum operating temperature due to the melting point of silver and due to reactions between the components at temperatures above 500 °C. In this study, a novel coating is proposed, which consists of an MCrAlY-based matrix and the addition of components (Cu, Mo, and BaF2) to improve the wear resistance at elevated temperatures. The coatings were sprayed by high-velocity oxy-fuel, heat-treated at 1040 °C, and tribologically tested at room and elevated temperatures. Raman spectroscopy and scanning electron microscopy were used on worn and unworn regions of the coating to characterize the changes in microstructure caused by wear. The coatings were also exposed to oxidation and hot corrosion conditions to evaluate the resistance to high-temperature environments. The results have shown an improvement in wear rates of the coatings upon heat treatment and the formation of a smooth tribolayer at 300 °C. The as-sprayed coating was able to withstand the attack by molten salts without exposing the substrate, and minor weight gain was observed, indicating that the MCrAlY matrix was effective to protect the coating and the substrate against damages induced by salt penetration. Full article
(This article belongs to the Special Issue Coatings and Lubrication in Extreme Environments)
Show Figures

Figure 1

Back to TopTop