Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,826)

Search Parameters:
Keywords = oxides of metals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2153 KiB  
Article
Green Synthesis, Optimization, and Characterization of CuO Nanoparticles Using Tithonia diversifolia Leaf Extract
by S. S. Millavithanachchi, M. D. K. M. Gunasena, G. D. C. P. Galpaya, H. V. V. Priyadarshana, S. V. A. A. Indupama, D. K. A. Induranga, W. A. C. N. Kariyawasam, D. V. S. Kaluthanthri and K. R. Koswattage
Nanomaterials 2025, 15(15), 1203; https://doi.org/10.3390/nano15151203 - 6 Aug 2025
Abstract
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the [...] Read more.
Green synthesis of copper oxide (CuO) nanoparticles offers a sustainable alternative to conventional chemical methods that often involve toxic reagents and harsh conditions. This study investigates the use of Tithonia diversifolia, an invasive species in Sri Lanka, as a bioreductant for the eco-friendly fabrication of CuO nanoparticles. Using copper sulfate (CuSO4·5H2O) as a precursor, eight treatments were conducted by varying precursor concentration, temperature, and reaction time to determine optimal conditions. A visible color change in the reaction mixture initially indicated nanoparticle formation. Among all the conditions, treatment T4 (5 mM CuSO4, 80 °C, 2 h) yielded the most favorable results in terms of stability, morphology, and crystallinity. UV-Vis spectroscopic analysis confirmed the synthesis, with absorbance peaks between 265 and 285 nm. FTIR analysis revealed organic functional groups and characteristic metal–oxygen vibrations in the fingerprint region (500–650 cm−1), confirming formation. SEM imaging showed that particles were mainly spherical to polygonal, averaging 125–150 nm. However, dynamic light scattering showed larger diameters (~240 nm) due to surface capping agents. Zeta potential values ranged from −16.0 to −28.0 mV, indicating stability. XRD data revealed partial crystallinity with CuO-specific peaks. These findings support the potential of T. diversifolia in green nanoparticle synthesis, suggesting a low-cost, eco-conscious strategy for future applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 2584 KiB  
Article
Enhanced Catalytic Ozonation of Formaldehyde over MOFs- Derived MnOx Catalysts with Diverse Morphologies: The Role of Oxygen Vacancies
by Yulin Sun, Yiwei Zhang, Yong He, Wubin Weng, Yanqun Zhu and Zhihua Wang
Catalysts 2025, 15(8), 752; https://doi.org/10.3390/catal15080752 - 6 Aug 2025
Abstract
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with [...] Read more.
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with diverse morphologies (rod-like, flower-like, slab-like) via the pyrolysis of MOF precursors, and the as-prepared MnOx catalysts demonstrated superior performance compared to the one prepared using the co-precipitation method. MnOx-II, with a flower-like structure, exhibited excellent activity for formaldehyde (HCHO) catalytic ozonation at room temperature, reaching complete HCHO conversion at O3/HCHO of 1.5 and more than 90% CO2 selectivity at an O3/HCHO ratio of 2.5. On the basis of various characterization methods, it was clarified that the enhanced catalytic performance of MnOx-II benefited from its larger BET surface area, abundant oxygen vacancies, better redox ability at lower temperature, and more Lewis acid sites. The H2O resistance and stability tests were also conducted. Furthermore, DFT calculations substantiated the enhanced adsorption of HCHO and O3 on oxygen vacancies, while in–situ DRIFTS measurements elucidated the degradation pathway of HCHO during catalytic ozonation through detected intermediates. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

26 pages, 1407 KiB  
Review
ZnO Nanoparticles: Advancing Agricultural Sustainability
by Lekkala Venkata Ravishankar, Nidhi Puranik, VijayaDurga V. V. Lekkala, Dakshayani Lomada, Madhava C. Reddy and Amit Kumar Maurya
Plants 2025, 14(15), 2430; https://doi.org/10.3390/plants14152430 - 5 Aug 2025
Abstract
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. [...] Read more.
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. Zinc deficiency in plants leads to various physiological abnormalities, ultimately affecting nutritional quality and posing challenges to food security. Biofortification methods have been adopted by agronomists to increase Zn concentrations in crops through optimal foliar and soil applications. Changing climatic conditions and conventional agricultural practices alter edaphic factors, reducing zinc bioavailability in soils due to abrupt weather changes. Precision agriculture emphasizes need-based and site-specific technologies to address these nutritional deficiencies. Nanoscience, a multidimensional approach, reduces particle size to the nanometer (nm) scale to enhance their efficiency in precise amounts. Nanoscale forms of Zn+2 and their broad applications across crops are gaining attention in agriculture under varied application methods. This review focuses on the significance of Zn oxide (ZnO) nanoparticles (ZnONPs) and their extensive application in crop production. We also discuss optimum dosage levels, ZnONPs synthesis, application methods, toxicity, and promising future strategies in this field. Full article
(This article belongs to the Special Issue Nanotechnology in Crop Physiology and Sustainable Agriculture)
Show Figures

Figure 1

25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

14 pages, 1984 KiB  
Article
The Effect of Copper Adsorption on Iron Oxide Magnetic Nanoparticles Embedded in a Sodium Alginate Bead
by Michele Modestino, Armando Galluzzi, Marco Barozzi, Sabrina Copelli, Francesco Daniele, Eleonora Russo, Elisabetta Sieni, Paolo Sgarbossa, Patrizia Lamberti and Massimiliano Polichetti
Nanomaterials 2025, 15(15), 1196; https://doi.org/10.3390/nano15151196 - 5 Aug 2025
Abstract
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their [...] Read more.
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their magnetic properties and adsorption capacity in a sustainable way. In this work, iron oxide magnetic nanoparticles embedded in cross-linked sodium alginate beads designed to clean water from metal ions were magnetically characterized. In particular, the effect of copper adsorption on their magnetic properties was investigated. The magnetic characterization in a DC field of the beads before adsorption showed the presence of a superparamagnetic state at 300 K—a state that was also preserved after copper adsorption. The main differences in terms of magnetic properties before and after Cu2+ adsorption were the reduction of the magnetic signal (observed by comparing the saturation magnetization) and a different shape of the blocking temperature distribution obtained by magnetization versus temperature measurements. The evaluation of the reduction in magnetization can be important from the application perspective since it can affect the efficiency of the beads’ removal from the water medium after treatment. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

23 pages, 5217 KiB  
Article
High-Performance Pd-Pt/α-MnO2 Catalysts for the Oxidation of Toluene
by Ning Dong, Wenjin Wang, Xuelong Zheng, Huan Liu, Jingjing Zhang, Qing Ye and Hongxing Dai
Catalysts 2025, 15(8), 746; https://doi.org/10.3390/catal15080746 - 5 Aug 2025
Abstract
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, [...] Read more.
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, 0.46, 0.89, and 0 wt%) catalysts were prepared using the polyvinyl alcohol-protected NaBH4 reduction method. The physicochemical properties of the catalysts were determined by means of various techniques and their catalytic activities for toluene oxidation were evaluated. It was found that among the xPd-yPt/α-MnO2 samples, 0.93Pd-0.89Pt/α-MnO2 showed the best catalytic performance, with the toluene oxidation rate at 156 °C (rcat) and space velocity = 60,000 mL/(g h) being 6.34 × 10−4 mol/(g s), much higher than that of 0.91Pt/α-MnO2 (1.31 × 10−4 mol/(g s)) and that of 0.92Pd/α-MnO2 (6.13 × 10−5 mol/(g s)) at the same temperature. The supported Pd-Pt bimetallic catalysts possessed higher Mn3+/Mn4+ and Oads/Olatt molar ratios, which favored the enhancement in catalytic activity of the supported Pd-Pt bimetallic catalysts. Furthermore, the 0.47Pd-0.46Pt/α-MnO2 sample showed better resistance to sulfur dioxide poisoning. The partial deactivation of 0.47Pd-0.46Pt/α-MnO2 was attributed to the formation of sulfate species on the sample surface, which covered the active site of the sample, thus decreasing its toluene oxidation activity. In addition, the in situ DRIFTS results demonstrated that benzaldehyde and benzoate were the intermediate products of toluene oxidation. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

22 pages, 5921 KiB  
Article
Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
by Ali Çiçekçi, Fatih Sevim, Melike Sevim and Erbil Kavcı
Polymers 2025, 17(15), 2141; https://doi.org/10.3390/polym17152141 - 5 Aug 2025
Abstract
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal [...] Read more.
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal of these metals. In this study, the removal of Ni(II) from wastewater using the Graphene oxide@Fe3O4@Pluronic-F68 (GO@Fe3O4@Pluronic-F68) nano composite as an adsorbent was investigated. The nanocomposite was characterised using a series of analytical methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The effects of contact time, pH, adsorbent amount, and temperature parameters on adsorption were investigated. Various adsorption isotherm models were applied to interpret the equilibrium data in aqueous solutions; the compatibility of the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models with experimental data was examined. For a kinetic model consistent with experimental data, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were examined. The maximum adsorption capacity was calculated as 151.5 mg·g−1 in the Langmuir isotherm model. The most suitable isotherm and kinetic models were the Freundlich and pseudo-second-order kinetic models, respectively. These results demonstrate the potential of the GO@Fe3O4@Pluronic-F68 nanocomposite as an adsorbent offering a sustainable solution for Ni(II) removal. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 2180 KiB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 (registering DOI) - 5 Aug 2025
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue High-Temperature Protective Coatings)
Show Figures

Figure 1

16 pages, 2634 KiB  
Article
Optimized SILAR Growth of Vertically Aligned ZnO Nanorods for Low-Temperature Acetone Detection
by Brahim Ydir, Amine Ajdour, Mouad Soumane, Iulia Antohe, Gabriel Socol, Luiza-Izabela Toderascu, Driss Saadaoui, Imade Choulli, Radouane Leghrib and Houda Lahlou
Chemosensors 2025, 13(8), 289; https://doi.org/10.3390/chemosensors13080289 - 5 Aug 2025
Abstract
Vertically oriented morphologies of the semiconducting metal oxide (SMO) surface provide a simple and effective means of enhancing gas sensor performance. We successfully synthesized explicitly aligned ZnO nanorods using a simple automated SILAR technique to improve acetone detection. In this work, we found [...] Read more.
Vertically oriented morphologies of the semiconducting metal oxide (SMO) surface provide a simple and effective means of enhancing gas sensor performance. We successfully synthesized explicitly aligned ZnO nanorods using a simple automated SILAR technique to improve acetone detection. In this work, we found that vertically oriented morphologies, such as well-aligned ZnO nanorods, can significantly enhance the sensor response due to an increase in specific active area and electron mobility, allowing a faster response to changes in the gas environment. The optimal operating temperature for our ZnO nanorod-based sensors in detecting acetone gas is 260 °C. At this temperature, the sensors exhibit a 96% response with a rapid response time of just 3 s. The improved sensing performance is attributed to both electronic and chemical sensitization mechanisms, which enhance the formation of active sites and shorten electron diffusion paths. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

29 pages, 6022 KiB  
Review
Hydrogen Cryomagnetic a Common Solution for Metallic and Oxide Superconductors
by Bartlomiej Andrzej Glowacki
Materials 2025, 18(15), 3665; https://doi.org/10.3390/ma18153665 - 4 Aug 2025
Abstract
This article examines the physical properties, performance metrics, and cooling requirements of a range of superconducting materials, with a particular focus on their compatibility with hydrogen-based cryogenic systems. It analyses recent developments and challenges in this field, and considers how hydrogen cryomagnetic could [...] Read more.
This article examines the physical properties, performance metrics, and cooling requirements of a range of superconducting materials, with a particular focus on their compatibility with hydrogen-based cryogenic systems. It analyses recent developments and challenges in this field, and considers how hydrogen cryomagnetic could transform superconducting technologies, making them economically viable and environmentally sustainable for a variety of critical applications. The discussion aims to provide insights into the intersection of metallic and ceramic superconductors with the hydrogen economy and to chart a path towards scalable and impactful solutions in the energy sector. Full article
(This article belongs to the Special Issue Advanced Superconducting Materials and Technology)
Show Figures

Graphical abstract

14 pages, 4747 KiB  
Article
Biodegradable Polyalphaolefins for Gear Lubrication in Electrical Drives: Aging and Wetting
by Kevin Holderied, Joachim Albrecht, Elisabeth Distler, Katharina Weber and Nahed El Mahallawy
Lubricants 2025, 13(8), 347; https://doi.org/10.3390/lubricants13080347 - 4 Aug 2025
Abstract
Electric propulsion requires engines and transmission systems that run at higher speeds compared to combustion engines. For improving sustainability and environmental protection, biodegradable oils are suggested for the lubrication of high-speed gears that require particularly quick wetting of the steel surfaces. Newly developed [...] Read more.
Electric propulsion requires engines and transmission systems that run at higher speeds compared to combustion engines. For improving sustainability and environmental protection, biodegradable oils are suggested for the lubrication of high-speed gears that require particularly quick wetting of the steel surfaces. Newly developed promising candidates include short-chained polyalphaolefins. In the present work, a study on the applicability of such oil is presented and discussed with respect to different aging levels based on biodegradable properties. It focuses on the wettability of metallic surfaces investigated through time-resolved contact angle measurements. Carbon steels with different carbon contents and microstructures are selected as the most commonly used materials for gears. Effects of steel composition, surface roughness and oil oxidation are studied. The results show that in most cases, the application of biodegradable polyalphaolefins is not critical; however, a combination of steels with inhomogeneous microstructure, high surface roughness and aged oil can be critical because of limited wetting. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

Back to TopTop