Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = oxidation alkenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5152 KB  
Article
An Initiator-Free Electrochemical Approach to Radical Thiol–Ene Coupling in a Microfluidic Reactor
by Kakeru Yamamoto and Kenta Arai
Molecules 2026, 31(3), 429; https://doi.org/10.3390/molecules31030429 - 26 Jan 2026
Abstract
The anti-Markovnikov addition of thiyl radicals, generated via one-electron oxidation of thiols, to C=C double bonds is a useful method for synthesizing unsymmetrical sulfides and has been widely applied in the preparation of pharmaceuticals and functional materials. However, conventional radical thiol–ene reactions require [...] Read more.
The anti-Markovnikov addition of thiyl radicals, generated via one-electron oxidation of thiols, to C=C double bonds is a useful method for synthesizing unsymmetrical sulfides and has been widely applied in the preparation of pharmaceuticals and functional materials. However, conventional radical thiol–ene reactions require metal-based photoinitiators or organic photosensitizers, raising concerns about product isolation and environmental impact. Herein, we demonstrate an initiator-free thiol–ene coupling via electrochemical oxidation of thiols. Using a microfluidic electrochemical reactor, the electrochemically generated thiyl radicals undergo rapid and selective addition to alkenes, affording thioethers in reasonable yields. Substrate scope studies involving 13 alkenes and 13 thiols indicate that thiol acidity (pKa), alkene electronic properties, and steric effects play key roles in determining reaction efficiency. Although further optimization is required to improve yields and broaden substrate scope, this electrochemical approach highlights the potential of thiol–ene coupling as a sustainable tool in green synthetic chemistry. Full article
(This article belongs to the Special Issue Recent Advances in Organochalcogen Chemistry)
Show Figures

Figure 1

21 pages, 6041 KB  
Article
Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies
by Ke Wu, Xuezhong Wang, Dandan Zhang, Hong Li, Fang Bi, Zhenhai Wu, Fanxiu Li, Wanghui Chu and Cong An
Toxics 2026, 14(1), 37; https://doi.org/10.3390/toxics14010037 - 29 Dec 2025
Viewed by 358
Abstract
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, [...] Read more.
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, and RO2) radical cycling driven by photochemical processes in Bozhou, located at the junction of Jiangsu–Anhui–Shandong–Henan (JASH), a region heavily affected by O3 pollution, by applying a zero-dimensional box model (Framework for 0-Dimensional Atmospheric Modeling, F0AM) coupled with the Master Chemical Mechanism (MCM v3.3.1) and Positive Matrix Factorization (PMF 5.0) to characterize O3 pollution, identify volatile organic compound (VOC) sources, and quantify radical budgets during pollution episodes. The results show that O3 episodes in Bozhou mainly occurred in June under conditions of high temperature and low wind speed. Oxygenated volatile organic compounds (OVOCs), alkanes, and halocarbons were the dominant VOCs groups. The CH3O2 + NO reaction accounted for 24.3% of O3 production, while photolysis contributed 68.7% of its removal. Elevated VOCs concentrations in Bozhou were largely maintained by anthropogenic sources such as vehicle exhaust, solvent utilization, and gasoline evaporation, which collectively enhanced O3 production. The findings indicate that O3 formation in the region is primarily regulated by NOx availability. Therefore, emission reductions targeting NOx, along with selective control of OVOCs and alkenes, would be the most effective strategies for lowering O3 levels. Model simulations further highlight Bozhou’s strong atmospheric oxidation capacity, with OVOC photolysis identified as the dominant contributor to ROx generation, accounting for 33% of the total. Diurnal patterns were evident: NOx-related reactions dominated radical sinks in the morning, while HO2 + RO2 reactions accounted for 28.5% in the afternoon. By clarifying the mechanisms of O3 formation in Bozhou, this study provides a scientific basis for designing ozone control strategies across the JASH junction region. In addition, ethanol was not directly measured in this study; given its potential to generate acetaldehyde and affect local O3 formation, its possible contribution introduces additional uncertainty that warrants further investigation. Full article
Show Figures

Graphical abstract

36 pages, 8069 KB  
Review
Hydrazine Derivatives as C-Centered Radical Precursors for C-C Bond Formation Reactions
by Elena R. Lopat’eva, Igor B. Krylov and Alexander O. Terent’ev
Molecules 2026, 31(1), 67; https://doi.org/10.3390/molecules31010067 - 24 Dec 2025
Viewed by 440
Abstract
Organic monosubstituted hydrazine derivatives (Ar-NHNH2, RC(O)-NHNH2, Alkyl-NHNH2) are synthetically available, atom-efficient and stable sources of C-centered radicals upon oxidation with extrusion of the energetically favorable N2 molecule. This review summarizes the synthetic application of monosubstituted hydrazine [...] Read more.
Organic monosubstituted hydrazine derivatives (Ar-NHNH2, RC(O)-NHNH2, Alkyl-NHNH2) are synthetically available, atom-efficient and stable sources of C-centered radicals upon oxidation with extrusion of the energetically favorable N2 molecule. This review summarizes the synthetic application of monosubstituted hydrazine derivatives (arylhydrazines, carbazates, acylhydrazides, hydrazine carboxamides and alkylhydrazines) in free-radical C-C bond-forming reactions. The main application directions in this field are (a) alkene difunctionalization, (b) cascade cyclization initiated by the addition of hydrazine-derived C-centered radicals to acrylamides and isonitriles, and (c) CH-functionalization of (hetero)arenes via C-centered radical addition followed by oxidative dehydrogenation (re-aromatization). Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

14 pages, 4006 KB  
Article
Catalytic Degradation of Polystyrene at Low Temperature over a Mo–W–Fe–Ni Carbide–Alloy Catalyst
by Fredy Josealdo Castillo Plata, Ignacio Carvajal-Mariscal, Jesús Noé Rivera Olvera, Yair Cruz Narváez and Lucía Graciela Díaz Barriga Arceo
Processes 2025, 13(12), 3900; https://doi.org/10.3390/pr13123900 - 2 Dec 2025
Viewed by 403
Abstract
In this study, we investigate the catalytic degradation of polystyrene (PS) in water at low temperature (90–110 °C, 1 atm) using a multiphase carbide–alloy catalyst obtained by mechanosynthesis. X-ray diffraction and scanning electron microscopy confirm a mixture of Mo–W carbides and Fe/Ni alloys, [...] Read more.
In this study, we investigate the catalytic degradation of polystyrene (PS) in water at low temperature (90–110 °C, 1 atm) using a multiphase carbide–alloy catalyst obtained by mechanosynthesis. X-ray diffraction and scanning electron microscopy confirm a mixture of Mo–W carbides and Fe/Ni alloys, consistent with multiple types of active sites. High-resolution mass spectrometry (MS) is used to assign products by oligomer-series spacing (styrene repeat mass, 104.15 Da) and the residual mass Δm for end-group identification. At 90 °C without catalyst, the spectrum shows PS fragments between m/z=888–4618, consistent with thermal depolymerization. With catalyst at 90 °C, new lower-m/z peaks emerge and long-chain signals diminish, indicating enhanced chain scission under mild conditions. Increasing the temperature to 100 and 110 °C yields even lighter ions (e.g., m/z=307.59 and 247.88), confirming stronger cracking and a larger number of distinct products. End groups inferred from Δm include alkenes (C3–C7), alkanes (C4, C7), cyclic C6–C7 fragments, and alcohols, which are consistent with protolytic C–C bond cleavage (Haag–Dessau), oxidative dehydrogenation, and subsequent hydrogenation/hydration on metal/carbide sites. Overall, the results show that water-activated carbide–alloy catalysts can drive PS deconstruction at low temperature, shifting products toward shorter chains with useful functional groups, while a simple MS-based rule set provides a transparent and reproducible approach to product assignment. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

25 pages, 5213 KB  
Review
Recent Advances in Heterogeneous Hydroformylation at Metal–Oxide Interfaces
by Maxwell Gillum, Gallage K. P. A. Ariyaratne, Charbel Tawny, Paul Alimenti, Kyle Krawczykowski, Erik Polik and Mausumi Mahapatra
Molecules 2025, 30(20), 4078; https://doi.org/10.3390/molecules30204078 - 14 Oct 2025
Viewed by 1269
Abstract
This article reviews recent advances in heterogeneous hydroformylation, with a particular focus on rhodium-based catalysts supported on oxide surfaces. The hydroformylation reaction is a vital industrial process for producing aldehydes from petrochemicals. This reaction involves the addition of carbon monoxide (CO) and hydrogen [...] Read more.
This article reviews recent advances in heterogeneous hydroformylation, with a particular focus on rhodium-based catalysts supported on oxide surfaces. The hydroformylation reaction is a vital industrial process for producing aldehydes from petrochemicals. This reaction involves the addition of carbon monoxide (CO) and hydrogen (H2) to alkenes, resulting in the formation of aldehydes. Aldehydes serve as essential building blocks for various downstream products in the chemical industry, including alcohols, esters, and amines. Although homogeneous catalysts such as rhodium complexes coordinated with phosphorus-based ligands (e.g., [RhCl(PPh3)3]) are highly active and selective, their separation and recovery remain significant challenges. This has fueled growing interest in the development of heterogeneous catalysts, which offer advantages in terms of sustainability, reusability, and catalyst recovery. This review highlights recent progress in the design of heterogeneous hydroformylation catalysts, with emphasis on rhodium-based systems on oxide supports. Key challenges and emerging strategies for enhancing catalytic performance and stability are also discussed. Full article
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Sources and Reactivity of Ambient VOCs on the Tibetan Plateau: Insights from a Multi-Site Campaign (2012–2014) for Assessing Decadal Change
by Fangkun Wu, Jie Sun, Yinghong Wang and Zirui Liu
Atmosphere 2025, 16(10), 1148; https://doi.org/10.3390/atmos16101148 - 30 Sep 2025
Cited by 1 | Viewed by 640
Abstract
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were [...] Read more.
Investigating atmospheric volatile organic compounds (VOCs) is critical for understanding their sources, chemical reactivity, and impacts on air quality, climate, and human health, especially in remote regions like the Tibetan Plateau where baseline data remains scarce. In this study, ambient VOCs species were simultaneously measured at four remote background sites on the Tibetan Plateau (Nyingchi, Namtso, Ngari, and Mount Everest) from 2012 to 2014 to investigate their concentration, composition, sources, and chemical reactivity. Weekly integrated samples were collected and analyzed using a Gas Chromatograph-Mass Spectrometer/Flame Ionization Detector (GC-MS/FID) system. The total VOC mixing ratios exhibited site-dependent variability, with the highest levels observed in Nyingchi, followed by Mount Everest, Ngari and Namtso. The VOC composition in those remote sites was dominated by alkanes (25.7–48.5%) and aromatics (11.4–34.7%), followed by halocarbons (19.1–28.1%) and alkenes (11.5–18.5%). A distinct seasonal trend was observed, with higher VOC concentrations in summer and lower levels in spring and autumn. Source analysis based on correlations between specific VOC species suggests that combustion emissions (e.g., biomass burning or residential heating) were a major contributor during winter and spring, while traffic-related emissions influenced summer VOC levels. In addition, long-range transport of pollutants from South Asia also significantly impacted VOC concentrations across the plateau. Furthermore, reactivity assessments indicated that alkenes were the dominant contributors to OH radical loss rates, whereas aromatics were the largest drivers of ozone formation potential (OFP). These findings highlight the complex interplay of local emissions and regional transport in shaping VOC chemistry in this high-altitude background environment, with implications for atmospheric oxidation capacity and secondary pollutant formation. Full article
Show Figures

Figure 1

19 pages, 1685 KB  
Article
Effects of Thermal Sterilization Conditions on Flavor and Lipid Oxidation of Sauced Duck Necks
by Beibei Chu, Chao Zhang, Yushen Song, Hui Zhou, Xingguang Chen and Qianhui Gu
Foods 2025, 14(17), 3136; https://doi.org/10.3390/foods14173136 - 8 Sep 2025
Viewed by 1448
Abstract
This study aimed to investigate the effect of thermal sterilization on the volatile flavor of sauced duck necks. The study revealed that thermal sterilization significantly reduced the content of unsaturated fatty acids (e.g., oleic acid C18:1n9c) in sauced duck necks. This was accompanied [...] Read more.
This study aimed to investigate the effect of thermal sterilization on the volatile flavor of sauced duck necks. The study revealed that thermal sterilization significantly reduced the content of unsaturated fatty acids (e.g., oleic acid C18:1n9c) in sauced duck necks. This was accompanied by elevated thiobarbituric acid reactive substances (max 0.86 mg/100 g) and peroxide values (max 1.13 g/100 g), indicating intensified lipid oxidation. Through PLS-DA, six key differential free fatty acids distinguishing the sterilization treatment groups were identified: cis-9-tetradecadecarbonate, methyl tridecarbonate, cis-10-17-cetenoic acid, antioleic acid, cis-13-docosaenoic acid methyl ester, and lauric acid. The primary volatile flavor compounds in sauced duck necks were identified as alkenes and ethers. Post-sterilization alterations in volatile flavor profiles primarily resulted from compositional changes in alkenes, esters, and ethers within the total volatile compounds. Moreover, it was demonstrated that sterilization temperature exerted a significantly greater impact on the quality of sauced duck necks than sterilization duration. Following organoleptic evaluation, samples subjected to low-temperature prolonged sterilization (90 °C for 30 min) exhibited the highest aroma scores, establishing this protocol as the optimal thermal sterilization condition. This study is of great significance for selecting thermal sterilization conditions and maintaining meat flavor. Full article
(This article belongs to the Special Issue Meat Quality and Palatability)
Show Figures

Figure 1

30 pages, 6753 KB  
Article
Regioselective Synthesis of 5-Substituted 3-(β-d-Glycopyranosyl)isoxazoles and -isoxazolines by 1,3-Dipolar Cycloaddition as Potential Anticancer Agents and Glycogen Phosphorylase Inhibitors
by Tímea Kaszás, Bence Szakács, Márta Bertalan, Tekla Blága, Faria Hameed, Ákos Lengyel, Samreen Saifi, Éva Juhász-Tóth, Luca A. Varga, Tibor Docsa, Adrienn Sipos, Péter Bai, Anita Ábrahám, Attila Kiss-Szikszai, Sándor Kun, György Attila Kiss, János József, László Juhász and Marietta Tóth
Int. J. Mol. Sci. 2025, 26(17), 8167; https://doi.org/10.3390/ijms26178167 - 22 Aug 2025
Viewed by 1401
Abstract
Anhydro-aldose oximes were employed to generate in situ nitrile oxides via a halogenation/base-induced elimination sequence in the presence of NCS and Et3N, which were then used in 1,3-dipolar cycloadditions with alkenes and alkynes to afford 5-substituted 3-(β-d-glycopyranosyl)isoxazole and -isoxazoline [...] Read more.
Anhydro-aldose oximes were employed to generate in situ nitrile oxides via a halogenation/base-induced elimination sequence in the presence of NCS and Et3N, which were then used in 1,3-dipolar cycloadditions with alkenes and alkynes to afford 5-substituted 3-(β-d-glycopyranosyl)isoxazole and -isoxazoline derivatives exclusively. These newly synthesized glycomimetics were evaluated for their potential to act as antagonists of A2780 ovarian cancer cells and as inhibitors of glycogen phosphorylase; however, they exhibited no significant activity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

44 pages, 7558 KB  
Review
Trisubstituted Alkenes as Valuable Building Blocks
by Tomáš Tobrman and Václav Hron
Molecules 2025, 30(16), 3370; https://doi.org/10.3390/molecules30163370 - 13 Aug 2025
Cited by 2 | Viewed by 1658
Abstract
The stereoselective synthesis of trisubstituted alkenes has become a key topic in modern organic chemistry. At the same time, trisubstituted alkenes also serve as valuable starting materials for a wide range of transformations. However, it remains unclear to what extent these alkenes are [...] Read more.
The stereoselective synthesis of trisubstituted alkenes has become a key topic in modern organic chemistry. At the same time, trisubstituted alkenes also serve as valuable starting materials for a wide range of transformations. However, it remains unclear to what extent these alkenes are utilized in comparison to their mono- and disubstituted counterparts. This review aims to provide a comprehensive overview of fundamental transformations involving all-carbon-substituted trisubstituted alkenes. The first section focuses on additions of carbon, oxygen, and nitrogen nucleophiles, as well as halogenation and carboxylation reactions. The second part discusses oxidative cleavage processes, while the final section addresses the cyclization and cycloisomerization reactions of trisubstituted alkenes. Full article
Show Figures

Scheme 1

49 pages, 11537 KB  
Review
Photocyclization of Alkenes and Arenes: Penetrating Through Aromatic Armor with the Help of Excited State Antiaromaticity
by Nikolas R. Dos Santos, Judy I. Wu and Igor V. Alabugin
Chemistry 2025, 7(3), 79; https://doi.org/10.3390/chemistry7030079 - 9 May 2025
Cited by 1 | Viewed by 4541
Abstract
This review focuses on photocyclization reactions involving alkenes and arenes. Photochemistry opens up synthetic opportunities difficult for thermal methods, using light as a versatile tool to convert stable ground-state molecules into their reactive excited counterparts. This difference can be particularly striking for aromatic [...] Read more.
This review focuses on photocyclization reactions involving alkenes and arenes. Photochemistry opens up synthetic opportunities difficult for thermal methods, using light as a versatile tool to convert stable ground-state molecules into their reactive excited counterparts. This difference can be particularly striking for aromatic molecules, which, according to Baird’s rule, transform from highly stable entities into their antiaromatic “evil twins”. We highlight classical reactions, such as the photocyclization of stilbenes, to show how alkenes and aromatic rings can undergo intramolecular cyclizations to form complex structures. When possible, we explain how antiaromaticity develops in excited states and how this can expand synthetic possibilities. The review also examines how factors such as oxidants, substituents, and reaction conditions influence product selectivity, providing useful insights for improving reaction outcomes and demonstrating how photochemical methods can drive the development of new synthetic strategies. Full article
Show Figures

Graphical abstract

17 pages, 5267 KB  
Article
The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study
by Mikołaj Sadowski, Ewa Dresler and Radomir Jasiński
Molecules 2025, 30(4), 974; https://doi.org/10.3390/molecules30040974 - 19 Feb 2025
Cited by 3 | Viewed by 1608
Abstract
The regioselectivity and molecular mechanism of the (3+2) cycloaddition reaction between E-2-(trimethylsilyl)-1-nitroethene and arylonitrile N-oxides were explored on the basis of the ωB97XD/6-311+G(d) (PCM) quantumchemical calculations. It was found that the earlier postulate regarding the regioselectivity of the cycloaddition stage should [...] Read more.
The regioselectivity and molecular mechanism of the (3+2) cycloaddition reaction between E-2-(trimethylsilyl)-1-nitroethene and arylonitrile N-oxides were explored on the basis of the ωB97XD/6-311+G(d) (PCM) quantumchemical calculations. It was found that the earlier postulate regarding the regioselectivity of the cycloaddition stage should be undermined. Within our research, several aspects of the title reaction were also examined: interactions between reagents, electronic structures of alkenes and nitrile oxides, the nature of transition states, the influence of the polarity solvent on the reaction selectivity and mechanism, substituent effects, etc. The obtained results offer a general conclusion for all of the important aspects of some groups of cycloaddition processes. Full article
(This article belongs to the Special Issue Quantum Chemical Calculations of Molecular Reaction Processes)
Show Figures

Figure 1

12 pages, 1811 KB  
Article
Analysis of the Generation of Harmful Aldehydes in Edible Oils During Sunlight Exposure and Deep-Frying Using High-Field Proton Nuclear Magnetic Resonance Spectroscopy
by Anna Meike Freis and Sahithya Phani Babu Vemulapalli
Foods 2025, 14(3), 513; https://doi.org/10.3390/foods14030513 - 5 Feb 2025
Cited by 3 | Viewed by 6498
Abstract
Edible oils are essential dietary components that provide crucial micronutrients. However, their quality can deteriorate during frying—a common cooking method—and with prolonged light exposure due to chemical reactions such as hydrolysis, oxidation, and polymerization. These processes lead to the formation of harmful compounds, [...] Read more.
Edible oils are essential dietary components that provide crucial micronutrients. However, their quality can deteriorate during frying—a common cooking method—and with prolonged light exposure due to chemical reactions such as hydrolysis, oxidation, and polymerization. These processes lead to the formation of harmful compounds, particularly aldehydes. This study investigates how thermal and light exposure impact the chemical composition of five widely used edible oils: olive, rapeseed, sunflower, sesame, and peanut oils. For the thermal treatment, the oils were heated to 190 ± 5 °C in a commercial fryer, with samples taken at the start and after 10 min and 60 min of heating, while intermittently frying chicken nuggets to simulate typical frying conditions. For the light exposure treatment, the oil samples were exposed to direct sunlight for 3 and 8 h, with control samples being collected beforehand. The oil composition was analyzed using an advanced 800 MHz nuclear magnetic resonance (NMR) instrument with a triple-resonance inverse cryoprobe, providing high sensitivity and resolution. The results revealed a significant increase in various aldehyde compounds in all oils under both thermal and light exposure conditions. Notably, this study identified the generation of genotoxic and cytotoxic α,β-unsaturated aldehydes, including 4-hydroperoxy-(E)-2-alkenals, 4-hydroxy-(E)-2-alkenals, and 4,5-epoxy-(E)-2-alkenals. Given the established association of aldehydes with health risks, including cancer, Alzheimer’s, and Parkinson’s diseases, these findings highlight the importance of monitoring oil degradation during cooking and the appropriate storage of oils to minimize light exposure to reduce potential health risks. Full article
Show Figures

Figure 1

19 pages, 5891 KB  
Article
Preparation, Thermal Properties and Decomposition Course of Highly Resistant Potato Starch Graft Poly(Cinnamyl Methacrylate) Materials
by Marta Worzakowska
Molecules 2025, 30(2), 376; https://doi.org/10.3390/molecules30020376 - 17 Jan 2025
Cited by 3 | Viewed by 2053
Abstract
The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The “grafting from” method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.3% ± 0.4) using a ratio of starch to methacrylic monomer [...] Read more.
The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The “grafting from” method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.3% ± 0.4) using a ratio of starch to methacrylic monomer of 1:3 were obtained. The heterogeneous, non-porous structure materials were prepared. They were characterized by significant lower swelling in polar solvents and moisture absorption but higher swelling in non-polar solvents compared to unmodified potato starch. The chemical resistance in acidic, alkaline and neutral environments for all the tested copolymers was significantly higher compared to the chemical resistance of potato starch. The tested copolymers decomposed in at least three main stages in inert conditions and in at least four main stages in oxidative conditions. Their pyrolysis with the emission of the mixture of volatiles such as aldehyde, acid, ester, alcohol, aromatic, alkene, alkane, H2O, CO2 and CO based on the TG/FTIR studies was proved. The oxidative decomposition included pyrolysis processes combined with oxidation and combustion reactions of volatiles and the formed residues. As a result, the emission of the unsaturated and saturated compounds with carbonyl, hydroxyl, carboxyl and/or ester groups, alkane, alkene, aromatics and its oxidized forms, H2O, CO2 and CO, was observed. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

24 pages, 4202 KB  
Article
In Vitro, In Vivo, Ex Vivo Characterisation of Dihydroimidazotriazinones and Their Thermal Decomposition Course Studied by Coupled and Simultaneous Thermal Analysis Methods
by Marta Worzakowska, Małgorzata Sztanke, Jolanta Rzymowska and Krzysztof Sztanke
Int. J. Mol. Sci. 2025, 26(2), 541; https://doi.org/10.3390/ijms26020541 - 10 Jan 2025
Viewed by 1133
Abstract
The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules 16—as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine—were evaluated for their in vitro anticancer activity. Moreover, in vivo, [...] Read more.
The biological and thermal properties of a class of synthetic dihydroimidazotriazinones were disclosed in this article for the first time. Molecules 16—as potential innovative antimetabolites mimicking bicyclic aza-analogues of isocytosine—were evaluated for their in vitro anticancer activity. Moreover, in vivo, in vitro, and ex vivo toxicity profiles of all the compounds were established in zebrafish, non-tumour cell, and erythrocyte models, respectively. Their antihaemolytic activity was also evaluated. Additionally, the thermal decomposition mechanism, path, and key thermal properties of heterocycles 16 were analysed. It was found that all the studied compounds revealed significant antiproliferative activities against tumour cells of the lung, cervix, ovary, and breast, as well as acute promyelocytic leukaemia cells, superior or comparable to that of an anticancer agent gemcitabine. Most of them were less toxic to non-tumour cells than this standard drug, and none had a haemolytic effect on red blood cells. All the tested heterocycles proved to be safer for zebrafish than a standard drug pemetrexed. Some exhibited the ability to inhibit oxidative haemolysis, suggesting their protective action on erythrocytes. The differential scanning calorimetry (DSC) analyses confirmed that all molecules melted within one narrow temperature range, proving their purity. The melting points depended solely on the type of substituent and increased as follows: 4 (R = 3-ClPh) < 2 (R = 4-CH3Ph) = 3 (R = 4-OCH3Ph) < 5 (R = 4-ClPh) = 1 (R = Ph) < 6 (R = 3,4-Cl2Ph). The thermogravimetry/differential thermogravimetry (TG/DTG) studies confirmed high thermal stability of all the investigated heterocycles in inert (>230 °C) and oxidising (>260 °C) atmospheres, which depended directly on the R. The pyrolysis process included one main decomposition stage and was connected with the emission of NH3, HCN, CH3CN, HNCO, alkane, alkene, aromatic fragments, CO2 (for all the compounds), and HCl (for the molecule with 3,4-Cl2Ph), which was confirmed by FTIR and QMS analyses. In turn, the oxidative decomposition process of the tested polyazaheterocycles took place in two main stages connected with the formation of the same volatiles as those observed in an inert atmosphere and additionally with the release of N2, NO, CO, and H2O. These results proved that the pyrolysis and oxidative decomposition run through the radical mechanism connected with the additional reactions between radicals and oxygen in synthetic air. The favourable biological and thermal properties of this class of dihydroimidazotriazinones imply their usefulness as potential pharmaceutics. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

25 pages, 16865 KB  
Review
Magnetic Nanocomposites Based on Iron Oxides as Catalysts of Oxidation Reactions
by Svetlana I. Pomogailo, Evgeny G. Chepaikin, Olga N. Bubelo, Rosa I. Jussupkaliyeva and Leonid M. Kustov
Crystals 2024, 14(12), 1031; https://doi.org/10.3390/cryst14121031 - 28 Nov 2024
Cited by 1 | Viewed by 1801
Abstract
This review analyzes the use of magnetite-based catalysts in various oxidation reactions. It is shown that magnetite-based catalysts are the most promising candidates from the standpoint of easy separation from the reaction zone and reusability. Diverse examples of the use of magnetite-based composites [...] Read more.
This review analyzes the use of magnetite-based catalysts in various oxidation reactions. It is shown that magnetite-based catalysts are the most promising candidates from the standpoint of easy separation from the reaction zone and reusability. Diverse examples of the use of magnetite-based composites are discussed, including the following reactions: partial oxidation of methane to formaldehyde; the oxidation of cycloalkanes into alcohols and ketones; the oxidation of alkenes and alcohols with the major focus made on benzylic alcohol oxidation; oxidative cracking of alkenes; Fenton-type reactions with H2O2 as a benign oxidant; the removal of dyestuff in water (including wastewater by oxidation); reactions of sulfides and thiols; the oxidation of 5-hydroxymethylfurfural as a platform chemical to 2,5-diformylfuran; the oxidation of D-glucose to D-gluconic acid; and the electrocatalytic oxidation of methanol and ethanol. The most important and best-studied applications of magnetic nanoparticles in the oxidation reactions are believed to be the oxidation of diverse benzylic alcohols and D-glucose, and Fenton-like reactions aiming at the removal of S- and N-compounds from ware and fuels. Magnetic nanocomposites are determined as the materials meeting a range of criteria: (1) they should be magnetic, (2) they contain nanoparticles, and (3) they consist of two (or more) nanocomponents. The core–shell materials with magnetic nanoparticles used as a core or as decorating nanoparticles are discussed in the review. Three main types of magnetic nanocomposites can be distinguished: (1) the systems where the magnetic phase is active in the considered reaction, for instance, Fenton-like oxidation; (2) the systems containing active metal nanoparticles supported onto the magnetic nanoparticles; and (3) materials with magnetic nanoparticles as a core coated with one or two shells (porous or non-porous), with the magnetic nanoparticles being active or not in the title reaction. Magnetic nanoparticles exhibit a number of advantages compared with supported non-magnetic catalysts of oxidation reactions. The advantages include the possibility of separation from the reaction medium (5–10 times) without a significant loss of the activity, their non-toxicity, low cost, and availability, and the easy preparation of these materials. The drawbacks may include the leaching of active components; a decrease in saturation magnetization in comparison with the bulk magnetite; a limited accessibility of active sites due to diffusion through the shells; the complicated composition and structure of the nanomaterials; a decrease in the activity and specific surface area; and a limited number of magnetic compounds with acceptable characteristics. Nevertheless, the advantages of magnetic nanocatalysts stimulate their wide use in liquid-phase oxidation reactions, which will be discussed in the review. Future perspectives on the use of magnetic composites are considered. Full article
Show Figures

Figure 1

Back to TopTop