The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study
Abstract
:1. Introduction
2. Results and Discussion
Electronic Interactions
3. Computational Details
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zawadzińska-Wrochniak, K.; Zavecz, I.; Hirka, S. The recent progress in the field of the applications of isoxazoles and their hydrogenated analogs: Mini review. Sci. Rad. 2024, 3, 228–247. [Google Scholar] [CrossRef]
- Potkin, V.I.; Kolesnik, I.A.; Akishina, E.A.; Zubkov, F.I.; Fedoseeva, M.A.; Pronina, A.A.; Grigoriev, M.S.; Zhou, H.; Kurman, P.V.; Terpinskaya, T.I.; et al. Polysubstituted pyrans, chromenes, and chromenopyridines with isoxazole or isothiazole moiety: Synthesis, structure, and antitumor activity. Chem. Heterocycl. Comp. 2024, 60, 390–402. [Google Scholar] [CrossRef]
- Xiao, M.M.; Hua, M.Q.; Mou, F.Y.; Xiong, H.Y. Visible-light-induced Ir-catalyzed site-selective C−H trifluoromethylation of 3-substituted 1,2-benzoxazoles. Chem. Heterocycl. Comp. 2024, 60, 299–303. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Feng, H. Ring expansion strategy to access functionalized 2-oxazolines (microreview). Chem. Heterocycl. Comp. 2024, 60, 236–238. [Google Scholar] [CrossRef]
- Dresler, E. The Participation of Oleic Acid and its Esters in (3+2) Cycloaddition Reactions: A Mini-Review. Sci. Rad. 2024, 3, 53–61. [Google Scholar] [CrossRef]
- Ryachi, K.; Barhoumi, A.; Atif, M.; Zeroual, A.; El Idrissi, M.; Tounsi, A. Advanced quantum and docking studies on the (3+2) cycloaddition of nitrile oxide with 1-Methyl-4-(Prop-1-en-2-yl)Cyclohex-1-ene: Exploring mechanisms and ADME properties. Curr. Chem. Lett. 2025, 14, 11–20. [Google Scholar] [CrossRef]
- Pinho e Melo, T.M.V.D. Recent Advances on the Synthesis and Reactivity of Isoxazoles. Curr. Org. Chem. 2025, 9, 925–958. [Google Scholar] [CrossRef]
- Hu, F.; Szostak, M. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Adv. Synth. Catal. 2015, 357, 2583–2614. [Google Scholar] [CrossRef]
- Baraldi, P.G.; Barco, A.; Benetti, S.; Pollini, G.P.; Simoni, D. Synthesis of Natural Products via Isoxazoles. Synthesis 1987, 1987, 857–869. [Google Scholar] [CrossRef]
- Bracken, C.; Baumann, M. Development of a Continuous Flow Photoisomerization Reaction Converting Isoxazoles into Diverse Oxazole Products. J. Org. Chem. 2020, 85, 2607–2617. [Google Scholar] [CrossRef]
- Madhavan, S.; Keshri, S.K.; Kapur, M. Transition Metal-Mediated Functionalization of Isoxazoles: A Review. Asian J. Org. Chem. 2021, 10, 3127–3165. [Google Scholar] [CrossRef]
- Barber, G.N.; Olofson, R.A. A Useful, Regiospecific Synthesis of Isoxazoles. J. Org. Chem. 1978, 43, 3015. [Google Scholar] [CrossRef]
- Morita, T.; Yugandar, S.; Fuse, S.; Nakamura, H. Recent progresses in the synthesis of functionalized isoxazoles. Tetrahedron Lett. 2018, 59, 1159–1171. [Google Scholar] [CrossRef]
- Bondarenko, O.B.; Zyk, N.V. The main directions and recent trends in the synthesis and use of isoxazoles. Chem. Heterocycl. Comp. 2020, 56, 694–707. [Google Scholar] [CrossRef]
- Jasiński, R. Recent progress in the synthesis of nitroisoxazoles and their hydrogenated analogs via (3+2) cycloaddition reactions (microreview). Chem. Heterocycl. Comp. 2023, 59, 730–732. [Google Scholar] [CrossRef]
- Łapczuk-Krygier, A.; Kącka-Zych, A.; Kula, K. Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett. 2019, 8, 13–38. [Google Scholar] [CrossRef]
- Heaney, F. Nitrile Oxide/Alkyne Cycloadditions—A Credible Platform for Synthesis of Bioinspired Molecules by Metal-Free Molecular Clicking. Eur. J. Org. Chem. 2012, 2012, 3043–3058. [Google Scholar] [CrossRef]
- Haberhauer, G.; Gleiter, R.; Woitschetzki, S. anti-Diradical Formation in 1,3-Dipolar Cycloadditions of Nitrile Oxides to Acetylenes. J. Org. Chem. 2015, 80, 12321–12332. [Google Scholar] [CrossRef]
- Dresler, E.; Woliński, P.; Wróblewska, A.; Jasiński, R. On the Question of Zwitterionic Intermediates in the (3+2) Cycloaddition Reactions between Aryl Azides and Ethyl Propiolate. Molecules 2023, 28, 8152. [Google Scholar] [CrossRef] [PubMed]
- Łapczuk-Krygier, A.; Jaśkowska, J.; Jasiński, R. The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid elimination from 5-nitro-3-phenyl-4,5-dihydroisoxazole: DFT computational study. Chem. Heterocycl. Comp. 2018, 54, 1172–1174. [Google Scholar] [CrossRef]
- Padwa, A.; MacDonald, J.G. 1,3-dipolar cycloaddition of benzonitrile oxide with vinylsilanes. Tetrahedron Lett. 1982, 23, 3219–3222. [Google Scholar] [CrossRef]
- Padwa, A.; MacDonald, J.G. Utilization of vinylsilanes in [4+2]-cycloaddition reactions. J. Org. Chem. 1983, 48, 3189–3195. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R. The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the (3+2) Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules 2021, 26, 6774. [Google Scholar] [CrossRef]
- Sadowski, M.; Dresler, E.; Zawadzińska, K.; Wróblewska, A.; Jasiński, R. Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules 2024, 29, 4892. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R. The First Examples of (3+2) Cycloadditions with the Participation of (E)-3,3,3-Tribromo-1-Nitroprop-1-Ene. Materials 2022, 15, 7584. [Google Scholar] [CrossRef]
- Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022, 27, 8409. [Google Scholar] [CrossRef] [PubMed]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Regioselectivity and the Molecular Mechanism of (3+2) Cycloaddition Reactions between Nitrous Oxide and Conjugated Nitroalkenes: A DFT Computational Study. Molecules 2022, 27, 8441. [Google Scholar] [CrossRef]
- Sadowski, M.; Kula, K. Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study. Molecules 2024, 29, 5066. [Google Scholar] [CrossRef] [PubMed]
- Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the (3+2) Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49–69. [Google Scholar] [CrossRef]
- Siadati, S.A. An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett. 2015, 56, 4857–4863. [Google Scholar] [CrossRef]
- Siadati, S.A.; Kula, K.; Babanezhad, E. The possibility of a two-step oxidation of the surface of C20fullerene by a single molecule of nitric (V) acid, initiate by a rare [2+3] cycloaddition. Chem. Rev. Lett. 2019, 2, 2–6. [Google Scholar]
- Siadati, S.A. The Effect of Position Replacement of Functional Groups on the Stepwise character of 1,3-Dipolar Reaction of a Nitrile Oxide and an Alkene. Helv. Chim. Acta 2016, 99, 273–280. [Google Scholar] [CrossRef]
- Jasiński, R. Nitroacetylene as dipolarophile in [2 + 3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatsh. Chem. 2015, 146, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos Gutiérrez, M.; Castellanos Soriano, J. Understanding the Origin of the Regioselectivity in Non-Polar (3+2) Cycloaddition Reactions through the Molecular Electron Density Theory. Organics 2020, 1, 19–35. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P. The Mysticism of Pericyclic Reactions: A Contemporary Rationalisation of Organic Reactivity Based on Electron Density Analysis. Eur. J. Org. Chem. 2018, 2018, 1107–1120. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef]
- Domingo, L.R. 1999–2024, a Quarter Century of the Parr’s Electrophilicity ω Index. Sci. Rad. 2024, 3, 157–186. [Google Scholar] [CrossRef]
- Ríos-Gutiérrez, M.; Saz Sousa, A.; Domingo, L.R. Electrophilicity and nucleophilicity scales at different DFT computational levels. J. Phys. Org. Chem. 2023, 36, 4503. [Google Scholar] [CrossRef]
- Kącka-Zych, A. Understanding of the stability of acyclic nitronic acids in the light of molecular electron density theory. J. Mol. Graph. 2024, 129, 108754. [Google Scholar] [CrossRef]
- Rattananakin, P.; Pittman, C.U.; Collier, W.E.; Saebo, S. Ab initio studies of push–pull systems. Struct. Chem. 2007, 18, 399–407. [Google Scholar] [CrossRef]
- Stojiljković, I.N.; Rančić, M.P.; Marinković, A.D.; Cvijetić, I.N.; Milčić, M.K. Assessing the potential of para-donor and para-acceptor substituted 5-benzylidenebarbituric acid derivatives as push-pull electronic systems: Experimental and quantum chemical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 253, 119576. [Google Scholar] [CrossRef] [PubMed]
- Leo, H.C.A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar]
- Kącka-Zych, A. Participation of Phosphorylated Analogues of Nitroethene in Diels–Alder Reactions with Anthracene: A Molecular Electron Density Theory Study and Mechanistic Aspect. Organics 2020, 1, 36–48. [Google Scholar] [CrossRef]
- Gavezzotti, A. On the preferred mutual orientation of aromatic groups in organic condensed media. Chem. Phys. Lett. 1989, 161, 67–72. [Google Scholar] [CrossRef]
- Ohno, A. Non-steric stereochemistry solely controlled by orientation of dipolar function. J. Phys. Org. Chem. 1995, 8, 567–576. [Google Scholar] [CrossRef]
- Wheland, G.W. A Quantum Mechanical Investigation of the Orientation of Substituents in Aromatic Molecules. J. Am. Chem. Soc. 1942, 64, 900–908. [Google Scholar] [CrossRef]
- Koubi, Y.; Moukhliss, Y.; Hajji, H.; Abdessadak, O.; Alaqarbeh, M.; Ajana, M.A.; Maghat, H.; Lakhlifi, T.; Bouachrine, M. Computational structure—biological activity and retrosynthesis investigations of 1,2,3-triazole-quinoline hybrid molecules as potential respiratory virus inhibitors. Chem. Heterocycl. Comp. 2024, 60, 491–504. [Google Scholar] [CrossRef]
- Gillies, J.Z.; Gillies, C.W.; Suenram, R.D.; Lovas, F.J.; Kraka, E.; Cremer, D. Van der Waals complexes in 1, 3-dipolar cycloaddition reactions: Ozone-ethylene. J. Am. Chem. Soc. 1991, 113, 2412–2421. [Google Scholar] [CrossRef]
- Gillies, J.Z.; Gillies, C.W.; Lovas, F.J.; Matsamura, K.; Suenram, R.D.; Kraka, E.; Cremer, D. Van der Waals complexes of chemically reactive gases: Ozone-acetylene. J. Am. Chem. Soc. 1991, 113, 6408–6415. [Google Scholar] [CrossRef]
- Mondal, A.; Acharjee, N. Unveiling the exclusive stereo and site selectivity in (3+2) cycloaddition reactions of a tricyclic strained alkene with nitrile oxides from the molecular electron density theory perspective. Chem. Heterocycl. Comp. 2023, 59, 145–154. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Energetic Aspects and Molecular Mechanism of 3-Nitro-substituted 2-Isoxazolines Formation via Nitrile N-Oxide (3+2) Cycloaddition: An MEDT Computational Study. Molecules 2024, 29, 3042. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Kula, K. Application of β-Phosphorylated Nitroethenes in (3+2) Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics 2021, 2, 26–37. [Google Scholar] [CrossRef]
- Mondal, A.; Mohammad-Salim, H.A.; Acharjee, N. Unveiling substituent effects in (3+2) cycloaddition reactions of benzonitrile N-oxide and benzylideneanilines from the molecular electron density theory perspective. Sci.Rad. 2023, 2, 75–92. [Google Scholar] [CrossRef]
- Łapczuk, A.; Ríos-Gutiérrez, M. Mechanistic Aspects of (3+2) Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study. Molecules 2025, 30, 85. [Google Scholar] [CrossRef] [PubMed]
- Aitouna, A.O.; Barhoumi, A.; Zeroual, A. A Mechanism Study and an Investigation of the Reason for the Stereoselectivity in the [4+2] Cycloaddition Reaction between Cyclopentadiene and Gem-substituted Ethylene Electrophiles. Sci. Rad. 2023, 2, 217–228. [Google Scholar] [CrossRef]
- Kącka-Zych, A. Understanding the uniqueness of the stepwise [4 + 1] cycloaddition reaction between conjugated nitroalkenes and electrophilic carbene systems with a molecular electron density theory perspective. Int. J. Quantum Chem. 2021, 121, 26440. [Google Scholar] [CrossRef]
- Abboud, J.L.M.; Notari, R. Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents. Pure Appl. Chem. 1999, 71, 645–718. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, M.; Dresler, E.; Wróblewska, A.; Jasiński, R. A New Insight into the Molecular Mechanism of the Reaction between 2-Methoxyfuran and Ethyl (Z)-3-phenyl-2-nitroprop-2-enoate: An Molecular Electron Density Theory (MEDT) Computational Study. Molecules 2024, 29, 4876. [Google Scholar] [CrossRef]
- Dresler, E.; Wróblewska, A.; Jasiński, R. Understanding the Molecular Mechanism of Thermal and LA-Catalysed Diels–Alder Reactions between Cyclopentadiene and Isopropyl 3-Nitroprop-2-Enate. Molecules 2023, 28, 5289. [Google Scholar] [CrossRef] [PubMed]
- Wolinski, P.; Kacka-Zych, A.; Wroblewska, A.; Wielgus, E.; Dolot, R.; Jasinski, R. Fully selective synthesis of spirocyclic-1,2-oxazine N-oxides via non-catalysed Hetero Diels-Alder reactions with the participation of cyanofunctionalysed conjugated nitroalkenes. Molecules 2023, 28, 4586. [Google Scholar] [CrossRef] [PubMed]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Domingo, L.R. A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Electrophilicity w and Nucleophilicity N Scales for Cationic and Anionic Species. Sci. Radices 2025, 4, 1–17. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Demchuk, O.M.; Justyniak, I.; Mirosław, B.; Jasiński, R. 2-Methoxynaphthylnaphthoquinone and its solvate: Synthesis and structure–properties relationship. J. Phys. Org. Chem. 2014, 27, 66–73. [Google Scholar] [CrossRef]
- Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615–4624. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Pérez, P.; Sáez, J.A. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv. 2013, 3, 1486–1494. [Google Scholar] [CrossRef]
Compound | μ | η | ω | N |
---|---|---|---|---|
1 | −5.45 | 9.74 | 1.53 | 1.07 |
6 | −5.34 | 9.93 | 1.44 | 1.09 |
2a | −4.10 | 8.78 | 0.96 | 2.91 |
2b | −3.39 | 8.47 | 0.68 | 3.77 |
2c | −5.24 | 7.80 | 1.76 | 2.26 |
Compound | X | ωC5 (P+C5) | ωC4 (P+C4) | NC5 (P−C5) | NC4 (P−C4) | |
1 | Si | 0.58 (0.38) | 0.11 (0.07) | 0.08 (0.08) | 0.03 (0.02) | |
6 | C | 0.59 (0.41) | −0.01 (0.00) | −0.02 (−0.02) | 0.00 (0.00) |
Compound | R | ωC3 (P+C3) | ωO1 (P+O1) | NC3 (P−C3) | NO1 (P−O1) | |
2a | H | −0.05 (−0.05) | 0.08 (0.08) | 0.07 (0.02) | 1.46 (0.50) | |
2b | NH2 | 0.01 (0.02) | −0.01 (−0.02) | −0.38 (−0.10) | 1.24 (0.33) | |
2c | NO2 | −0.12 (−0.07) | 0.10 (0.06) | 0.15 (0.07) | 1.20 (0.53) |
Compound | X | C4-C5 population 1 | lC4-C5 2 | lC4-N7 2 | lC5-X6 2 | lX6-CMe 3 | |
1 | Si | 3.45 | 1.32 | 1.47 | 1.88 | 1.87 | |
6 | C | 3.58 | 1.32 | 1.46 | 1.50 | 1.53 |
Reaction | Solvent | Path | Transition | ΔH | ΔS | ΔG |
---|---|---|---|---|---|---|
1 + 2a | CCl4 | A | 1 + 2a→MCA | −6.0 | −34.1 | 4.2 |
1 + 2a→TSA | 10.4 | −48.4 | 24.8 | |||
1 + 2a→4a | −46.4 | −51.3 | −31.1 | |||
B | 1 + 2a→MCB | −4.6 | −33.1 | 5.3 | ||
1 + 2a→TSB | 10.8 | −45.5 | 24.4 | |||
1 + 2a→5a | −38.7 | −48.4 | −24.3 | |||
Acetone | A | 1 + 2a→MCA | −5.6 | −33.2 | 4.3 | |
1 + 2a→TSA | 11.1 | −48.6 | 25.6 | |||
1 + 2a→4a | −46.2 | −51.0 | −30.9 | |||
B | 1 + 2a→MCB | −5.1 | −41.6 | 7.3 | ||
1 + 2a→TSB | 12.1 | −46.0 | 25.8 | |||
1 + 2a→5a | −37.5 | −49.4 | −22.8 | |||
A | 1 + 2a→MCA | −5.6 | −33.4 | 4.4 | ||
MeNO2 | 1 + 2a→TSA | 11.1 | −48.6 | 25.6 | ||
1 + 2a→4a | −46.2 | −50.9 | −31.0 | |||
B | 1 + 2a→MCB | −5.1 | −41.6 | 7.3 | ||
1 + 2a→TSB | 12.2 | −45.8 | 25.8 | |||
1 + 2a→5a | −37.4 | −49.5 | −22.7 | |||
1 + 2b | CCl4 | A | 1 + 2b→MCA | −6.6 | −35.2 | 3.9 |
1 + 2b→TSA | 9.7 | −48.0 | 24.0 | |||
1 + 2b→4b | −46.2 | −49.3 | −31.5 | |||
B | 1 + 2b→MCB | −4.9 | −34.0 | 5.2 | ||
1 + 2b→TSB | 9.5 | −45.5 | 23.1 | |||
1 + 2b→5b | −38.4 | −49.0 | −23.8 | |||
1 + 2c | CCl4 | A | 1 + 2c→MCA | −5.6 | −38.8 | 6.0 |
1 + 2c→TSA | 10.9 | −48.6 | 25.4 | |||
1 + 2c→4c | −47.2 | −51.6 | −31.8 | |||
B | 1 + 2c→MCB | −5.4 | −37.8 | 5.9 | ||
1 + 2c→TSB | 11.7 | −49.2 | 26.3 | |||
1 + 2c→5c | −39.9 | −49.6 | −25.1 | |||
2a + 7 | CCl4 | A | 2a + 7→MCA | −5.9 | −35.0 | 4.6 |
2a + 7→TSA | 10.6 | −42.3 | 23.2 | |||
2a + 7→8 | −44.9 | −48.5 | −30.5 | |||
B | 2a + 7→MCA | −6.5 | −36.1 | 4.3 | ||
2a + 7→TSA | 10.6 | −46.5 | 24.5 | |||
2a + 7→9 | −41.5 | −53.0 | −25.7 |
Solvent | Path | Structure | Interatomic Distances [Å] | GEDT | ||||
---|---|---|---|---|---|---|---|---|
O1-N2 | N2-C3 | C3-C4 | C4-C5 | C5-O1 | [e] | |||
CCl4 | A | 1 | 1.324 | |||||
2a | 1.210 | 1.154 | ||||||
MCA | 1.209 | 1.154 | 3.604 | 1.324 | 3.671 | |||
TSA | 1.218 | 1.203 | 2.126 | 1.366 | 2.269 | 0.25 | ||
4a | 1.415 | 1.278 | 1.501 | 1.521 | 1.379 | |||
B | MCB | 1.213 | 1.153 | 3.429 | 1.325 | 3.057 | ||
TSB | 1.233 | 1.200 | 2.204 | 1.372 | 2.143 | 0.17 | ||
5a | 1.357 | 1.279 | 1.510 | 1.519 | 1.459 | |||
Acetone | A | 1 | 1.325 | |||||
2a | 1.217 | 1.152 | ||||||
MCA | 1.215 | 1.153 | 3.670 | 1.325 | 3.778 | |||
TSA | 1.221 | 1.203 | 2.111 | 1.367 | 2.282 | 0.27 | ||
4a | 1.420 | 1.279 | 1.499 | 1.519 | 1.379 | |||
B | MCB | 1.216 | 1.153 | 4.431 | 1.325 | 4.928 | ||
TSB | 1.237 | 1.199 | 2.211 | 1.372 | 2.136 | 0.16 | ||
5a | 1.360 | 1.280 | 1.511 | 1.518 | 1.460 | |||
MeNO2 | A | 1 | 1.325 | |||||
2a | 1.217 | 1.152 | ||||||
MCA | 1.216 | 1.152 | 3.671 | 1.325 | 3.776 | |||
TSA | 1.221 | 1.203 | 2.110 | 1.367 | 2.284 | 0.27 | ||
4a | 1.420 | 1.279 | 1.498 | 1.519 | 1.379 | |||
B | MCB | 1.216 | 1.153 | 4.430 | 1.325 | 4.927 | ||
TSB | 1.237 | 1.199 | 2.212 | 1.373 | 2.135 | 0.16 | ||
5a | 1.360 | 1.280 | 1.511 | 1.518 | 1.461 | |||
CCl4 | A | 2b | 1.215 | 1.154 | ||||
MCA | 1.214 | 1.155 | 3.604 | 1.324 | 3.706 | |||
TSA | 1.223 | 1.205 | 2.129 | 1.366 | 2.244 | 0.20 | ||
4b | 1.420 | 1.280 | 1.503 | 1.520 | 1.376 | |||
B | MCB | 1.217 | 1.153 | 3.410 | 1.325 | 3.043 | ||
TSB | 1.239 | 1.203 | 2.225 | 1.373 | 2.100 | 0.21 | ||
5b | 1.363 | 1.280 | 1.512 | 1.518 | 1.457 | |||
CCl4 | A | 2c | 1.204 | 1.155 | ||||
MCA | 1.203 | 1.155 | 3.631 | 1.324 | 3.726 | |||
TSA | 1.213 | 1.203 | 2.133 | 1.365 | 2.287 | 0.31 | ||
4c | 1.407 | 1.278 | 1.500 | 1.521 | 1.382 | |||
B | MCB | 1.207 | 1.154 | 3.442 | 1.325 | 3.120 | ||
TSB | 1.227 | 1.199 | 2.196 | 1.370 | 2.174 | 0.15 | ||
5c | 1.348 | 1.462 | 1.518 | 1.510 | 1.280 | |||
CCl4 | A | 7 | 1.338 | |||||
MC | 1.210 | 1.154 | 3.449 | 1.337 | 3.958 | |||
TS | 1.217 | 1.202 | 2.137 | 1.375 | 2.417 | 0.24 | ||
8 | 1.388 | 1.278 | 1.508 | 1.530 | 1.450 | |||
B | MC | 1.214 | 1.153 | 3.594 | 1.338 | 3.462 | ||
TS | 1.232 | 1.202 | 2.293 | 1.385 | 2.110 | 0.05 | ||
9 | 1.380 | 1.278 | 1.519 | 1.547 | 1.437 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowski, M.; Dresler, E.; Jasiński, R. The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study. Molecules 2025, 30, 974. https://doi.org/10.3390/molecules30040974
Sadowski M, Dresler E, Jasiński R. The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study. Molecules. 2025; 30(4):974. https://doi.org/10.3390/molecules30040974
Chicago/Turabian StyleSadowski, Mikołaj, Ewa Dresler, and Radomir Jasiński. 2025. "The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study" Molecules 30, no. 4: 974. https://doi.org/10.3390/molecules30040974
APA StyleSadowski, M., Dresler, E., & Jasiński, R. (2025). The Puzzle of the Regioselectivity and Molecular Mechanism of the (3+2) Cycloaddition Reaction Between E-2-(Trimethylsilyl)-1-Nitroethene and Arylonitrile N-Oxides: Molecular Electron Density Theory (MEDT) Quantumchemical Study. Molecules, 30(4), 974. https://doi.org/10.3390/molecules30040974