Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = outside air factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4803 KiB  
Article
Global Health as Vector for Agroecology in Collective Gardens in Toulouse Region (France)
by Wilkens Jules, Stéphane Mombo and Camille Dumat
Urban Sci. 2025, 9(7), 272; https://doi.org/10.3390/urbansci9070272 - 15 Jul 2025
Viewed by 731
Abstract
Agroecological transitions in collective urban gardens in Toulouse region were studied through the prism of global health (2011–2022). The specific meaning of “global health” in the context of urban gardens concerns the health of gardeners (well-being and physical health), plants, soil, and animals, [...] Read more.
Agroecological transitions in collective urban gardens in Toulouse region were studied through the prism of global health (2011–2022). The specific meaning of “global health” in the context of urban gardens concerns the health of gardeners (well-being and physical health), plants, soil, and animals, as well as the interactions between humans and non-humans, which are crucial for gardeners. A sociotechnical research project was developed on four different collective gardening sites, consisting of the following: 1. surveys issued to 100 garden stakeholders to highlight issues and practices, participation in meetings with the social centers in charge of events, and focus groups; 2. participative agronomic and environmental measurements and field observations, including soil quality analyses; and 3. analysis of the available documentary corpus. In order to produce the results, these three research methods (surveys, agronomy, document analysis) were combined through a transdisciplinary approach, in that both the field experimentation outcomes and retrieved scientific publications and technical documents informed the discussions with gardeners. Consideration of the four different sites enabled the exploration of various contextual factors—such as soil or air quality—affecting the production of vegetables. A rise in the concerns of gardeners about the impacts of their activities on global health was observed, including aspects such as creating and enjoying landscapes, taking care of the soil and biodiversity, developing social connections through the transmission of practices, and regular outside physical activity and healthier eating. The increased consideration for global health issues by all stakeholders promotes the implementation of agroecological practices in gardens to improve biodiversity and adherence to circular economy principles. Four concepts emerged from the interviews: health, production of vegetables, living soil, and social interactions. Notably, nuances between the studied sites were observed, according to their history, environment, and organization. These collective gardens can thus be considered as accessible laboratories for social and agroecological experimentation, being areas that can strongly contribute to urban ecosystem services. Full article
(This article belongs to the Special Issue Social Evolution and Sustainability in the Urban Context)
Show Figures

Figure 1

12 pages, 1409 KiB  
Article
Urban-Rural Differences in Indoor and Outdoor Air Quality: A Comparative Study in Bangladesh
by Masamitsu Kurata, Akira Hibiki, Kazushi Takahashi and Yutaka Matsumi
Toxics 2025, 13(6), 509; https://doi.org/10.3390/toxics13060509 - 17 Jun 2025
Viewed by 586
Abstract
Health hazards caused by indoor air pollution (IAP) remain a global concern, especially in developing countries. IAP has complex mechanisms related to outdoor air pollution (OAP) and various other factors, and their relationship needs to be clarified to examine effective policies. We conducted [...] Read more.
Health hazards caused by indoor air pollution (IAP) remain a global concern, especially in developing countries. IAP has complex mechanisms related to outdoor air pollution (OAP) and various other factors, and their relationship needs to be clarified to examine effective policies. We conducted an indoor and outdoor air monitoring survey in urban, peri-urban, and rural areas in Bangladesh, one of the countries with the most severe air pollution. The results show that IAP is more severe in urban households than in rural households, with a five-fold difference in daily indoor PM2.5 concentration between 117 μg/m3 and 22 μg/m3, respectively. Regression analysis reveals that IAP is strongly associated with OAP and is hardly affected by solid fuels used in well-ventilated outside kitchens. Our findings support the view that the mitigation of IAP in developing countries can be achieved not only through a transition to clean fuels, which often entails substantial costs, but also through more practical and accessible alternatives, such as the use of outdoor kitchens, electric fans, and careful management of behaviors such as indoor smoking and mosquito coil use. Full article
(This article belongs to the Special Issue Source and Components Analysis of Aerosols in Air Pollution)
Show Figures

Figure 1

34 pages, 3830 KiB  
Article
Ecosystem Services Provided by an Urban Green Space in Timișoara (Romania): Linking Urban Vegetation with Air Quality and Cooling Effects
by Alia Wokan and Mădălina Iordache
Sustainability 2025, 17(12), 5564; https://doi.org/10.3390/su17125564 - 17 Jun 2025
Viewed by 415
Abstract
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: [...] Read more.
This study was conducted in an urban park in a temperate-continental city of Europe (Timișoara, Romania) and aimed to investigate the contribution of urban vegetation in maintaining air quality and mitigating the heat in the analyzed city. The following air parameters were monitored: fine particulate matter PM2.5, coarse particulate matter PM10, AQI (Air Quality Index) (resulted from PM2.5 and PM10), particle number, air temperature, relative air humidity, TVOC (total volatile organic compounds), and HCHO (formaldehyde). The results of this study show that urban vegetation remains a reliable factor in reducing PM2.5 and PM10 in city air and in keeping the AQI within the limits corresponding to good air quality, but also that relative air humidity counteracts the contribution of vegetation in achieving this goal. Inside the park, the HCHO concentration increased by up to 4–5 times compared to the outside, and this increase was not caused by vehicle traffic but rather by the photochemical reactions generating HCHO. Regarding the cooling effect on air temperature, the studied green space did not exhibit this effect, as the air temperature inside it increased by up to 1–6 °C compared to the outside. Our results contrast with the general perception that urban parks and green spaces are cooler islands within the cities and draw attention to the fact that having a green space in a city does not necessarily mean achieving environmental goals, such as reducing the heat risk of cities. Based on the results, we consider that the main limitations in achieving these objectives were the park’s small size (88 hectares) and its morphology and architecture resulting from the integration of the species that compose it. It follows from these data that it is not enough for an urban green space to be established, but its design must be combined with urban morphology strategies if the heat mitigation effect is to be achieved and the cooling benefits are to be maximized in cities. Full article
Show Figures

Figure 1

19 pages, 5257 KiB  
Article
Application of Short-Term Measurements to Estimate the Annual Mean Indoor Air Radon-222 Activity Concentration
by Franz Josef Maringer and Marius Blum
Atmosphere 2025, 16(2), 215; https://doi.org/10.3390/atmos16020215 - 14 Feb 2025
Cited by 1 | Viewed by 654
Abstract
A method was developed to estimate the average annual indoor radon activity concentration from three-week short-term measurements using active radon-222 measuring devices, taking into account the relevant influencing parameters (season, temperature difference, temporal air pressure gradient, etc.) during the short-term measurements. A total [...] Read more.
A method was developed to estimate the average annual indoor radon activity concentration from three-week short-term measurements using active radon-222 measuring devices, taking into account the relevant influencing parameters (season, temperature difference, temporal air pressure gradient, etc.) during the short-term measurements. A total of 24 long-term measurements (6 months) and 50 short-term measurements (3 weeks) were carried out in 24 indoor spaces in private houses in four Austrian federal states between October 2022 and July 2023. At the same time as the short-term measurements, ambient parameters (outside and inside temperature, air pressure inside, outside, air humidity inside, outside, wind speed, wind direction, amount of precipitation) were also recorded to investigate their influence on the measured radon-222 activity concentrations. Building and usage data of the indoor spaces examined were also collected. Based on the evaluation of the radon-222 measurements carried out, a first guideline was developed for estimating the annual mean value of the radon-222 activity concentration from short-term measurements lasting around three weeks. The result shows that by applying the developed method, the approximation to the long-term average value can be significantly improved, at least by a factor of 2. This criterion is only valid for the 24 indoor spaces examined in this study. Generalisation requires a test and validation study of the method presented. It is planned to test and validate the developed method in other indoor spaces by means of further measurements and in-depth physical-statistical considerations, and to improve the functional relationships and the approximation to the long-term average value. Full article
Show Figures

Figure 1

26 pages, 3948 KiB  
Article
Coupling Indoor and Outdoor Heat Stress During the Hot Summer of 2022: A Case Study of Freiburg, Germany
by Olga Shevchenko, Markus Sulzer, Andreas Christen and Andreas Matzarakis
Atmosphere 2025, 16(2), 167; https://doi.org/10.3390/atmos16020167 - 1 Feb 2025
Cited by 1 | Viewed by 1255
Abstract
Indoor and outdoor heat stress, which can appear during warm periods of the year, often has a negative impact on health and reduces productivity at work and study. Intense heat waves (HWs) are causing increasing rates of morbidity and mortality. This study aimed [...] Read more.
Indoor and outdoor heat stress, which can appear during warm periods of the year, often has a negative impact on health and reduces productivity at work and study. Intense heat waves (HWs) are causing increasing rates of morbidity and mortality. This study aimed to analyze the coupling and delay of indoor and outdoor heat stress during HW events, using the example of ten workplaces (WPs) situated in different offices and buildings in the medium-sized city of Freiburg, Germany. The relationships between air temperature, humidity, and thermal stress intensity in the WPs were explored during HW periods. It was found that the level of thermal load in the investigated WPs was very different compared to that outdoors (during HWs and the entire summer). The mean physiologically equivalent temperature (PET) for the summer of 2022 inside the investigated offices was 2 °C higher than outside. All classes of thermo-physiological stress were observed outdoors at a meteorological station during the study period. While at eight of the ten workplaces, the most frequent physiological stress was slight heat stress (ranging between 62.4% and 97.4% of the time), the other two WPs were dominated by moderate heat stress (53.7% and 60.6% of the time). The daily amplitudes as well as diurnal courses of air temperature, humidity, and PET during the summer differed significantly at the ten different WPs. It is suggested to use vapor pressure instead of relative humidity to characterize and compare different HWs both outside and inside. It is proposed for future work research to analyze not only room and building characteristics but also the characteristics of the surroundings of the building for a better understanding of the key factors that influence human thermal comfort in different workplaces. A framework of the drivers affecting the coupling of outdoor and indoor heat stress is proposed. Full article
(This article belongs to the Special Issue Indoor Thermal Comfort Research)
Show Figures

Figure 1

27 pages, 5609 KiB  
Article
Thermal Comfort and Sustainability in University Classrooms: A Study in Mediterranean Climate Zones
by Pilar Romero, María Teresa Miranda, Rui Isidoro, José Ignacio Arranz and Víctor Valero-Amaro
Appl. Sci. 2025, 15(2), 694; https://doi.org/10.3390/app15020694 - 12 Jan 2025
Cited by 2 | Viewed by 2018
Abstract
Thermal comfort in educational environments affects not only students’ well-being but also their concentration and academic performance. In the context of climate change, university classrooms in Mediterranean climates face particular challenges due to higher and more variable temperatures. This study evaluates thermal comfort [...] Read more.
Thermal comfort in educational environments affects not only students’ well-being but also their concentration and academic performance. In the context of climate change, university classrooms in Mediterranean climates face particular challenges due to higher and more variable temperatures. This study evaluates thermal comfort in classrooms in southern Portugal, comparing natural ventilation (NV) and air-conditioning (AC) modes. Through environmental measurements and student surveys, thermal perceptions, preferences and factors such as position within the classroom were analysed. The results reveal that NV classrooms offer sustainable benefits, but their effectiveness decreases when outside temperatures exceed 28 °C, increasing thermal discomfort. In contrast, AC classrooms maintain more stable and comfortable conditions, although they have thermal gradients that affect specific zones, such as areas near windows or air vents. This study highlights the need for hybrid strategies that prioritise NV in moderate temperatures and use AC as a support in extreme conditions. Furthermore, it underlines the importance of appropriate architectural design and specific adaptive models for Mediterranean climates, balancing thermal comfort and energy efficiency. Full article
Show Figures

Figure 1

19 pages, 4029 KiB  
Article
Strawberry Plant as a Biomonitor of Trace Metal Air Pollution—A Citizen Science Approach in an Urban-Industrial Area near Lisbon, Portugal
by Carla A. Gamelas, Nuno Canha, Ana R. Justino, Alexandra Nunes, Sandra Nunes, Isabel Dionísio, Zsofia Kertesz and Susana Marta Almeida
Plants 2024, 13(24), 3587; https://doi.org/10.3390/plants13243587 - 23 Dec 2024
Viewed by 1223
Abstract
A biomonitoring study of air pollution was developed in an urban-industrial area (Seixal, Portugal) using leaves of strawberry plants (Fragaria × ananassa Duchesne ex Rozier) as biomonitors to identify the main sources and hotspots of air pollution in the study area. The [...] Read more.
A biomonitoring study of air pollution was developed in an urban-industrial area (Seixal, Portugal) using leaves of strawberry plants (Fragaria × ananassa Duchesne ex Rozier) as biomonitors to identify the main sources and hotspots of air pollution in the study area. The distribution of exposed strawberry plants in the area was based on a citizen science approach, where residents were invited to have the plants exposed outside their homes. Samples were collected from a total of 49 different locations, and their chemical composition was analyzed for 22 chemical elements using X-ray Fluorescence spectrometry. Source apportionment tools, such as enrichment factors and principal component analysis (PCA), were used to identify three different sources, one geogenic and two anthropogenic (steel industry and traffic), besides plant major nutrients. The spatial distribution of elemental concentrations allowed the identification of the main pollution hotspots in the study area. The reliability of using strawberry leaves as biomonitors of air pollution was evaluated by comparing them with the performance of transplanted lichens by regression analysis, and a significant relation was found for Fe, Pb, Ti, and Zn, although with a different accumulation degree for the two biomonitors. Furthermore, by applying PCA to the lichen results, the same pollution sources were identified. Full article
Show Figures

Graphical abstract

19 pages, 4784 KiB  
Article
Manufacture and Analysis of a Textile Sensor Response to Chemical Stimulus Using Printing Techniques and Embroidery for Health Protection
by Ewa Skrzetuska, Paulina Szablewska and Aleksander Patalas
Sustainability 2024, 16(22), 9702; https://doi.org/10.3390/su16229702 - 7 Nov 2024
Cited by 2 | Viewed by 1382
Abstract
The development of the field of textronics covers many directions, but the neediest are safety, medicine, and environmental protection. The solutions developed can combine the needs of many people from different social groups and ages. This leads to sustainable socio-economic, scientific and integrated [...] Read more.
The development of the field of textronics covers many directions, but the neediest are safety, medicine, and environmental protection. The solutions developed can combine the needs of many people from different social groups and ages. This leads to sustainable socio-economic, scientific and integrated approaches to sustainable development. The authors, seeing the growing need to monitor air pollution in order to increase safety, decided to develop textronic chemical sensors based on carbon-based inks and metal thread embroidery, sensitive to harmful gases and vapors based on textiles. This was to limit the production of subsequent sensors made in plastic housings containing difficult-to-recycle materials and replace them with sensors incorporated into everyday materials such as clothing, which will inform us about emerging threats not only in the place where a large plastic sensor is placed, but in every place at home, at work and outside where we will be. The authors assume that the sensors can be incorporated into clothing, e.g. work clothes, and can also be fastened from one piece of clothing to another. This increases their economic aspect and usability on a larger scale. Three materials of different composition were tested: cotton, polyester and viscose. These materials were selected based on their properties, namely the easier determination of their ability to achieve full circularity of the final product.Functional and mechanical tests of resistance to factors occurring during everyday use were carried out for the use of systems in clothing materials and to produce roller blinds and curtains. To examine the durability of the systems, electrical conductivity was checked before and after the tests. The results showed changes in resistance values after individual tests and during contact with harmful gases. Particularly noticeable are the differences between samples with embroidery and samples with inkjet paste applied. It was shown that the selected materials are suitable for the intended application, and selected modifications together with conductive materials show proper functioning in detecting harmful gases. This project demonstrates the possibility of creating chemical sensors based on printing techniques using carbon printing pastes and embroidery with a metal thread with silver on a textile substrate. Possible applications considering health and environmental aspects are presented. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

13 pages, 7413 KiB  
Article
A Study on Enhancing the Visual Fidelity of Aviation Simulators Using WGAN-GP for Remote Sensing Image Color Correction
by Chanho Lee, Hyukjin Kwon, Hanseon Choi, Jonggeun Choi, Ilkyun Lee, Byungkyoo Kim, Jisoo Jang and Dongkyoo Shin
Appl. Sci. 2024, 14(20), 9227; https://doi.org/10.3390/app14209227 - 11 Oct 2024
Cited by 1 | Viewed by 1498
Abstract
When implementing outside-the-window (OTW) visuals in aviation tactical simulators, maintaining terrain image color consistency is critical for enhancing pilot immersion and focus. However, due to various environmental factors, inconsistent image colors in terrain can cause visual confusion and diminish realism. To address these [...] Read more.
When implementing outside-the-window (OTW) visuals in aviation tactical simulators, maintaining terrain image color consistency is critical for enhancing pilot immersion and focus. However, due to various environmental factors, inconsistent image colors in terrain can cause visual confusion and diminish realism. To address these issues, a color correction technique based on a Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) is proposed. The proposed WGAN-GP model utilizes multi-scale feature extraction and Wasserstein distance to effectively measure and adjust the color distribution difference between the input image and the reference image. This approach can preserve the texture and structural characteristics of the image while maintaining color consistency. In particular, by converting Bands 2, 3, and 4 of the BigEarthNet-S2 dataset into RGB images as the reference image and preprocessing the reference image to serve as the input image, it is demonstrated that the proposed WGAN-GP model can handle large-scale remote sensing images containing various lighting conditions and color differences. The experimental results showed that the proposed WGAN-GP model outperformed traditional methods, such as histogram matching and color transfer, and was effective in reflecting the style of the reference image to the target image while maintaining the structural elements of the target image during the training process. Quantitative analysis demonstrated that the mid-stage model achieved a PSNR of 28.93 dB and an SSIM of 0.7116, which significantly outperforms traditional methods. Furthermore, the LPIPS score was reduced to 0.3978, indicating improved perceptual similarity. This approach can contribute to improving the visual elements of the simulator to enhance pilot immersion and has the potential to significantly reduce time and costs compared to the manual methods currently used by the Republic of Korea Air Force. Full article
(This article belongs to the Special Issue Applications of Machine Learning Algorithms in Remote Sensing)
Show Figures

Figure 1

16 pages, 7416 KiB  
Article
Analysis of the Relationship between Upper-Level Aircraft Turbulence and the East Asian Westerly Jet Stream
by Kenan Li, Xi Chen, Liman A, Kaijun Wu, Haiwen Liu, Fengjing Dai, Tiantian Yang, Jia Yu and Kehua Wang
Atmosphere 2024, 15(9), 1138; https://doi.org/10.3390/atmos15091138 - 20 Sep 2024
Cited by 1 | Viewed by 2093
Abstract
The jet stream is a primary factor contributing to turbulence, especially for upper-level aircraft. This study utilized pilot reports and ERA5 data from 2023 to investigate the relationship between upper-level turbulence and the East Asian westerly jet (EAJ). The results indicate that approximately [...] Read more.
The jet stream is a primary factor contributing to turbulence, especially for upper-level aircraft. This study utilized pilot reports and ERA5 data from 2023 to investigate the relationship between upper-level turbulence and the East Asian westerly jet (EAJ). The results indicate that approximately 45.9% of upper-level aircraft turbulence occurs within the jet stream, with the lowest proportion in August and the highest in January. Additionally, the strongest vertical wind shear (VMS) is found concentrated in the lower part of the jet stream core, particularly in the South–Down part of the jet stream, where upper-level aircraft turbulence occurs most frequently (27.1%). The most turbulent area is located between 30–40° N and 110–120° E, with the main air routes experiencing turbulence being the Henan sections of G212 and B208. From a seasonal perspective, there is less frequent occurrence of upper-level aircraft turbulence in summer and autumn but more in winter and spring. The EAJ volume increases with the strengthening of the jet core wind speed, with the jet core regions being most distinct at altitudes of 200~300 hPa. Meanwhile, the jet stream intensity index peaks at 70.6 m/s in January and reaches its lowest value of 7.1 m/s in August. The jet stream axis shifts southward in winter and northward in summer, reaching the southernmost position in December at 32.2° N and the northernmost position in August at 43.5° N. Furthermore, the VMS at turbulence points within the jet stream is higher than that at the turbulence points outside the jet stream, and the Richardson number (RI) is lower. Moreover, the temporal distribution of upper-level aircraft turbulence is primarily determined by the location and intensity of the jet stream, of which the jet stream intensity index provides guidance and thus serves as a reliable indicator. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

20 pages, 16637 KiB  
Article
Assessing Temperature Distribution inside Commercial Stacked Cage Broiler Houses in Winter
by Senzhong Deng, Zonggang Li, Yongxiang Wei, Yang Wang, Baoming Li and Weichao Zheng
Animals 2024, 14(18), 2638; https://doi.org/10.3390/ani14182638 - 11 Sep 2024
Viewed by 1338
Abstract
The temperature inside broiler houses is crucial to broiler health, welfare, and productivity. High stocking density in broiler houses can easily lead to nonuniform temperature conditions, which would cause broilers to suffer cold and heat stress. It is essential to assess the temperature [...] Read more.
The temperature inside broiler houses is crucial to broiler health, welfare, and productivity. High stocking density in broiler houses can easily lead to nonuniform temperature conditions, which would cause broilers to suffer cold and heat stress. It is essential to assess the temperature distribution inside broiler houses and investigate the factors that affect temperature uniformity. Therefore, in this study, temperature, wind velocity, and differential pressure were monitored in the aisle, at the sidewall inlet, and outside the sidewalls of a commercial stacked-deck cage broiler house in Northeast China aiming to continuously monitor the temperature throughout the entire fattening period. Results show that the maximum temperature difference increased from 1.85 °C to 6.43 °C, while the daily fluctuation increased from 2.27 °C to 5.80 °C. The highest temperature was consistently recorded at the side of the exhaust fans (p < 0.001) in the longitudinal direction. In the lateral direction, the temperature difference varies periodically with solar radiation. The average temperature at the southern location (23.58 ± 1.97 °C), which faces the sun, was higher than that at the northern location (23.35 ± 1.38 °C), which is in the shade, during periods of solar radiation (p < 0.001) at the last testing period. However, without solar radiation, the northern location recorded a warmer temperature (23.19 ± 1.41 °C) compared to the southern location (22.30 ± 1.67 °C) (p < 0.001). The lateral temperature differences are strongly positively correlated with solar radiation and wind speed (p < 0.001). In conclusion, the inside temperature nonuniformity and fluctuation increased as the broiler age increased, which affected the production performance of broilers. Nonuniform solar radiation and wind speed can lead to differences in the inlet temperature and air volume between both sidewalls, thereby affecting the uniformity of the lateral temperature inside the house. Full article
Show Figures

Figure 1

27 pages, 5661 KiB  
Article
Effects on the Indoor Environment in a Stable for Horses in Winter: A Case Study
by Pavel Kic, Marie Wohlmuthová and Lucie Starostová
Agriculture 2024, 14(8), 1287; https://doi.org/10.3390/agriculture14081287 - 4 Aug 2024
Cited by 2 | Viewed by 2455
Abstract
The aim of this article is to show the most significant factors influencing the indoor environment in winter considering the operating conditions of an older stable modified for housing 12 horses and an indoor riding arena for teaching and sports purposes. This research [...] Read more.
The aim of this article is to show the most significant factors influencing the indoor environment in winter considering the operating conditions of an older stable modified for housing 12 horses and an indoor riding arena for teaching and sports purposes. This research focused on assessing the influences affecting the internal environment from the point of view of the construction of the building and ventilation control in the operating conditions of working and non-working days. The analysis of the results showed that the massive masonry structure has sufficient thermal insulation and accumulation, which was manifested by good temperature stability inside the stable of 7.2 ± 1.7 °C when the outside air temperature was −4.80 ± 1.5 °C. At low outdoor air temperatures of −6.44 ± 0.4 °C, the following conditions were found: a higher relative air humidity (76.0 ± 5.3%), a high CO2 concentration 2317.1 ± 931.7 ppm, and a high airborne dust concentration PM10 = 231.94 ± 19.13 μg·m−3 and PM2.5 = 160.13 ± 6.28 μg·m−3. Therefore, it is necessary to improve the solution and function of the stable ventilation. The small size of the windows and their uneven distribution (average daylight factor ei from 0.313 ± 0.154 to 0.835 ± 0.309) caused insufficient daylight in some individual boxes. Full article
Show Figures

Figure 1

15 pages, 883 KiB  
Article
Chemical Composition of PM10 in a Classroom near the Copper Smelter in Bor, Serbia
by Bojan Radović, Viša Tasić, Renata Kovačević, Tatjana Apostolovski-Trujić, Dragan Manojlović, Mira Cocić and Tamara Urošević
Atmosphere 2024, 15(8), 920; https://doi.org/10.3390/atmos15080920 - 31 Jul 2024
Cited by 2 | Viewed by 1624
Abstract
An analysis was conducted on the influence of advancements in smelting technology at the copper smelter in Bor, Serbia, and seasonal changes on the level and chemical composition of PM10 inside and outside a classroom at the Technical Faculty in Bor in [...] Read more.
An analysis was conducted on the influence of advancements in smelting technology at the copper smelter in Bor, Serbia, and seasonal changes on the level and chemical composition of PM10 inside and outside a classroom at the Technical Faculty in Bor in 2015 and 2019. The results of chemical analyses revealed that the average level of arsenic in PM10 within the classroom reached 11.9 ng/m3, nearly double the annual target value. In comparison, the average level of arsenic (As) in PM10 in ambient air stood at 15 ng/m3. A notable enrichment factor was observed for elements present in copper concentrates (Se > Ag > Bi > Pb > Cd > As > Sb > S > Cu > Sn > Zn) in both the classroom and outdoor air, underscoring their predominantly anthropogenic origin. Higher concentrations of As in PM10 were recorded during the non-heating season and the operation of the copper smelter with outdated smelting technology (2015). These findings hold significant implications for health protection for all citizens in the investigated area surrounding the Technical Faculty in Bor. The study highlights the need for additional measures to reduce As content in PM10 in ambient air and prevent the infiltration of suspended particles from outdoor air into classrooms. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

26 pages, 12365 KiB  
Article
Improving the Fuel Economy and Energy Efficiency of Train Cab Climate Systems, Considering Air Recirculation Modes
by Ivan Panfilov, Alexey N. Beskopylny and Besarion Meskhi
Energies 2024, 17(9), 2224; https://doi.org/10.3390/en17092224 - 5 May 2024
Cited by 3 | Viewed by 1945
Abstract
Current developments in vehicles have generated great interest in the research and optimization of heating, ventilation, and air conditioning (HVAC) systems as a factor to reduce fuel consumption. One of the key trends for finding solutions is the intensive development of electric transport [...] Read more.
Current developments in vehicles have generated great interest in the research and optimization of heating, ventilation, and air conditioning (HVAC) systems as a factor to reduce fuel consumption. One of the key trends for finding solutions is the intensive development of electric transport and, consequently, additional requirements for reducing energy consumption and modifying climate systems. Of particular interest is the optimal functioning of comfort and life support systems during air recirculation, i.e., when there is a complete or partial absence of outside air supply, in particular to reduce energy consumption or when the environment is polluted. This work examines numerical models of airfields (temperature, speed, and humidity) and also focuses on the concentration of carbon dioxide and oxygen in the cabin, which is a critical factor for ensuring the health of the driver and passengers. To build a mathematical model, the Navier–Stokes equations with energy, continuity, and diffusion equations are used to simulate the diffusion of gases and air humidity. In the Ansys Fluent finite volume analysis package, the model is solved numerically using averaged RANS equations and k-ω turbulence models. The cabin of a mainline locomotive with two drivers, taking into account their breathing, is used as a transport model. The problem was solved in a nonstationary formulation for the design scenario of summer and winter, the time of stabilization of the fields was found, and graphs were constructed for different points in time. A comparative analysis of the uniformity of fields along the height of the cabin was carried out with different locations of deflectors, and optimal configurations were found. Energy efficiency values of the climate system operation in recirculation operating modes were obtained. A qualitative assessment of the driver’s blowing directions under different circulation and recirculation modes is given from the point of view of the concentration of carbon dioxide in the breathing area. The proposed solution makes it possible to reduce electricity consumption from 3.1 kW to 0.6 kW and in winter mode from 11.6 kW to 3.9 kW and save up to 1.5 L/h of fuel. The conducted research can be used to develop modern energy-efficient and safe systems for providing comfortable climate conditions for drivers and passengers of various types of transport. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 12024 KiB  
Article
Numerical Study on Prediction of Icing Phenomena in Fresh Air and Blow-by Gas Mixing Region of Diesel Engine under High Velocity of Intake Air Condition
by Wonjun Yoon, Jeong-Won Lee and Jungsoo Park
Energies 2024, 17(7), 1707; https://doi.org/10.3390/en17071707 - 3 Apr 2024
Cited by 1 | Viewed by 1171
Abstract
The icing of an intake pipe that might happen in an actual vehicle was numerically predicted in this study. For various operating conditions, the amount of icing was estimated, and the variables influencing the amount of icing were identified. We compared the factors [...] Read more.
The icing of an intake pipe that might happen in an actual vehicle was numerically predicted in this study. For various operating conditions, the amount of icing was estimated, and the variables influencing the amount of icing were identified. We compared the factors that affected icing: relative humidity, air temperature, and inlet velocity. Seven RPM and load conditions, an intake temperature range of 253–268 K, and a relative humidity range of 65–85% were used for the case studies. To verify the model accuracy, wind tunnel test results from chassis dynometer tests were compared to the data from simulations. The flow analysis was performed using the numerical analytical tool ANSYS Fluent (2019 R1), while the amount of condensed water and icing was predicted using FENSAP-ICE, a program that analyzes and predicts icing phenomena under mechanical systems. The ambient temperature, relative humidity, and inlet air velocity had the biggest effects on the icing rate. The total amount of icing increased for similar BB and input air velocities. When the input air and BB velocities are the same, the variables influencing icing are the ambient temperature and relative humidity. The amount of ice was less affected by outside temperature and relative humidity when the rpm was high, and the inlet air velocity also had an impact. Full article
(This article belongs to the Special Issue Vehicle Engines and Powertrains: Performance, Combustion and Emission)
Show Figures

Figure 1

Back to TopTop