Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (923)

Search Parameters:
Keywords = osmotic stress response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 (registering DOI) - 2 Aug 2025
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 1141 KiB  
Article
Coordinated Roles of Osmotic Adjustment, Antioxidant Defense, and Ion Homeostasis in the Salt Tolerance of Mulberry (Morus alba L. ‘Tailai Sang’) Seedlings
by Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Yu Shaopeng
Forests 2025, 16(8), 1258; https://doi.org/10.3390/f16081258 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old [...] Read more.
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old mulberry (‘Tailai Sang’) seedlings subjected to six NaCl treatments (0, 50, 100, 150, 200, and 300 mmol L−1) for 28 days. Results showed that growth parameters and photosynthetic gas exchange exhibited dose-dependent declines. The reduction in net photosynthetic rate (Pn) was attributed to both stomatal limitations (decreased stomatal conductance) and non-stomatal limitations, as evidenced by a significant decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) under high salinity. To cope with osmotic stress, seedlings accumulated compatible solutes, including soluble sugars, proteins, and proline. Critically, mulberry seedlings demonstrated effective ion homeostasis by sequestering Na+ in the roots to maintain a high K+/Na+ ratio in leaves, a mechanism that was compromised above 150 mmol L−1. Concurrently, indicators of oxidative stress—malondialdehyde (MDA) and H2O2—rose significantly with salinity, inducing the activities of antioxidant enzymes (SOD, CAT, APX, and GR), which peaked at 150 mmol L−1 before declining under extreme stress. A biomass-based LC50 of 179 mmol L−1 NaCl was determined. These findings elucidate that mulberry salt tolerance is a coordinated process involving three key mechanisms: osmotic adjustment, selective ion distribution, and a robust antioxidant defense system. This study establishes an indicative tolerance threshold under controlled conditions and provides a physiological basis for further field-based evaluations of ‘Tailai Sang’ mulberry for cultivation on saline soils. Full article
Show Figures

Figure 1

16 pages, 591 KiB  
Review
Research Progress on Responses and Regulatory Mechanisms of Plants Under High Temperature
by Jinling Wang, Yaling Wang, Hetian Jin, Yingzi Yu, Kai Mu and Yongxiang Kang
Curr. Issues Mol. Biol. 2025, 47(8), 601; https://doi.org/10.3390/cimb47080601 (registering DOI) - 1 Aug 2025
Abstract
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature [...] Read more.
Global warming has resulted in an increase in the frequency of extreme high-temperature events. High temperatures can increase cell membrane permeability, elevate levels of osmotic adjustment substances, reduce photosynthetic capacity, impair plant growth and development, and even result in plant death. Under high-temperature stress, plants mitigate damage through physiological and biochemical adjustments, heat signal transduction, the regulation of transcription factors, and the synthesis of heat shock proteins. However, different plants exhibit varying regulatory abilities and temperature tolerances. Investigating the heat-resistance and regulatory mechanisms of plants can facilitate the development of heat-resistant varieties for plant genetic breeding and landscaping applications. This paper presents a systematic review of plant physiological and biochemical responses, regulatory substances, signal transduction pathways, molecular mechanisms—including the regulation of heat shock transcription factors and heat shock proteins—and the role of plant hormones under high-temperature stress. The study constructed a molecular regulatory network encompassing Ca2+ signaling, plant hormone pathways, and heat shock transcription factors, and it systematically elucidated the mechanisms underlying the enhancement of plant thermotolerance, thereby providing a scientific foundation for the development of heat-resistant plant varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 (registering DOI) - 1 Aug 2025
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

12 pages, 1888 KiB  
Article
Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions
by Mona Ghazalová, Pavlína Modlitbová, Ota Samek, Katarína Rebrošová, Martin Šiler, Jan Ježek and Zdeněk Pilát
Sensors 2025, 25(15), 4629; https://doi.org/10.3390/s25154629 - 26 Jul 2025
Viewed by 306
Abstract
This pilot study investigated the metabolic responses of five selected bacteria to physiological stress. Surface-enhanced Raman spectroscopy was used to analyze spectral changes associated with the release of adenine, a key metabolite indicative of stress conditions. Laboratory-synthesized spherical silver and gold nanoparticles, which [...] Read more.
This pilot study investigated the metabolic responses of five selected bacteria to physiological stress. Surface-enhanced Raman spectroscopy was used to analyze spectral changes associated with the release of adenine, a key metabolite indicative of stress conditions. Laboratory-synthesized spherical silver and gold nanoparticles, which remained stable over an extended period, were employed as enhanced surfaces. Bacterial cultures were analyzed under standard conditions and in the presence of a selected stressor—demineralized water—inducing osmotic stress. The results showed that the adenine signal originated from metabolites released into the surrounding environment rather than directly from the bacterial cell wall. The study confirms the suitability of these cost-effective and easily synthesized stable nanoparticles for the qualitative detection of bacterial metabolites using a commercially available Raman instrument. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 242
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

20 pages, 2847 KiB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 276
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

21 pages, 3038 KiB  
Article
Glycerol Biosynthesis Pathways from Starch Endow Dunaliella salina with the Adaptability to Osmotic and Oxidative Effects Caused by Salinity
by Huiying Yao, Yi Xu, Huahao Yang, Yihan Guo, Pengrui Jiao, Dongyou Xiang, Hui Xu and Yi Cao
Int. J. Mol. Sci. 2025, 26(14), 7019; https://doi.org/10.3390/ijms26147019 - 21 Jul 2025
Viewed by 291
Abstract
Dunaliella salina, a unicellular and eukaryotic alga, has been found to be one of the most salt-tolerant eukaryotes with a wide range of practical applications. To elucidate the underlying molecular mechanisms of D. salina in response to salinity stress, we performed transcriptome [...] Read more.
Dunaliella salina, a unicellular and eukaryotic alga, has been found to be one of the most salt-tolerant eukaryotes with a wide range of practical applications. To elucidate the underlying molecular mechanisms of D. salina in response to salinity stress, we performed transcriptome sequencing on samples under different stress conditions. A total of 82,333 unigenes were generated, 4720, 1111 and 2611 differentially expressed genes (DEGs) were identified under high salt stress, oxidative stress and hypertonic stress, respectively. Our analysis revealed that D. salina responds to salinity stress through a complex network of molecular mechanisms. Under high salt stress, starch degradation is regulated by AMY (α-amylase) and PYG (glycogen phosphorylase) with alternative expression patterns. This process is hypothesized to be initially constrained by low ATP levels due to impaired photosynthesis. The clustering analysis of DEGs indicated that starch and sucrose metabolism, as well as glycerol metabolism, are specifically reprogrammed under high salt stress. Glycerol metabolism, particularly involving GPDHs, plays a crucial role in maintaining osmotic balance under salinity stress. Key glycerol metabolism genes were up-regulated under salinity conditions, indicating the importance of this pathway in osmotic regulation. The G3P shuttle, involving mitochondrial GPDHs (c25199_g1 and c23777_g1), contributes to redox imbalance management under high salt, oxidative and hypertonic stresses. Notably, c23777_g1 is involved in the G3P shuttle under high salt, oxidative and hypertonic stresses, while c25199_g1 is specifically induced by hypertonic stress. The R2R3-MYB gene (c23845_g1) may respond to different effects of salinity stress by regulating the transcription of ROS-related genes. Our study provides a detailed understanding of the molecular responses of D. salina to salinity stress. We reveal the critical roles of starch and sucrose metabolism, glycerol metabolism and transcription factors in the D. salina adaptation to salinity. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 3rd Edition)
Show Figures

Figure 1

23 pages, 4385 KiB  
Article
Melatonin Enhances Tomato Salt Tolerance by Improving Water Use Efficiency, Photosynthesis, and Redox Homeostasis
by Chen Ru, Yuxuan Liu, Xingjiao Yu, Chuanliu Xie and Xiaotao Hu
Agronomy 2025, 15(7), 1746; https://doi.org/10.3390/agronomy15071746 - 20 Jul 2025
Viewed by 258
Abstract
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance [...] Read more.
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance by integrating physiological processes remain unclear. This study investigated the effects of varying MT concentrations on photosynthetic performance, plant water relations, water-use efficiency, and stress-responsive physiological parameters in tomatoes, aiming to identify the key physiological pathways for MT-mediated salt stress mitigation. The results showed that salt stress significantly reduced the leaf relative water content and root hydraulic conductivity, suppressed the photosynthetic rate, and ultimately caused significant reductions in the aboveground and root biomass. MT spraying effectively improved leaf water status and root water uptake capacity, enhancing the photosynthetic rate and water-use efficiency, thereby providing material and energy support for plant growth. Furthermore, MT spraying increased the total antioxidant capacity in leaves and promoted the synthesis of phenolic and flavonoid compounds, thereby reducing oxidative damage. Simultaneously, it stimulated the accumulation of osmolytes to enhance cellular osmotic adjustment capacity and optimized ion uptake to maintain cellular ion homeostasis. Among the tested concentrations, 100 μM MT showed the most significant alleviative effects. This concentration comprehensively enhanced the salt tolerance and growth performance of tomato plants by synergistically optimizing water use, photosynthetic function, antioxidant defense, and ion balance. In conclusion, these findings provide experimental evidence for elucidating the physiological mechanisms underlying MT-mediated salt tolerance in tomatoes and offer theoretical references for the rational application of MT in crop production under saline conditions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

33 pages, 1864 KiB  
Review
The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review
by Mohamed K. Abou El-Nasr, Karim M. Hassan, Basma T. Abd-Elhalim, Dmitry E. Kucher, Nazih Y. Rebouh, Assiya Ansabayeva, Mostafa Abdelkader, Mahmoud A. A. Ali and Mohamed A. Nasser
Plants 2025, 14(14), 2192; https://doi.org/10.3390/plants14142192 - 15 Jul 2025
Viewed by 447
Abstract
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering [...] Read more.
The primary worldwide variables limiting plant development and agricultural output are the ever-present threat that environmental stressors such as salt (may trigger osmotic stress plus ions toxicity, which impact on growth and yield of the plants), drought (provokes water stress, resulting in lowering photosynthesis process and growth rate), heavy metals (induced toxicity, hindering physiological processes also lowering crop quantity and quality), and pathogens (induce diseases that may significantly affect plant health beside productivity). This review explores the integrated effects of these stressors on plant productivity and growth rate, emphasizing how each stressor exceptionally plays a role in physiological responses. Owing to developments in technology that outclass traditional breeding methods and genetic engineering techniques, powerful alleviation strategies are vital. New findings have demonstrated the remarkable role of nanoparticles in regulating responses to these environmental stressors. In this review, we summarize the roles and various applications of nanomaterials in regulating abiotic and biotic stress responses. This review discusses and explores the relationship between various types of nanoparticles (metal, carbon-based, and biogenic) and their impact on plant physiology. Furthermore, we assess how nanoparticle technology may play a role in practices of sustainable agriculture by reducing the amount of compounds used, providing them with a larger surface area, highly efficient mass transfer abilities, and controlled, targeted delivery of lower nutrient or pesticide amounts. A review of data from several published studies leads to the conclusion that nanoparticles may act as a synergistic effect, which can effectively increase plant stress tolerance and their nutritional role. Full article
Show Figures

Figure 1

18 pages, 4538 KiB  
Article
Effects of Drought Stress on the Growth and Physiological Characteristics of Idesia polycarpa Maxim
by Xiaoyu Lu, Yian Yin, Maolin Yang, Shucheng Zhang, Zhangtai Niu, Lingli Wu and Chan Chen
Horticulturae 2025, 11(7), 834; https://doi.org/10.3390/horticulturae11070834 - 15 Jul 2025
Viewed by 233
Abstract
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water [...] Read more.
Idesia polycarpa is a valuable woody oil plant with potential for horticultural and industrial applications. However, limited information is available regarding its drought tolerance during the seedling stage. In this study, one-year-old seedlings were subjected to five treatments based on soil relative water content (RWC): moderate drought (T1, 40 ± 5%), severe drought (T2, 20 ± 5%), control (CK, 70 ± 5%), and rewatering following moderate (T3) and severe drought stress (T4), with RWC restored to 70 ± 5%. Under drought stress, seedlings exhibited adaptive responses including reduced growth, enhanced antioxidant enzyme activity, osmotic regulation, and changes in endogenous hormone levels. Seedlings showed good tolerance and recovery under moderate drought, but severe drought caused substantial damage and limited post-rewatering recovery. Pearson correlation and principal component analyses revealed that betaine, APX, SA, IAA, ABA, chlorophyll (a + b) content, and crown growth were strongly associated with drought response and could serve as key indicators for drought resistance assessment in I. polycarpa. These findings provide insights into the physiological mechanisms of drought adaptation and support the development of a reliable evaluation system for drought tolerance in this promising species. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

36 pages, 6380 KiB  
Article
Metabolic Responses of Amaranthus caudatus Roots and Leaves to Zinc Stress
by Natalia Osmolovskaya, Tatiana Bilova, Anastasia Gurina, Anastasia Orlova, Viet D. Vu, Stanislav Sukhikh, Tatiana Zhilkina, Nadezhda Frolova, Elena Tarakhovskaya, Anastasia Kamionskaya and Andrej Frolov
Plants 2025, 14(14), 2119; https://doi.org/10.3390/plants14142119 - 9 Jul 2025
Viewed by 450
Abstract
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry [...] Read more.
In recent decades, heavy metal pollution has become a significant environmental stress factor. Plants are characterized by high biochemical plasticity and can adjust their metabolism to ensure survival under a changing environment. Here we report, to our knowledge, the first gas chromatography-mass spectrometry (GC-MS)-based metabolomics study of Zn-induced stress responses in Amaranthus caudatus plants. The study was performed with root and leaf aqueous methanolic extracts after their lyophilization and sequential derivatization with methoxylamine hydrochloride and N-methyl-N-(trimethylsilyl)trifluoroacetamide. In total, 419 derivatives were detected in the samples, and 144 of them could be putatively annotated. The metabolic shifts in seven-week-old A. caudatus plants in response to a seven-day treatment with 300 µmol/L ZnSO4·7H2O in nutrient solution were organ-specific and more pronounced in roots. Most of the responsive metabolites were up-regulated and dominated by sugars and sugar acids. The revealed effects could be attributed to the involvement of these metabolites in osmotic regulation, antioxidant protection and Zn2+ complexation. A 59-fold up-regulation of gluconic acid in roots distinctly indicated enhanced glucose oxidation due to oxidative stress upon the Zn treatment. Gluconic acid might be further employed in Zn2+ complexation. Pronounced Zn-induced up-regulation of salicylic acid in roots and shoots suggested a key role of this hormone in stress signaling and activation of Zn stress tolerance mechanisms. Overall, our study provides the first insight into the general trends of Zn-induced biochemical rearrangements and main adaptive metabolic shifts in A. caudatus. Full article
Show Figures

Figure 1

17 pages, 5798 KiB  
Article
Microbial Allies from the Cold: Antarctic Fungal Endophytes Improve Maize Performance in Water-Limited Fields
by Yessica San Miguel, Rómulo Santelices-Moya, Antonio M. Cabrera-Ariza and Patricio Ramos
Plants 2025, 14(14), 2118; https://doi.org/10.3390/plants14142118 - 9 Jul 2025
Viewed by 363
Abstract
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field [...] Read more.
Climate change has intensified drought stress, threatening global food security by affecting sensitive crops like maize (Zea mays). This study evaluated the potential of Antarctic fungal endophytes (Penicillium chrysogenum and P. brevicompactum) to enhance maize drought tolerance under field conditions with different irrigation regimes. Drought stress reduced soil moisture to 59% of field capacity. UAV-based multispectral imagery monitored plant physiological status using vegetation indices (NDVI, NDRE, SIPI, GNDVI). Inoculated plants showed up to two-fold higher index values under drought, indicating improved stress resilience. Physiological analysis revealed increased photochemical efficiency (0.775), higher chlorophyll and carotenoid contents (45.54 mg/mL), and nearly 80% lower lipid peroxidation in inoculated plants. Lower proline accumulation suggested better water status and reduced osmotic stress. Secondary metabolites such as phenolics, flavonoids, and anthocyanins were elevated, particularly under well-watered conditions. Antioxidant enzyme activity shifted: SOD, CAT, and APX were suppressed, while POD activity increased, indicating reprogrammed oxidative stress responses. Yield components, including cob weight and length, improved significantly with inoculation under drought. These findings demonstrate the potential of Antarctic endophytes to enhance drought resilience in maize and underscore the value of integrating microbial biotechnology with UAV-based remote sensing for sustainable crop management under climate-induced water scarcity. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

18 pages, 1462 KiB  
Article
Hydrogen Peroxide and Vitexin in the Signaling and Defense Responses of Passiflora incarnata Under Drought Stress
by Felipe G. Campos, Gustavo R. Barzotto, Isabela Melo-Figueiredo, Jonas A. V. Pagassini and Carmen S. F. Boaro
Plants 2025, 14(13), 2078; https://doi.org/10.3390/plants14132078 - 7 Jul 2025
Viewed by 336
Abstract
Hydrogen peroxide (H2O2) functions as a signaling molecule that triggers physiological and biochemical adjustments that help plants cope with environmental stress. This study evaluated the effects of foliar application of 1.5 mM H2O2 on the physiological [...] Read more.
Hydrogen peroxide (H2O2) functions as a signaling molecule that triggers physiological and biochemical adjustments that help plants cope with environmental stress. This study evaluated the effects of foliar application of 1.5 mM H2O2 on the physiological and biochemical responses of Passiflora incarnata subjected to 14 days of drought stress followed by 5 days of rehydration. Drought reduced Fv/Fm and photochemical efficiency, as well as stomatal conductance and transpiration rates. H2O2 treatment under drought further reduced stomatal conductance and transpiration, suggesting enhanced water conservation. Drought-stressed plants treated with H2O2 exhibited increased concentrations of glucose, fructose, and mannose along with reduced sucrose levels, indicating osmotic adjustment and energy mobilization. Enzymatic antioxidant activity, particularly that of superoxide dismutase and catalase, increased with H2O2 treatment, while peroxidase activity remained low. The content of vitexin, arabinose, and trehalose decreased under drought, likely due to their roles in membrane protection, as MDA levels remained stable. After rehydration, Fv/Fm and ΦPSII recovered, and H2O2-treated plants showed higher carbon assimilation and carboxylation efficiency. These results indicate that H2O2 promotes drought acclimation and enhances post-stress recovery in P. incarnata. We conclude that H2O2 induces signaling pathways, with trehalose, arabinose, and vitexin contributing to the regeneration of the photochemical apparatus, as well as defense and acclimation under drought conditions. Full article
Show Figures

Figure 1

27 pages, 3961 KiB  
Article
Floridoside Phosphotriester Derivatives: Synthesis and Inhibition of Human Neutrophils’ Oxidative Burst
by Luís Pinheiro, Catarina Cipriano, Filipe Santos, Patrícia Máximo, Eduarda Fernandes, Marisa Freitas and Paula S. Branco
Molecules 2025, 30(13), 2850; https://doi.org/10.3390/molecules30132850 - 3 Jul 2025
Viewed by 461
Abstract
Floridoside (2-O-D-glycerol-α-D-galactopyranoside) is a natural product typically found in red algae. It serves as the algae’s carbon reserve and is produced as a protective response against osmotic and heat stress. Both floridoside and its acylated derivatives have been associated [...] Read more.
Floridoside (2-O-D-glycerol-α-D-galactopyranoside) is a natural product typically found in red algae. It serves as the algae’s carbon reserve and is produced as a protective response against osmotic and heat stress. Both floridoside and its acylated derivatives have been associated with modulating redox homeostasis and inflammatory responses. Therefore, we aimed to evaluate whether the newly synthesized floridoside phosphotriesters (1b1d, 1f1h) and acylated floridoside derivative (1e) can modulate the oxidative burst in stimulated human neutrophils. Synthetic strategies included the glycosylation of the thioglycoside donor with glycerol derivatives, having NIS/TfOH as the promoter. Phosphorylation was achieved with POCl3 in the presence of pyridine. The compounds were analysed for their cytotoxicity, with 1b and 1h being cytotoxic at 50 μM, while the others showed no cytotoxicity in the tested concentrations. The detection of the neutrophils’ oxidative burst was performed using multiple probes [luminol, aminophenyl fluorescein (APF), and Amplex Red (AR)] to evaluate reactive species levels. Compound 1e prevented the oxidative burst in activated human neutrophils (IC50 = 83 ± 7 μM). All the other tested compounds were ineffective in inhibiting APF and AR oxidation under the present experimental conditions. These findings highlight the potential of floridoside-based derivatives as candidates for targeting inflammatory pathways. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

Back to TopTop