Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (589)

Search Parameters:
Keywords = oscillation monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3505 KiB  
Article
The Influence of Operating Pressure Oscillations on the Machined Surface Topography in Abrasive Water Jet Machining
by Dejan Ž. Veljković, Jelena Baralić, Predrag Janković, Nedeljko Dučić, Borislav Savković and Aleksandar Jovičić
Materials 2025, 18(15), 3570; https://doi.org/10.3390/ma18153570 - 30 Jul 2025
Viewed by 35
Abstract
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in [...] Read more.
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in the operating pressure values are periodic, namely due to the cyclic operation of the intensifier and the physical characteristics of water. One of the most common means of reducing this phenomenon is installing an attenuator in the hydraulic system or a phased intensifier system. The main hypothesis of this study was that the topography of a machined surface is directly influenced by the inability of the pressure accumulator to fully absorb water pressure oscillations. In this study, we monitored changes in hydraulic oil pressure values at the intensifier entrance and their connection with irregularities on the machined surface—such as waviness—when cutting aluminum AlMg3 of different thicknesses. Experimental research was conducted in order to establish this connection. Aluminum AlMg3 of different thicknesses—from 6 mm to 12 mm—was cut with different traverse speeds while hydraulic oil pressure values were monitored. The pressure signals thus obtained were analyzed by applying the fast Fourier transform (FFT) algorithm. We identified a single-sided pressure signal amplitude spectrum. The frequency axis can be transformed by multiplying inverse frequency data with traverse speed; in this way, a single-sided amplitude spectrum can be obtained, examined against the period in which striations are expected to appear (in millimeters). In the lower zone of the analyzed samples, striations are observed at intervals determined by the dominant hydraulic oil pressure harmonics, which are transferred to the operating pressure. In other words, we demonstrate how the machined surface topography is directly induced by water jet pressure frequency characteristics. Full article
(This article belongs to the Special Issue High-Pressure Water Jet Machining in Materials Engineering)
Show Figures

Figure 1

24 pages, 17460 KiB  
Article
Improved Pacific Decadal Oscillation Prediction by an Optimizing Model Combined Bidirectional Long Short-Term Memory and Multiple Modal Decomposition
by Hang Yu, Junbo Lei, Pengfei Lin, Tao Zhang, Hailong Liu, Huilin Lai, Lindong Lai, Bowen Zhao and Bo Wu
Remote Sens. 2025, 17(15), 2537; https://doi.org/10.3390/rs17152537 - 22 Jul 2025
Viewed by 294
Abstract
The Pacific Decadal Oscillation (PDO), as the dominant mode of decadal sea surface temperature variability in the North Pacific, exhibits both interannual and decadal fluctuations that significantly influence global climate. The complexity associated with PDO changes poses challenges for accurate predictions. This study [...] Read more.
The Pacific Decadal Oscillation (PDO), as the dominant mode of decadal sea surface temperature variability in the North Pacific, exhibits both interannual and decadal fluctuations that significantly influence global climate. The complexity associated with PDO changes poses challenges for accurate predictions. This study develops a BiLSTM-WOA-MMD (BWM) model, which integrates a bidirectional long short-term memory network with a whale optimization algorithm (WOA) and multiple modal decomposition (MMD), to forecast PDO at both interannual and decadal time scales. The model successfully predicts monthly/annual average PDO index of up to 15 months/5 years in advance, achieving a correlation coefficient of 0.56/0.55. By utilizing the WOA to effectively optimize hyperparameters, the model enhances the PDO prediction skill compared to existing deep learning PDO prediction models, improving the correlation coefficient from 0.47 to 0.68 at a 6-month lead time. The combination of MMD and WOA further minimizes prediction errors and extends the forecasting effective time to 15 months by capturing essential modes. The BWM model can be employed for future PDO prediction and the predicted PDO will remain in its cool phase in the next year both using the PDO index from NECI and derived from near-time satellite data. This proposed model offers an effective way to advance the prediction skill of climate variability on multiple time scales by utilizing all kinds of data available including satellite data, and provides a large-scale background to monitor marine heatwaves. Full article
Show Figures

Figure 1

18 pages, 2062 KiB  
Article
Measuring Blink-Related Brainwaves Using Low-Density Electroencephalography with Textile Electrodes for Real-World Applications
by Emily Acampora, Sujoy Ghosh Hajra and Careesa Chang Liu
Sensors 2025, 25(14), 4486; https://doi.org/10.3390/s25144486 - 18 Jul 2025
Viewed by 328
Abstract
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after [...] Read more.
Background: Electroencephalography (EEG) systems based on textile electrodes are increasingly being developed to address the need for more wearable sensor systems for brain function monitoring. Blink-related oscillations (BROs) are a new measure of brain function that corresponds to brainwave responses occurring after spontaneous blinking, and indexes neural processes as the brain evaluates new visual information appearing after eye re-opening. Prior studies have reported BRO utility as both a clinical and non-clinical biomarker of cognition, but no study has demonstrated BRO measurement using textile-based EEG devices that facilitate user comfort for real-world applications. Methods: We investigated BRO measurement using a four-channel EEG system with textile electrodes by extracting BRO responses using existing, publicly available EEG data (n = 9). We compared BRO effects derived from textile-based electrodes with those from standard dry Ag/Ag-Cl electrodes collected at the same locations (i.e., Fp1, Fp2, F7, F8) and using the same EEG amplifier. Results: Results showed that BRO effects measured using textile electrodes exhibited similar features in both time and frequency domains compared to dry Ag/Ag-Cl electrodes. Data from both technologies also showed similar performance in artifact removal and signal capture. Conclusions: These findings provide the first demonstration of successful BRO signal capture using four-channel EEG with textile electrodes, providing compelling evidence toward the development of a comfortable and user-friendly EEG technology that uses the simple activity of blinking for objective brain function assessment in a variety of settings. Full article
Show Figures

Figure 1

15 pages, 751 KiB  
Article
Kinesiological Analysis Using Inertial Sensor Systems: Methodological Framework and Clinical Applications in Pathological Gait
by Danelina Emilova Vacheva and Atanas Kostadinov Drumev
Sensors 2025, 25(14), 4435; https://doi.org/10.3390/s25144435 - 16 Jul 2025
Viewed by 238
Abstract
Accurate gait assessment is essential for managing pathological locomotion, especially in elderly patients recovering from hip joint surgeries. Inertial measurement units (IMUs) provide real-time, objective data in clinical settings. This study examined pelvic oscillations in sagittal, frontal, and transverse planes using a wearable [...] Read more.
Accurate gait assessment is essential for managing pathological locomotion, especially in elderly patients recovering from hip joint surgeries. Inertial measurement units (IMUs) provide real-time, objective data in clinical settings. This study examined pelvic oscillations in sagittal, frontal, and transverse planes using a wearable IMU system in two groups: Group A (n = 15, osteosynthesis metallica) and Group B (n = 34, arthroplasty), all over age 65. Gait analysis was conducted during assisted and unassisted walking. In the frontal plane, both groups showed statistically significant improvements: Group A from 46.4% to 75.2% (p = 0.001) and Group B from 52.6% to 72.2% (p = 0.001), reflecting enhanced lateral stability. In the transverse plane, Group A improved significantly from 47.7% to 80.2% (p = 0.001), while Group B showed a non-significant increase from 73.0% to 80.5% (p = 0.068). Sagittal plane changes were not statistically significant (Group A: 68.8% to 71.1%, p = 0.313; Group B: 76.4% to 69.1%, p = 0.065). These improvements correspond to better pelvic symmetry and postural control, which are critical for a safe and stable gait. Improvements were more pronounced during unassisted walking, indicating better pelvic control. These results confirm the clinical utility of IMUs in capturing subtle gait asymmetries and monitoring recovery progress. The findings support their use in tailoring rehabilitation strategies, particularly for enhancing frontal and transverse pelvic stability in elderly orthopedic patients. Full article
(This article belongs to the Special Issue Sensor Technologies for Gait Analysis: 2nd Edition)
Show Figures

Figure 1

20 pages, 2422 KiB  
Article
Design and Performance of a Large-Diameter Earth–Air Heat Exchanger Used for Standalone Office-Room Cooling
by Rogério Duarte, António Moret Rodrigues, Fernando Pimentel and Maria da Glória Gomes
Appl. Sci. 2025, 15(14), 7938; https://doi.org/10.3390/app15147938 - 16 Jul 2025
Viewed by 224
Abstract
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used [...] Read more.
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used during the EAHX construction, an obvious advantage compared to the significant operational costs of refrigeration machines. Contrary to the streamlined process applied in conventional HVAC design (using refrigeration machines), EAHX design lacks straightforward and well-established rules; moreover, EAHXs struggle to achieve office room design cooling demands determined with conventional indoor thermal environment standards, hindering designers’ confidence and the wider adoption of EAHXs for standalone room cooling. This paper presents a graph-based method to assist in the design of a large-diameter EAHX. One year of post-occupancy monitoring data are used to evaluate this method and to investigate the performance of a large-diameter EAHX with up to 16,000 m3/h design airflow rate. Considering an adaptive standard for thermal comfort, peak EAHX cooling capacity of 28 kW (330 kWh/day, with just 50 kWh/day of fan electricity consumption) and office room load extraction of up to 22 kW (49 W/m2) provided evidence in support of standalone use of EAHX for room cooling. A fair fit between actual EAHX thermal performance and results obtained with the graph-based design method support the use of this method for large-diameter EAHX design. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Consumption in Buildings)
Show Figures

Figure 1

18 pages, 2182 KiB  
Article
Visual Neuroplasticity: Modulating Cortical Excitability with Flickering Light Stimulation
by Francisco J. Ávila
J. Imaging 2025, 11(7), 237; https://doi.org/10.3390/jimaging11070237 - 14 Jul 2025
Viewed by 620
Abstract
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular [...] Read more.
The balance between cortical excitation and inhibition (E/I balance) in the cerebral cortex is critical for cognitive processing and neuroplasticity. Modulation of this balance has been linked to a wide range of neuropsychiatric and neurodegenerative disorders. The human visual system has well-differentiated magnocellular (M) and parvocellular (P) pathways, which provide a useful model to study cortical excitability using non-invasive visual flicker stimulation. We present an Arduino-driven non-image forming system to deliver controlled flickering light stimuli at different frequencies and wavelengths. By triggering the critical flicker fusion (CFF) frequency, we attempt to modulate the M-pathway activity and attenuate P-pathway responses, in parallel with induced optical scattering. EEG recordings were used to monitor cortical excitability and oscillatory dynamics during visual stimulation. Visual stimulation in the CFF, combined with induced optical scattering, selectively enhanced magnocellular activity and suppressed parvocellular input. EEG analysis showed a modulation of cortical oscillations, especially in the high frequency beta and gamma range. Our results support the hypothesis that visual flicker in the CFF, in addition to spatial degradation, initiates detectable neuroplasticity and regulates cortical excitation and inhibition. These findings suggest new avenues for therapeutic manipulation through visual pathways in diseases such as Alzheimer’s disease, epilepsy, severe depression, and schizophrenia. Full article
Show Figures

Figure 1

10 pages, 863 KiB  
Article
FlowerPatch: New Method to Measure Nectar Volume in Artificial Flowers
by Edwin Lara-Perez, Jose Agosto Rivera, Tugrul Giray, Remi Megret Laboye and Edwin Flórez Gómez
Insects 2025, 16(7), 714; https://doi.org/10.3390/insects16070714 - 11 Jul 2025
Viewed by 357
Abstract
This article proposes a new Flower Patch Nectar Sensor to address the problem of detecting and measuring nectar in artificial flowers used in experiments on pollinator behavior. Traditional methods have focused mainly on recording the visits of pollinators to the flowers, without addressing [...] Read more.
This article proposes a new Flower Patch Nectar Sensor to address the problem of detecting and measuring nectar in artificial flowers used in experiments on pollinator behavior. Traditional methods have focused mainly on recording the visits of pollinators to the flowers, without addressing the dynamic variations in nectar in terms of volume and concentration. The proposed approach provides more detailed information about the nectar consumption by bees and allows for the determination of the optimal time to refill the flowers. This study introduces an innovative method that uses electrodes and an oscillator circuit to measure the volume of nectar present in the flower. The system correlates the concentration of nectar with a frequency signal that can be processed by a microcontroller. It was evaluated using initial volumes ranging from 1 μL to 4 μL, demonstrating its ability to accurately detect variations in nectar, even up to the point where the frequency approaches zero. The results confirm that this method allows us to identify how the reward offered to pollinators (represented by nectar) varies over time, in terms of concentration, under both controlled and natural conditions. Additionally, graphs are presented that show the relationship between an initial volume of 4 μL and variations in the frequency signal over a period of 25 min, highlighting the influence of these factors on nectar dynamics. This work not only introduces an innovative approach for the dynamic monitoring of nectar in artificial flowers but also lays the groundwork for future studies on the physical and chemical modeling of nectar in response to environmental conditions. Full article
(This article belongs to the Special Issue Current Advances in Pollinator Insects)
Show Figures

Figure 1

25 pages, 11278 KiB  
Article
Analysis of Droughts and Floods Evolution and Teleconnection Factors in the Yangtze River Basin Based on GRACE/GFO
by Ruqing Ren, Tatsuya Nemoto, Venkatesh Raghavan, Xianfeng Song and Zheng Duan
Remote Sens. 2025, 17(14), 2344; https://doi.org/10.3390/rs17142344 - 8 Jul 2025
Viewed by 387
Abstract
In recent years, under the influence of climate change and human activities, droughts and floods have occurred frequently in the Yangtze River Basin (YRB), seriously threatening socioeconomic development and ecological security. The topography and climate of the YRB are complex, so it is [...] Read more.
In recent years, under the influence of climate change and human activities, droughts and floods have occurred frequently in the Yangtze River Basin (YRB), seriously threatening socioeconomic development and ecological security. The topography and climate of the YRB are complex, so it is crucial to develop appropriate drought and flood policies based on the drought and flood characteristics of different sub-basins. This study calculated the water storage deficit index (WSDI) based on the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GFO) mascon model, extended WSDI to the bidirectional monitoring of droughts and floods in the YRB, and verified the reliability of WSDI in monitoring hydrological events through historical documented events. Combined with the wavelet method, it revealed the heterogeneity of climate responses in the three sub-basins of the upper, middle, and lower reaches. The results showed the following. (1) Compared and verified with the Standardized Precipitation Evapotranspiration Index (SPEI), self-calibrating Palmer Drought Severity Index (scPDSI), and documented events, WSDI overcame the limitations of traditional indices and had higher reliability. A total of 21 drought events and 18 flood events were identified in the three sub-basins, with the lowest frequency of drought and flood events in the upper reaches. (2) Most areas of the YRB showed different degrees of wetting on the monthly and seasonal scales, and the slowest trend of wetting was in the lower reaches of the YRB. (3) The degree of influence of teleconnection factors in the upper, middle, and lower reaches of the YRB had gradually increased over time, and, in particular, El Niño Southern Oscillation (ENSO) had a significant impact on the droughts and floods. This study provided a new basis for the early warning of droughts and floods in different sub-basins of the YRB. Full article
(This article belongs to the Special Issue Remote Sensing in Natural Resource and Water Environment II)
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Type-2 Fuzzy-Controlled Air-Cleaning Mobile Robot
by Chian-Song Chiu, Shu-Yen Yao and Carlo Santiago
Symmetry 2025, 17(7), 1088; https://doi.org/10.3390/sym17071088 - 8 Jul 2025
Viewed by 362
Abstract
This research presents the development of a type-2 fuzzy-controlled autonomous mobile robot specifically designed for monitoring and actively maintaining indoor air quality. The core of this system is the proposed type-2 fuzzy PID dual-mode controller used for stably patrolling rooms along the walls [...] Read more.
This research presents the development of a type-2 fuzzy-controlled autonomous mobile robot specifically designed for monitoring and actively maintaining indoor air quality. The core of this system is the proposed type-2 fuzzy PID dual-mode controller used for stably patrolling rooms along the walls of the environment. The design method ingeniously merges the fast error correction capability of PID control with the robust adaptability of type-2 fuzzy logic control, which utilizes interval type-2 fuzzy sets. Furthermore, the type-2 fuzzy rule table of the right wall-following controller can be extended from the first designed fuzzy left wall-following controller in a symmetrical design manner. As a result, this study eliminates the drawbacks of excessive oscillations arising from PID control and sluggish response to large initial errors in typical traditional fuzzy control. The following of the stable wall and obstacle is facilitated with ensured accuracy and easy implementation so that effective air quality monitoring and active PM2.5 filtering are achieved in a movable manner. Furthermore, the augmented reality (AR) interface overlays real-time PM2.5 data directly onto a user’s visual field, enhancing situational awareness and enabling an immediate and intuitive assessment of air quality. As this type of control is different from that used in traditional fixed sensor networks, both broader area coverage and efficient air filtering are achieved. Finally, the experimental results demonstrate the controller’s superior performance and its potential to significantly improve indoor air quality. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Control Systems and Robotics)
Show Figures

Figure 1

19 pages, 4471 KiB  
Article
Comb-Tipped Coupled Cantilever Sensor for Enhanced Real-Time Detection of E. coli Bacteria
by Syed Ali Raza Bukhari, Elham Alaei, Zongchao Jia and Yongjun Lai
Sensors 2025, 25(13), 4145; https://doi.org/10.3390/s25134145 - 3 Jul 2025
Viewed by 348
Abstract
The detection of particulate matter, particularly pathogenic bacteria, is essential in environmental monitoring, food safety, and clinical diagnostics. Among the various sensing techniques used, cantilever-based sensors offer a promising platform for label-free, real-time detection due to their high sensitivity. Here, we present a [...] Read more.
The detection of particulate matter, particularly pathogenic bacteria, is essential in environmental monitoring, food safety, and clinical diagnostics. Among the various sensing techniques used, cantilever-based sensors offer a promising platform for label-free, real-time detection due to their high sensitivity. Here, we present a coupled cantilever sensor incorporating interdigitated comb-shaped structures to enhance dielectrophoretic (DEP) capture of Escherichia coli in liquid samples. During operation, one cantilever is externally actuated and the other oscillates passively through fluid-mediated coupling. The sensor was experimentally evaluated across a broad concentration range from 10 to 105 cells/mL and the resonant frequency shifts were recorded for both beams. The results showed a strong linear frequency shift across all tested concentrations, without saturation. This demonstrates the sensor’s ability to detect both trace and high bacterial loads without needing recalibration. High frequency shifts of 4863 Hz were recorded for 105 cells/mL and 225 Hz for the lowest concentration of 10 cells/mL, giving a limit of detection of 10 cells/mL. The sensor also showed a higher signal to noise ratio of 265.7 compared to previously reported designs. These findings showed that the enhanced sensor design enables sensitive, linear, and reliable bioparticle detection across a wide range, making it suitable for diverse applications. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

12 pages, 7858 KiB  
Article
Strain Monitoring of Vertical Axis Wind Turbine Tower Using Fiber Bragg Gratings
by Bastien Van Esbeen, Valentin Manto, Damien Kinet, Corentin Guyot and Christophe Caucheteur
Sensors 2025, 25(13), 3921; https://doi.org/10.3390/s25133921 - 24 Jun 2025
Viewed by 365
Abstract
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce [...] Read more.
This article presents the findings of an experimental study conducted on a vertical axis wind turbine (VAWT) tower instrumented with cascaded fiber Bragg grating (FBG) sensors to detect bending deformations. Structural health monitoring (SHM) is an essential need in the industry to reduce costs and maintenance time, and to prevent machine failures. First, FBG strain sensors were glued vertically along the tower to investigate the sensors behavior as a function of their height. The maximum signal-to-noise ratio is obtained when FBGs are placed at the tower base. Then, four packages were installed inside the tower, at the base, according to four cardinal directions. Each package contains an FBG strain sensor, and an extra temperature FBG for discrimination. The use of easy-to-deploy packages is a must for industrial installations. Afterwards, by using power spectral density (PSD) on the strain signals, three sources of tower oscillations are discovered: wind force, structure unbalance, and 1st tower mode resonance, each with its intrinsic frequency. Wind force and structure unbalance cause mechanical stresses at a frequency proportional to the wind turbine rotational speed, while the 1st tower mode frequency depends only on the machine geometry, regardless of the rotational speed. This study also analyzes the deformation amplitude for different rotational rates within the VAWT operational range (10–35 rpm). The resonance amplitude depends on the proximity of the rotational rate to the resonant frequency (22 rpm) and the duration at that rate. For structure unbalance, the oscillation amplitude increases with the rotational rate, due to the centrifugal effect. It is supposed that wind force deformation amplitude naturally depends on wind speed, which is unpredictable at a given precise time. The results of our experimental observations are very valuable for both the wind turbine manufacturer and owner. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 2373 KiB  
Article
Analytical Workflow for Tracking Aquatic Biomass Responses to Sea Surface Temperature Changes
by Teodoro Semeraro, Jessica Titocci, Lorenzo Liberatore, Flavio Monti, Francesco De Leo, Gianmarco Ingrosso, Milad Shokri and Alberto Basset
Environments 2025, 12(7), 210; https://doi.org/10.3390/environments12070210 - 20 Jun 2025
Viewed by 487
Abstract
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of [...] Read more.
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of temperature variations. The aim of this research was to develop and test a workflow analysis to monitor the impact of sea surface temperature (SST) on phytoplankton biomass and primary production by combining field and remote sensing data of Chl-a and net primary production (NPP) (as proxies of phytoplankton biomass). The tropical zone was used as a case study to test the procedure. Firstly, machine learning algorithms were applied to the field data of SST, Chl-a and NPP, showing that the Random Forest was the most effective in capturing the dataset’s patterns. Secondly, the Random Forest algorithm was applied to MODIS SST images to build Chl-a and NPP time series. The time series analysis showed a significant increase in SST which corresponded to a significant negative trend in Chl-a concentrations and NPP variation. The recurrence plot of the time series revealed significant disruptions in Chl-a and NPP evolutions, potentially linked to El Niño–Southern Oscillation (ENSO) events. Therefore, the analysis can help to highlight the effects of temperature variation on Chl-a and NPP, such as the long-term evolution of the trend and short perturbation events. The methodology, starting from local studies, can support broader spatial–temporal-scale studies and provide insights into future scenarios. Full article
Show Figures

Figure 1

18 pages, 4050 KiB  
Article
Novel Pulsed Electromagnetic Field Device for Rapid Structural Health Monitoring: Enhanced Joint Integrity Assessment in Steel Structures
by Viktors Mironovs, Yulia Usherenko, Vjaceslavs Zemcenkovs, Viktors Kurtenoks, Vjaceslavs Lapkovskis, Dmitrijs Serdjuks and Pavels Stankevics
Materials 2025, 18(12), 2831; https://doi.org/10.3390/ma18122831 - 16 Jun 2025
Viewed by 372
Abstract
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. [...] Read more.
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. Experiments were conducted on a model steel stand with two joint configurations, using steel plates of 4 mm and 8 mm thickness. The device’s efficacy was evaluated through oscillation pattern analysis and spectral characteristics. Results demonstrate the device’s ability to differentiate between joint states, with the 4 mm plate configuration showing a 15% reduction in high-frequency components compared to the 8 mm plate. Fundamental resonant frequencies of 3D-printed specimens were observed near 5100 Hz, with Q-factors ranging between 200 and 300. The study also found that a 10% increase in volumetric porosity led to a 7% downward shift in resonant frequencies. The developed PEMF device, operating at 50–230 V and delivering 1–5 pulses per minute, shows promise for rapid, non-destructive monitoring of structural joints. When combined with the coaxial correlation method, the system demonstrates enhanced sensitivity in detecting structural changes, utilising an electrodynamic actuator (10 Hz to 2000 Hz range). This integrated approach offers a 30% improvement in early-stage degradation detection compared to traditional methods. Full article
Show Figures

Figure 1

20 pages, 5625 KiB  
Article
Assessing Chlorophyll-a Variability and Its Relationship with Decadal Climate Patterns in the Arabian Sea
by Muhsan Ali Kalhoro, Veeranjaneyulu Chinta, Muhammad Tahir, Chunli Liu, Lixin Zhu, Zhenlin Liang, Aidah Baloch and Jun Song
J. Mar. Sci. Eng. 2025, 13(6), 1170; https://doi.org/10.3390/jmse13061170 - 14 Jun 2025
Viewed by 583
Abstract
The Arabian Sea has undergone significant warming since the mid-20th century, highlighting the importance of assessing how decadal climate patterns influence chlorophyll-a (Chl-a) and broader marine ecosystem dynamics. This study investigates the variability of Chl-a, sea surface temperature (SST), and sea level anomaly [...] Read more.
The Arabian Sea has undergone significant warming since the mid-20th century, highlighting the importance of assessing how decadal climate patterns influence chlorophyll-a (Chl-a) and broader marine ecosystem dynamics. This study investigates the variability of Chl-a, sea surface temperature (SST), and sea level anomaly (SLA) over the past three decades, and their relationships with the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). The mean Chl-a concentration was 1.10 mg/m3, with peak levels exceeding 2 mg/m3 between 2009 and 2013, and the lowest value (0.6 mg/m3) was recorded in 2014. Elevated Chl-a levels were consistently observed in February and March across both coastal and offshore regions. Empirical orthogonal function (EOF) analysis revealed distinct spatial patterns in Chl-a and SST, indicating dynamic regional variability. The SST increased by 0.709 °C over the past four decades, accompanied by a steady rise in the SLA of approximately 1 cm. The monthly mean Chl-a exhibited a strong inverse relationship with both the SST and SLA and a positive correlation with SST gradients (R2 > 0.5). A positive correlation (R2 > 0.5) was found between the PDO and Chl-a, whereas the PDO was negatively correlated with the SST and SLA. In contrast, the AMO was negatively correlated with Chl-a but positively associated with warming and SLA rise. These findings underline the contrasting roles of the PDO and AMO in modulating productivity and ocean dynamics in the Arabian Sea. This study emphasizes the need for continued monitoring to improve predictions of ecosystem responses under future climate change scenarios. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 3124 KiB  
Article
A Convergent Approach to Investigate the Environmental Behavior and Importance of a Man-Made Saltwater Wetland
by Luigi Alessandrino, Nicolò Colombani, Alessio Usai and Micòl Mastrocicco
Remote Sens. 2025, 17(12), 2019; https://doi.org/10.3390/rs17122019 - 11 Jun 2025
Viewed by 917
Abstract
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management [...] Read more.
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management of protected wetlands necessitates a multidisciplinary approach, the purpose of this study is to provide a comprehensive picture of the hydrological, hydrochemical, and ecological dynamics of a man-made groundwater dependent ecosystem (GDE) by combining remote sensing, hydrochemical data, geostatistical tools, and ecological indicators. The study area, called “Le Soglitelle”, is located in the Campania plain (Italy), which is close to the Domitian shoreline, covering a surface of 100 ha. The Normalized Difference Water Index (NDWI), a remote sensing-derived index sensitive to surface water presence, from Sentinel-2 was used to detect changes in the percentage of the wetland inundated area over time. Water samples were collected in four campaigns, and hydrochemical indexes were used to investigate the major hydrochemical seasonal processes occurring in the area. Geostatistical tools, such as principal component analysis (PCA) and independent component analysis (ICA), were used to identify the main hydrochemical processes. Moreover, faunal monitoring using waders was employed as an ecological indicator. Seasonal variation in the inundation area ranged from nearly 0% in summer to over 50% in winter, consistent with the severe climatic oscillations indicated by SPEI values. PCA and ICA explained over 78% of the total hydrochemical variability, confirming that the area’s geochemistry is mainly characterized by the saltwater sourced from the artesian wells that feed the wetland. The concentration of the major ions is regulated by two contrasting processes: evapoconcentration in summer and dilution and water mixing (between canals and ponds water) in winter. Cl/Br molar ratio results corroborated this double seasonal trend. The base exchange index highlighted a salinization pathway for the wetland. Bird monitoring exhibited consistency with hydrochemical monitoring, as the seasonal distribution clearly reflects the dual behaviour of this area, which in turn augmented the biodiversity in this GDE. The integration of remote sensing data, multivariate geostatistical analysis, geochemical tools, and faunal indicators represents a novel interdisciplinary framework for assessing GDE seasonal dynamics, offering practical insights for wetland monitoring and management. Full article
Show Figures

Figure 1

Back to TopTop