Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = orthorhombic SnO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4371 KiB  
Article
Effect of CTAB on the Morphology of Sn-MOF and the Gas Sensing Performance of SnO2 with Different Crystal Phases for H2 Detection
by Manyi Liu, Liang Wang, Shan Ren, Bofeng Bai, Shouning Chai, Chi He, Chunli Zheng, Xinzhe Li, Xitao Yin and Chunbao Charles Xu
Chemosensors 2025, 13(5), 192; https://doi.org/10.3390/chemosensors13050192 - 21 May 2025
Viewed by 682
Abstract
Herein, a facile strategy was proposed to enhance the gas sensing performance of SnO2 for H2 by regulating its crystalline phase composition. Sn-based metal–organic framework (Sn-MOF) precursors with different morphologies were synthesized by introducing the surfactant cetyltrimethylammonium bromide (CTAB). Upon calcination, [...] Read more.
Herein, a facile strategy was proposed to enhance the gas sensing performance of SnO2 for H2 by regulating its crystalline phase composition. Sn-based metal–organic framework (Sn-MOF) precursors with different morphologies were synthesized by introducing the surfactant cetyltrimethylammonium bromide (CTAB). Upon calcination, these precursors yielded either mixed-phase (orthorhombic and tetragonal, SnO2-C) or single-phase (pure tetragonal, SnO2-NC) SnO2 nanoparticles. Structural characterization and gas sensing tests revealed that SnO2-C exhibited a high response of 7.73 to 100 ppm H2 at 280 °C, more than twice that of SnO2-NC (3.75). Moreover, SnO2-C demonstrated a faster response/recovery time (10/56 s), high selectivity, a ppb-level detection limit (~79 ppb), and excellent long-term stability. Notably, although the addition of CTAB reduced the specific surface area of SnO2, the resulting lower surface area minimized oxygen exposure during calcination, facilitating the formation of a mixed-phase heterostructure. In addition, the calcination atmosphere of SnO2-C (flowing air or Ar) was adjusted to further investigate the role of the crystal phase in gas sensing performance. The results clearly demonstrated that mixed-phase SnO2 exhibited superior sensing performance, achieving a higher sensitivity and a faster response to H2. These findings underscored the critical role of crystal phase engineering in the design of high-performance gas sensing materials. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Figure 1

10 pages, 1883 KiB  
Proceeding Paper
Analyzing the Thermal Behavior and Phase Transitions of ZnSnO3 Prepared via Chemical Precipitation
by Ragupathi Indhumathi, Arumugasamy Sathiya Priya and Baskar Sumathi Samyuktha
Eng. Proc. 2025, 87(1), 4; https://doi.org/10.3390/engproc2025087004 - 14 Feb 2025
Viewed by 652
Abstract
ZnSnO3 ceramics were prepared via chemical precipitation at various calcination temperatures of 200, 300, 400, 500, and 600 °C. The prepared ceramics were analyzed using thermogravimetric analysis–differential scanning calorimetry (TGA–DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy (UV-Vis). [...] Read more.
ZnSnO3 ceramics were prepared via chemical precipitation at various calcination temperatures of 200, 300, 400, 500, and 600 °C. The prepared ceramics were analyzed using thermogravimetric analysis–differential scanning calorimetry (TGA–DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy (UV-Vis). Thermal analysis identified critical phase transitions, including the decomposition of ZnSn(OH)6 into ZnSnO3 and its subsequent transformation into Zn2SnO4 at elevated temperatures. XRD confirmed the orthorhombic crystal structure of the prepared ceramics. Further, increasing calcination temperatures led to enhanced crystallinity and reduced crystallite sizes, with the average crystallite size ranging from 22 to 45 nm. FTIR analysis revealed the chemical bonding and functional groups present in ZnSnO3. The energy band gap values observed from UV-Vis spectroscopy ranged from 3.64 eV to 3.53 eV. These findings show the role of calcination temperature in tailoring the structural and optical properties of ZnSnO3 ceramics, with potential applications in energy conversion technologies, including solar cells and optoelectronic devices. The optimization and development of ZnSnO3-based materials hold promise for efficient energy harvesting and storage applications. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

17 pages, 6438 KiB  
Article
Synthesis and Study of Oxide Semiconductor Nanoheterostructures in SiO2/Si Track Template
by Alma Dauletbekova, Diana Junisbekova, Zein Baimukhanov, Aivaras Kareiva, Anatoli I. Popov, Alexander Platonenko, Abdirash Akilbekov, Ainash Abdrakhmetova, Gulnara Aralbayeva, Zhanymgul Koishybayeva and Jonibek Khamdamov
Crystals 2024, 14(12), 1087; https://doi.org/10.3390/cryst14121087 - 18 Dec 2024
Cited by 1 | Viewed by 1223
Abstract
In this study, chemical deposition was used to synthesize structures of Ga2O3 -NW/SiO2/Si (NW—nanowire) at 348 K and SnO2-NW/SiO2/Si at 323 K in track templates SiO2/Si (either n- or p-type). The resulting [...] Read more.
In this study, chemical deposition was used to synthesize structures of Ga2O3 -NW/SiO2/Si (NW—nanowire) at 348 K and SnO2-NW/SiO2/Si at 323 K in track templates SiO2/Si (either n- or p-type). The resulting crystalline nanowires were δ-Ga2O3 and orthorhombic SnO2. Computer modeling of the delta phase of gallium oxide yielded a lattice parameter of a = 9.287 Å, which closely matched the experimental range of 9.83–10.03 Å. The bandgap is indirect with an Eg = 5.5 eV. The photoluminescence spectra of both nanostructures exhibited a complex band when excited by light with λ = 5.16 eV, dominated by luminescence from vacancy-type defects. The current–voltage characteristics of δ-Ga2O3 NW/SiO2/Si-p showed one-way conductivity. This structure could be advantageous in devices where a reverse current is undesirable. The p-n junction with a complex structure was formed. This junction consists of a polycrystalline nanowire base exhibiting n-type conductivity and a monocrystalline Si substrate with p-type conductivity. The I–V characteristics of SnO2-NW/SiO2/Si suggested near-metallic conductivity due to the presence of metallic tin. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 10316 KiB  
Article
Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method
by Dagmara Brzezińska, Dariusz Bochenek, Maciej Zubko, Przemysław Niemiec and Izabela Matuła
Materials 2024, 17(20), 5072; https://doi.org/10.3390/ma17205072 - 17 Oct 2024
Cited by 2 | Viewed by 926
Abstract
This work investigated the structure, microstructure, and ferroelectric and dielectric behavior of (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZT_xSn) solid solution with variable tin content in the range x = 0.00–0.08. Synthesis [...] Read more.
This work investigated the structure, microstructure, and ferroelectric and dielectric behavior of (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZT_xSn) solid solution with variable tin content in the range x = 0.00–0.08. Synthesis was carried out using the powder calcination method, and sintering was carried out using the hot-pressing method. For all the PBZT_xSn samples at room temperature, X-ray diffractograms confirmed the presence of an orthorhombic (OR) crystal structure with space group Pnnm, and the microstructure is characterized by densely packed and properly shaped grains with an average size of 1.36 µm to 1.73 µm. At room temperature, PBZT_xSn materials have low permittivity values ε′ ranging from 265 to 275, whereas, at the ferroelectric–paraelectric phase transition temperature (RE–C), the permittivity is high (from 8923 to 12,141). The increase in the tin dopant in PBZT_xSn lowers permittivity and dielectric loss and changes the scope of occurrence of phase transitions. The occurring dispersion of the dielectric constant and dielectric loss at low frequencies, related to the Maxwell–Wagner behavior, decreases with increasing tin content in the composition of PBZT_xSn. Temperature studies of the dielectric and ferroelectric properties revealed anomalies related to the phase transitions occurring in the PBZT_xSn material. With increasing temperature in PBZT_xSn, phase transitions occur from orthorhombic (OR) to rhombohedral (RE) and cubic (C). The cooling cycle shifts the temperatures of the phase transitions towards lower temperatures. The test results were confirmed by XRD Rietveld analysis at different temperatures. The beneficial dielectric and ferroelectric properties suggest that the PBZT_xSn materials are suitable for micromechatronic applications as pulse capacitors or actuator elements. Full article
(This article belongs to the Special Issue Mechanical and Thermal Properties Analysis of Ceramic Composites)
Show Figures

Figure 1

10 pages, 2302 KiB  
Article
Study on Microwave Dielectric Materials an Adjustable Temperature Drift Coefficient and a High Dielectric Constant
by Yuan-Bin Chen, Yu Fan, Shiuan-Ho Chang and Shaobing Shen
Ceramics 2024, 7(3), 1227-1236; https://doi.org/10.3390/ceramics7030081 - 13 Sep 2024
Cited by 1 | Viewed by 1268
Abstract
This paper reports the dielectric characterizations of (Ca0.95Sr0.05)(Ti1−xSnx)O3 ceramics prepared using a solid-state reaction method with various x values. X-ray diffraction spectroscopy analyses showed that the crystal structure of these pure samples was orthorhombic [...] Read more.
This paper reports the dielectric characterizations of (Ca0.95Sr0.05)(Ti1−xSnx)O3 ceramics prepared using a solid-state reaction method with various x values. X-ray diffraction spectroscopy analyses showed that the crystal structure of these pure samples was orthorhombic perovskite. With increasing Sn4+ content, the lattice constant and unit cell volume increased, while the dielectric constant decreased because of the ionic polarizability decreasing. Moreover, a maximum Q × f value of 5242 (GHz), a dielectric constant (εr) of 91.23, and a temperature coefficient (τf) of +810 ppm/°C were achieved for samples sintered at 1350 °C for 4 h. The microwave dielectric characterization was found to be strongly correlated with the sintering temperature, and the best performance was achieved for the sample sintered at 1350 °C. (Ca0.95Sr0.05)(Ti1−xSnx)O3 possesses a promising potential to be a τf compensator for a near-zero τf dielectric ceramic applied in wireless communication systems. Full article
Show Figures

Figure 1

14 pages, 2819 KiB  
Article
New Piezoceramic SrBi2Nb2-2xWxSnxO9: Crystal Structure, Microstructure and Dielectric Properties
by Sergei V. Zubkov, Ivan A. Parinov and Alexander V. Nazarenko
Materials 2024, 17(18), 4455; https://doi.org/10.3390/ma17184455 - 11 Sep 2024
Cited by 1 | Viewed by 837
Abstract
By using the method of high-temperature solid-phase reaction, the new piezoceramic SrBi2Nb2-2xWxSnxO9 was obtained, where partial substitution of niobium (Nb) atoms with Sn4+ and W6+ atoms in the compound SrBi2 [...] Read more.
By using the method of high-temperature solid-phase reaction, the new piezoceramic SrBi2Nb2-2xWxSnxO9 was obtained, where partial substitution of niobium (Nb) atoms with Sn4+ and W6+ atoms in the compound SrBi2Nb2O9 occurred in the octahedra of the perovskite layer (B-position). X-ray diffraction investigations showed that these compounds are single-phase SrBi2Nb2-2xWxSnxO9 (x = 0.1, 0.2) and two-phase SrBi2Nb2-2xWxSnxO9 (x = 0.3, 0.4), but all of them had the structure of Aurivillius-Smolensky phases (ASPs) with close parameters of orthorhombic unit cells. It corresponded to the space group A21am. The temperature dependences of the relative permittivity ε/ε0 and the tangent of the dielectric loss angle tan d were defined at various frequencies. It was found that doping SrBi2Nb2-2xWxSnxO9 (x = 0.1) improved the electrophysical properties of the compound: losses decreased, and the relative permittivity increased. This result was obtained for the first time. Moreover, a new result was obtained that indicated an improvement in the electrophysical properties of SrBi2Nb2O9 using the chemical element Sn (tin). This refutes the previously existing opinion about the impossibility to use Sn as a doping element. Full article
(This article belongs to the Special Issue Advanced Dielectric Ceramics (2nd Edition))
Show Figures

Graphical abstract

18 pages, 22999 KiB  
Article
0.98(K0.5Na0.5)NbO3–0.02(Bi0.5Na0.5)(Zr0.85Sn0.15)O3 Single Crystals Grown by the Seed-Free Solid-State Crystal Growth Method and Their Characterization
by Eugenie Uwiragiye, Thuy Linh Pham, Jong-Sook Lee, Byoung-Wan Lee, Jae-Hyeon Ko and John G. Fisher
Ceramics 2024, 7(3), 840-857; https://doi.org/10.3390/ceramics7030055 - 21 Jun 2024
Cited by 2 | Viewed by 1848
Abstract
(K0.5Na0.5)NbO3-based single crystals are of interest as high-performance lead-free piezoelectric materials, but conventional crystal growth methods have some disadvantages such as the requirement for expensive Pt crucibles and difficulty in controlling the composition of the crystals. Recently, [...] Read more.
(K0.5Na0.5)NbO3-based single crystals are of interest as high-performance lead-free piezoelectric materials, but conventional crystal growth methods have some disadvantages such as the requirement for expensive Pt crucibles and difficulty in controlling the composition of the crystals. Recently, (K0.5Na0.5)NbO3-based single crystals have been grown by the seed-free solid-state crystal growth method, which can avoid these problems. In the present work, 0.98(K0.5Na0.5)NbO3–0.02(Bi0.5Na0.5)(Zr0.85Sn0.15)O3 single crystals were grown by the seed-free solid-state crystal growth method. Sintering aids of 0.15 mol% Li2CO3 and 0.15 mol% Bi2O3 were added to promote single crystal growth. Pellets were sintered at 1150 °C for 15–50 h. Single crystals started to appear from 20 h. The single crystals grown for 50 h were studied in detail. Single crystal microstructure was studied by scanning electron microscopy of the as-grown surface and cross-section of the sample and revealed porosity in the crystals. Electron probe microanalysis indicated a slight reduction in K and Na content of a single crystal as compared to the nominal composition. X-ray diffraction shows that the single crystals contain mixed orthorhombic and tetragonal phases at room temperature. Raman scattering and impedance spectroscopy at different temperatures observed rhombohedral–orthorhombic, orthorhombic–tetragonal and tetragonal–cubic phase transitions. Polarization–electric field (P–E) hysteresis loops show that the single crystal is a normal ferroelectric material with a remanent polarization (Pr) of 18.5 μC/cm2 and a coercive electrical field (Ec) of 10.7 kV/cm. A single crystal presents d33 = 362 pC/N as measured by a d33 meter. Such a single crystal with a large d33 and high Curie temperature (~370 °C) can be a promising candidate for piezoelectric devices. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

11 pages, 5666 KiB  
Article
Preparation of Antimony Tin Oxide Thin Film Using Green Synthesized Nanoparticles by E-Beam Technique for NO2 Gas Sensing
by Chaitra Chandraiah, Hullekere Mahadevaiah Kalpana, Challaghatta Muniyappa Ananda and Madhusudan B. Kulkarni
Micro 2024, 4(3), 401-411; https://doi.org/10.3390/micro4030025 - 21 Jun 2024
Viewed by 1880
Abstract
This work delves into the preparation of ATO thin films and their characterization, fabrication, and calibration of a NO2 gas sensor, as well as the development of the packaged sensor. ATO thin films were prepared by e-beam evaporation using green synthesized ATO [...] Read more.
This work delves into the preparation of ATO thin films and their characterization, fabrication, and calibration of a NO2 gas sensor, as well as the development of the packaged sensor. ATO thin films were prepared by e-beam evaporation using green synthesized ATO nanomaterials on different substrates and annealed at 500 and 600 °C for one hour. The structural and morphological properties of the developed thin films were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. An orthorhombic SnO2 crystal structure was recognized through XRD analysis. The granular-shaped nanoparticles were revealed through SEM and TEM images. The films annealed at 600 °C exhibited improved crystallinity. ATO films prepared on normal 5 µm interdigitated electrodes (IDEs) and annealed at 600 °C exhibited a response of 10.31 ± 0.25 with an optimum temperature of 200 °C for a 4.8 ppm NO2 gas concentration. The packaged NO2 gas sensor developed using IDEs with a microheater demonstrated an improved response of 16.20 ± 0.25 for 4.8 ppm of NO2 gas. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

14 pages, 4911 KiB  
Article
Synthesis of Orthorhombic Tin Dioxide Nanowires in Track Templates
by Zein Baimukhanov, Alma Dauletbekova, Diana Junisbekova, Valeriy Kalytka, Abdirash Akilbekov, Aiman Akylbekova, Guldar Baubekova, Gulnara Aralbayeva, Assyl-Dastan Bazarbek, Abay Usseinov and Anatoli I. Popov
Materials 2024, 17(6), 1226; https://doi.org/10.3390/ma17061226 - 7 Mar 2024
Cited by 4 | Viewed by 2240
Abstract
Electrochemical deposition into a prepared SiO2/Si-p ion track template was used to make orthorhombic SnO2 vertical nanowires (NWs) for this study. As a result, a SnO2-NWs/SiO2/Si nanoheterostructure with an orthorhombic crystal structure of SnO2 nanowires [...] Read more.
Electrochemical deposition into a prepared SiO2/Si-p ion track template was used to make orthorhombic SnO2 vertical nanowires (NWs) for this study. As a result, a SnO2-NWs/SiO2/Si nanoheterostructure with an orthorhombic crystal structure of SnO2 nanowires was obtained. Photoluminescence excited by light with a wavelength of 240 nm has a low intensity, arising mainly due to defects such as oxygen vacancies and interstitial tin or tin with damaged bonds. The current–voltage characteristic measurement showed that the SnO2-NWs/SiO2/Si nanoheterostructure made this way has many p-n junctions. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

16 pages, 7260 KiB  
Article
Direct Hydrothermally Synthesized Novel Z-Scheme Dy3+ Doped ZnO/SnS Nanocomposite for Rapid Photocatalytic Degradation of Organic Contaminants
by Tejaswi Tanaji Salunkhe, Govinda Dharmana, Thirumala Rao Gurugubelli, Babu Bathula and Kisoo Yoo
Catalysts 2023, 13(9), 1292; https://doi.org/10.3390/catal13091292 - 12 Sep 2023
Cited by 3 | Viewed by 2550
Abstract
Different concentrations (1, 3 and 5 wt%) of dysprosium (Dy3+)-doped ZnO/SnS (ZSD) nanophotocatalysts using the one-step facile hydrothermal method at 230 ℃ are presented. Their structure, morphological appearance, inclusion of constituent elements, bandgap engineering and luminescent nature are confirmed by the [...] Read more.
Different concentrations (1, 3 and 5 wt%) of dysprosium (Dy3+)-doped ZnO/SnS (ZSD) nanophotocatalysts using the one-step facile hydrothermal method at 230 ℃ are presented. Their structure, morphological appearance, inclusion of constituent elements, bandgap engineering and luminescent nature are confirmed by the XRD, TEM, XPS, UV-DRS and PL techniques. The photocatalytic activity (PCA) of the prepared nano photocatalysts is studied in the presence of a model pollutant MB under solar light illumination. The degradation kinetics and charge separation mechanism of the ZSD photocatalysts are also presented. Our XRD analysis showed the mixed-phase occurrence of ZnO (hexagonal) and SnS (orthorhombic) from their JCPDS numbers with no additional traces of a doping element, which in turn indicates the purity, substantial crystal structure and high dispersion of the samples. TEM micrographs revealed the appearance of a flake structure and more agglomeration when increasing the dopant concentration. The XPS spectra confirmed the Zn2+, Sn2+, S2−, O2− and Dy3+ oxidation states of the constituent elements along with carbon and nitrogen peaks. The Tauc plots showed a decreasing trend in the optical bandgap, i.e., a redshift due to the loading of Dy3+ ions into Sn2+ ions. The lower recombination rate of photoinduced e-h+ pairs is noted when increasing the Dy3+ ion content; i.e., the luminescent intensity is suppressed when increasing the concentration of Dy3+ ions. The obtained degradation efficiency of the MB dye using the ZSD3 nano photocatalyst is around 98% for a duration of 120 min under solar light irradiation. The prepared ZSD photocatalyst follows pseudo first-order kinetics, and the evidence for attaining a robust Z-scheme PCA is presented in the form of the charge separation mechanism. Full article
(This article belongs to the Special Issue Advances in Quantum Dots Catalysts)
Show Figures

Figure 1

16 pages, 6126 KiB  
Article
Red and Blue-Black Tin Monoxide, SnO: Pitfalls, Challenges, and Helpful Tools in Crystal Structure Determination of Low-Intensity Datasets from Microcrystals
by Hans Reuter
Crystals 2023, 13(8), 1281; https://doi.org/10.3390/cryst13081281 - 19 Aug 2023
Cited by 4 | Viewed by 2344
Abstract
The crystal structures of red and blue-black tin(II) oxide, SnO, have been determined for the first time by single-crystal X-ray diffraction. Blue-black SnO crystallizes in the tetragonal space group P4/nmm, representing a layer structure consisting of the square–pyramidally coordinated tin [...] Read more.
The crystal structures of red and blue-black tin(II) oxide, SnO, have been determined for the first time by single-crystal X-ray diffraction. Blue-black SnO crystallizes in the tetragonal space group P4/nmm, representing a layer structure consisting of the square–pyramidally coordinated tin and slightly distorted tetrahedrally coordinated oxygen atoms, in accordance with previous results. In contrast, red SnO crystallizes in the orthorhombic centrosymmetric space group Pbca rather than in the non-centrosymmetric space group Cmc21, as assumed for a long time. Its layer structure consists of very regular, trigonal–pyramidally coordinated tin atoms as well as trigonal–planar coordinated oxygen atoms. Special care was taken on space group determination, including lattice centering. C-centering could be excluded because of systematic absence violations detected when collecting and processing a primitive triclinic dataset and by generating precession images. In the absence of meaningful extinction conditions resulting from the very small crystal under examination, the structure was initially solved and refined in the triclinic space group P1. Subsequently, the observed atom coordinates were used to reconstruct the actual symmetry skeleton. The various possibilities to identify the correct space group starting from the triclinic solution are demonstrated, and the unique structural features of the crystal structure are visualized. Full article
Show Figures

Figure 1

12 pages, 2905 KiB  
Article
Experimental Observation of Possible Pressure-Induced Phase Transformation in GdAlO3 Perovskite Using In Situ X-ray Diffraction
by Maria Mora, Andriy Durygin, Vadym Drozd, Shanece Esdaille, Jiuhua Chen, Surendra Saxena, Xue Liang and Leonid Vasylechko
Crystals 2023, 13(7), 1060; https://doi.org/10.3390/cryst13071060 - 5 Jul 2023
Cited by 1 | Viewed by 2167
Abstract
Gadolinium aluminate perovskite (GdAlO3) was studied at high pressures of up to 23 GPa in a diamond anvil cell (DAC) using monochromatic synchrotron X-ray powder diffraction. Evidence of a pressure-induced phase transformation from orthorhombic (Pbnm) to rhombohedral (R [...] Read more.
Gadolinium aluminate perovskite (GdAlO3) was studied at high pressures of up to 23 GPa in a diamond anvil cell (DAC) using monochromatic synchrotron X-ray powder diffraction. Evidence of a pressure-induced phase transformation from orthorhombic (Pbnm) to rhombohedral (R3¯c) structure was observed at 21 GPa and further proved by DFT calculations. Before phase transition, the volumetric ratio of polyhedron A and B (i.e., VA/VB for ABX3 general notation) in the Pbnm phase continuously increased towards the ideal value of five at the transition, indicating a pressure-induced decrease in the structural distortion as opposed to the trend in many other orthorhombic perovskites (e.g., CaSnO3, CaGeO3, MgSiO3 and NaMgF3). Pressure–volume data of the Pbnm phase were fitted to the third-order Birch–Murnaghan equation of state yielding a bulk modulus (Ko) of 216 ± 7 GPa with a pressure derivative of the bulk modulus (Ko) of 5.8 GPa (fixed). This work confirms the pressure-induced phase transformation from orthorhombic to a higher symmetry structure previously predicted in GdAlO3 perovskite. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

29 pages, 26597 KiB  
Review
Tailoring SnO2 Defect States and Structure: Reviewing Bottom-Up Approaches to Control Size, Morphology, Electronic and Electrochemical Properties for Application in Batteries
by Reynald Ponte, Erwan Rauwel and Protima Rauwel
Materials 2023, 16(12), 4339; https://doi.org/10.3390/ma16124339 - 12 Jun 2023
Cited by 11 | Viewed by 3601
Abstract
Tin oxide (SnO2) is a versatile n-type semiconductor with a wide bandgap of 3.6 eV that varies as a function of its polymorph, i.e., rutile, cubic or orthorhombic. In this review, we survey the crystal and electronic structures, bandgap and defect [...] Read more.
Tin oxide (SnO2) is a versatile n-type semiconductor with a wide bandgap of 3.6 eV that varies as a function of its polymorph, i.e., rutile, cubic or orthorhombic. In this review, we survey the crystal and electronic structures, bandgap and defect states of SnO2. Subsequently, the significance of the defect states on the optical properties of SnO2 is overviewed. Furthermore, we examine the influence of growth methods on the morphology and phase stabilization of SnO2 for both thin-film deposition and nanoparticle synthesis. In general, thin-film growth techniques allow the stabilization of high-pressure SnO2 phases via substrate-induced strain or doping. On the other hand, sol–gel synthesis allows precipitating rutile-SnO2 nanostructures with high specific surfaces. These nanostructures display interesting electrochemical properties that are systematically examined in terms of their applicability to Li-ion battery anodes. Finally, the outlook provides the perspectives of SnO2 as a candidate material for Li-ion batteries, while addressing its sustainability. Full article
Show Figures

Figure 1

11 pages, 2301 KiB  
Article
Pressure-Induced Structural Phase Transition of Co-Doped SnO2 Nanocrystals
by Vinod Panchal, Laura Pampillo, Sergio Ferrari, Vitaliy Bilovol, Catalin Popescu and Daniel Errandonea
Crystals 2023, 13(6), 900; https://doi.org/10.3390/cryst13060900 - 31 May 2023
Cited by 3 | Viewed by 1867
Abstract
Co-doped SnO2 nanocrystals (with a particle size of 10 nm) with a tetragonal rutile-type (space group P42/mnm) structure have been investigated for their use in in situ high-pressure synchrotron angle dispersive powder X-ray diffraction up to 20.9 [...] Read more.
Co-doped SnO2 nanocrystals (with a particle size of 10 nm) with a tetragonal rutile-type (space group P42/mnm) structure have been investigated for their use in in situ high-pressure synchrotron angle dispersive powder X-ray diffraction up to 20.9 GPa and at an ambient temperature. An analysis of experimental results based on Rietveld refinements suggests that rutile-type Co-doped SnO2 undergoes a structural phase transition at 14.2 GPa to an orthorhombic CaCl2-type phase (space group Pnnm), with no phase coexistence during the phase transition. No further phase transition is observed until 20.9 GPa, which is the highest pressure covered by the experiments. The low-pressure and high-pressure phases are related via a group/subgroup relationship. However, a discontinuous change in the unit-cell volume is detected at the phase transition; thus, the phase transition can be classified as a first-order type. Upon decompression, the transition has been found to be reversible. The results are compared with previous high-pressure studies on doped and un-doped SnO2. The compressibility of different phases will be discussed. Full article
(This article belongs to the Special Issue Pressure-Induced Phase Transformations (Volume II))
Show Figures

Figure 1

11 pages, 2495 KiB  
Article
Flexible Lead-Free Piezoelectric Ba0.94Sr0.06Sn0.09Ti0.91O3/PDMS Composite for Self-Powered Human Motion Monitoring
by Lin Deng, Weili Deng, Tao Yang, Guo Tian, Long Jin, Hongrui Zhang, Boling Lan, Shenglong Wang, Yong Ao, Bo Wu and Weiqing Yang
J. Funct. Biomater. 2023, 14(1), 37; https://doi.org/10.3390/jfb14010037 - 8 Jan 2023
Cited by 17 | Viewed by 4897
Abstract
Piezoelectric wearable electronics, which can sense external pressure, have attracted widespread attention. However, the enhancement of electromechanical coupling performance remains a great challenge. Here, a new solid solution of Ba1−xSrxSn0.09Ti0.91O3 (x = [...] Read more.
Piezoelectric wearable electronics, which can sense external pressure, have attracted widespread attention. However, the enhancement of electromechanical coupling performance remains a great challenge. Here, a new solid solution of Ba1−xSrxSn0.09Ti0.91O3 (x = 0.00~0.08) is prepared to explore potential high-performance, lead-free piezoelectric ceramics. The coexistence of the rhombohedral phase, orthorhombic phase and tetragonal phase is determined in a ceramic with x = 0.06, showing enhanced electrical performance with a piezoelectric coefficient of d33~650 pC/N. Furthermore, Ba0.94Sr0.06Sn0.09Ti0.91O3 (BSST) is co-blended with PDMS to prepare flexible piezoelectric nanogenerators (PENGs) and their performance is explored. The effects of inorganic particle concentration and distribution on the piezoelectric output of the composite are systematically analyzed by experimental tests and computational simulations. As a result, the optimal VOC and ISC of the PENG (40 wt%) can reach 3.05 V and 44.5 nA, respectively, at 138.89 kPa, and the optimal sensitivity of the device is up to 21.09 mV/kPa. Due to the flexibility of the device, the prepared PENG can be attached to the surface of human skin as a sensor to monitor vital movements of the neck, fingers, elbows, spine, knees and feet of people, thus warning of dangerous behavior or incorrect posture and providing support for sports rehabilitation. Full article
(This article belongs to the Special Issue Biomedical Applications of Wearable Movement Sensors)
Show Figures

Figure 1

Back to TopTop