materials-logo

Journal Browser

Journal Browser

Mechanical and Thermal Properties Analysis of Ceramic Composites

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced and Functional Ceramics and Glasses".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 2911

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Technology, University of the National Education Commission, ul. Podchorążych 2, 30-084 Kraków, Poland
Interests: magnetooptic; luminescence; ceramic materials; measurement; laser; cement hydration process
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Materials is an open access journal that undergoes peer review and publishes articles covering a wide range of mechanical and thermal properties analysis of ceramic composite research. It champions cutting-edge exploration in the mechanical and thermal analysis of materials. This Special Issue focuses on the thermal techniques, heat and energy conversion, calorimetry, and mechanical properties of ceramic and metallic composition. The emphasis is on innovative fundamental scientific exploration into the connections among processing, microstructure, and properties of ceramics composites formed under different kinds of sintering techniques. In this Special Issue, manuscripts must clearly describe the measurement setup which the experiments utilised by undertaking a critical review of the state of the art in measurement techniques and the sensitivity and accuracy of used devices.

We welcome research papers, review articles, and perspectives. Papers that have an experimental or theoretical character will also be welcome. Additionally, this Special Issue showcases news and viewpoints alongside research highlights that encapsulate the most recent scientific discoveries in ceramics. With a dedication to excellence, this Special Issue ensures optimal support for authors, readers, and reviewers.

Dr. Andrzej Kruk
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermal analyses
  • mechanical properties
  • evolved gas analysis
  • microcalorimetry
  • arc plasma sintering
  • optic
  • magnetooptic
  • high-entropy compounds
  • dielectric properties
  • measurement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3212 KiB  
Article
Enhanced Mechanical Properties of Mn- and Fe-Doped Na0.5Bi0.5TiO3 Ceramics
by Jan Suchanicz, Marcin Wąs, Kamila Kluczewska-Chmielarz, Grzegorz Jagło, Dagmara Brzezińska, Roman Rosiek, Grzegorz Stachowski and Mariusz Sokolowski
Materials 2024, 17(22), 5645; https://doi.org/10.3390/ma17225645 - 19 Nov 2024
Viewed by 779
Abstract
The mechanical properties of Mn- and Fe-doped Na0.5Bi0.5TiO3 ceramics in unpoled and poled states were examined and analyzed for the first time through measurements of Young’s modulus, the elastic modulus, Poisson’s number, compressibility modulus K, hardness, fracture toughness [...] Read more.
The mechanical properties of Mn- and Fe-doped Na0.5Bi0.5TiO3 ceramics in unpoled and poled states were examined and analyzed for the first time through measurements of Young’s modulus, the elastic modulus, Poisson’s number, compressibility modulus K, hardness, fracture toughness and bending strength on one hand and by stress–strain measurements on the other hand. It was found that both the introduction of Fe and Mn ions into Na0.5Bi0.5TiO3 and E-poling lead to improvements in their mechanical properties. The additives also cause improvement of the piezoelectric properties. The stress–strain curves revealed a changing mechanical response with the Mn and Fe doping of the NBT. With the doping, there was a decrease in coercive stress, which enhanced the remnant strain. In contrast, the E-poling led to an increase in the coercive stress, which reduced the remnant strain. Induced internal stresses associated with non-180° domain switching were determined. It was found that the investigated materials displayed significant ferroelastic deformation and large remnant polarization even under external stress of 180–250 MPa. Modification of NBT by Mn and Fe ions and E-poling were found to be effective ways of improving actuator performance and controlling operating stresses in order to minimize irreversible fatigue damage. The results suggest that the investigated materials could replace PZT ceramics in actuator applications where high blocking stress is required. Full article
(This article belongs to the Special Issue Mechanical and Thermal Properties Analysis of Ceramic Composites)
Show Figures

Figure 1

19 pages, 10316 KiB  
Article
Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method
by Dagmara Brzezińska, Dariusz Bochenek, Maciej Zubko, Przemysław Niemiec and Izabela Matuła
Materials 2024, 17(20), 5072; https://doi.org/10.3390/ma17205072 - 17 Oct 2024
Viewed by 796
Abstract
This work investigated the structure, microstructure, and ferroelectric and dielectric behavior of (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZT_xSn) solid solution with variable tin content in the range x = 0.00–0.08. Synthesis [...] Read more.
This work investigated the structure, microstructure, and ferroelectric and dielectric behavior of (Pb0.97Ba0.03)(Zr0.98Ti0.02)1−xSnxO3 (PBZT_xSn) solid solution with variable tin content in the range x = 0.00–0.08. Synthesis was carried out using the powder calcination method, and sintering was carried out using the hot-pressing method. For all the PBZT_xSn samples at room temperature, X-ray diffractograms confirmed the presence of an orthorhombic (OR) crystal structure with space group Pnnm, and the microstructure is characterized by densely packed and properly shaped grains with an average size of 1.36 µm to 1.73 µm. At room temperature, PBZT_xSn materials have low permittivity values ε′ ranging from 265 to 275, whereas, at the ferroelectric–paraelectric phase transition temperature (RE–C), the permittivity is high (from 8923 to 12,141). The increase in the tin dopant in PBZT_xSn lowers permittivity and dielectric loss and changes the scope of occurrence of phase transitions. The occurring dispersion of the dielectric constant and dielectric loss at low frequencies, related to the Maxwell–Wagner behavior, decreases with increasing tin content in the composition of PBZT_xSn. Temperature studies of the dielectric and ferroelectric properties revealed anomalies related to the phase transitions occurring in the PBZT_xSn material. With increasing temperature in PBZT_xSn, phase transitions occur from orthorhombic (OR) to rhombohedral (RE) and cubic (C). The cooling cycle shifts the temperatures of the phase transitions towards lower temperatures. The test results were confirmed by XRD Rietveld analysis at different temperatures. The beneficial dielectric and ferroelectric properties suggest that the PBZT_xSn materials are suitable for micromechatronic applications as pulse capacitors or actuator elements. Full article
(This article belongs to the Special Issue Mechanical and Thermal Properties Analysis of Ceramic Composites)
Show Figures

Figure 1

12 pages, 5338 KiB  
Article
The Influence of Measurement Conditions on the Electrocaloric Effect in Ferroelectric Ceramics of Modified Barium Titanate
by Magdalena Krupska-Klimczak, Krzysztof Ziewiec and Irena Jankowska-Sumara
Materials 2024, 17(13), 3329; https://doi.org/10.3390/ma17133329 - 5 Jul 2024
Cited by 1 | Viewed by 895
Abstract
In this work, the electrocaloric effect (ECE) and electrocaloric strength (ΔT/E) were measured and thermal and dielectric studies were performed on Pb-modified BaTiO3 (BPT). The saturated hysteresis loops and normal ferroelectric behavior of the ferroelectric ceramics allow the [...] Read more.
In this work, the electrocaloric effect (ECE) and electrocaloric strength (ΔT/E) were measured and thermal and dielectric studies were performed on Pb-modified BaTiO3 (BPT). The saturated hysteresis loops and normal ferroelectric behavior of the ferroelectric ceramics allow the utilization of the indirect method to estimate the electrocaloric properties. The electrocaloric measurements were performed under high (18 kV/cm) versus low (8 kV/cm) electric field conditions. These conditions were chosen to notice and then eliminate an artificial negative electrocaloric effect in the tested ceramics. At the same time, relatively high values of positive electrocaloric temperature change ΔT (~ 2.19 K) and electrocaloric strength ΔT/E (~0.27–0.11 K·cm/kV) were obtained. Full article
(This article belongs to the Special Issue Mechanical and Thermal Properties Analysis of Ceramic Composites)
Show Figures

Figure 1

Back to TopTop