Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Technological Process
2.2. Characterization
3. Results and Discussion
3.1. Structural Test
3.2. Microstructure
3.3. Ferroelectric Properties
3.4. Dielectric Properties
3.5. Temperature X-ray Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorayani Bafqi, M.S.; Sadeghi, A.H.; Latifi, M.; Bagherzadeh, R. Design and fabrication of a piezoelectric out-put evaluation system for sensitivity measurements of fibrous sensors and actuators. J. Ind. Text. 2021, 50, 1643–1659. [Google Scholar] [CrossRef]
- Kahoul, F.; Hamzioui, L.; Abdessalem, N.; Boutarfaia, A. Synthesis and piezoelectric properties of Pb0.98Sm0.02[(Zry,Ti1−y)0.98](Fe3+1/2,Nb5+1/2)0.02]O3 ceramics. Mater. Sci. Appl. 2012, 3, 50–58. [Google Scholar] [CrossRef]
- Jaffe, B.; Cook, W.; Jaffe, H. Piezoelectric Ceramics; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Badapanda, T.; Sarangi, S.; Behera, B.; Anwar, S.; Sinha, T.P.; Ranjan, R.; Luz, G.E., Jr.; Longo, E.; Cavalcante, L.S. Structural refinement, optical and electrical properties of [Ba1−xSm2x/3](Zr0.05Ti0.95)O3 ceramics. J. Mater. Sci. Mater. Electron. 2014, 25, 3427–3439. [Google Scholar] [CrossRef]
- Kozielski, L.; Płońska, M. Optic and piezoelectric coupling in the sol-gel PLZT electroceramics. Mater. Sci. Forum 2013, 730–732, 129–134. [Google Scholar] [CrossRef]
- Haq, M. Application of piezo transducers in biomedical science for health monitoring and energy harvesting problems. Mater. Res. Express 2019, 6, 022002. [Google Scholar] [CrossRef]
- Ramesh, S.; Ravinder, D.; Naidu, K.C.B.; Kumar, N.S.; Srinivas, K.; Baba Basha, D.; Chandra Sekhar, B. A review on giant piezoelectric coefficient, materials and applications. Biointerface Res. Appl. Chem. 2019, 9, 4205–4216. [Google Scholar] [CrossRef]
- Bochenek, D.; Surowiak, Z.; Gavrilyachenko, S.V.; Kupriyanov, M.F. Multicomponent ceramic materials on the basis of PZT to production of the piezoelectric resonators. Arch. Acoust. 2005, 30, 87–107. [Google Scholar]
- Yousefi, F.; Esfahani, H. Role of Nb5+-Nd3+ co-dopant in morphotropic boundary of electrospun PZT nanoneedles; study on dielectric and piezoelectric sensitivity. J. Alloys Compd. 2023, 966, 171531. [Google Scholar] [CrossRef]
- Niu, X.; Jia, W.; Qian, S.; Zhu, J.; Zhang, J.; Hou, X.; Mu, J.; Geng, W.; Cho, J.; He, J.; et al. High-performance PZT-based stretchable piezoelectric nanogenerator. ACS Sustain. Chem. Eng. 2018, 7, 979–985. [Google Scholar] [CrossRef]
- Song, P.; Zhu, Z.; Yao, Z.; Hao, H.; Cao, M.; Liu, H. Piezoelectric enhancement of 0.6Pb(Zr,Ti)O3-0.4Pb(Ni1/3Nb2/3)O3 ceramics with artificial MPB engineering. J. Mater. Sci. Mater. Electron. 2024, 35, 58. [Google Scholar] [CrossRef]
- Avanish Babu, T.; Madhuri, W. Microwave synthesis technique for LTCC and colossal dielectric constant in PZT. Chem. Phys. Lett. 2022, 799, 139641. [Google Scholar] [CrossRef]
- Kim, B.S.; Ji, J.H.; Koh, J.H. Improved strain and transduction values of low-temperature sintered CuO-doped PZT-PZNN soft piezoelectric materials for energy harvester applications. Ceram. Int. 2021, 47, 6683–6690. [Google Scholar] [CrossRef]
- Fan, F.; Tang, W.; Wang, Z. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305. [Google Scholar] [CrossRef]
- Panigrahi, S.C.; Das, P.R.; Choudhary, R.N.P. Ferroelectric studies for soft Gd modified PZT ceramics. Phase Transit. 2018, 91, 703–714. [Google Scholar] [CrossRef]
- Cuong, D.D.; Lee, B.; Choi, K.M.; Ahn, H.S.; Han, S.; Lee, J. Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA+U study. Phys. Rev. Lett. 2007, 98, 115503. [Google Scholar] [CrossRef]
- Abdessalem, N.; Boutarfaia, A. Effect of composition on the electromechanical properties of Pb[ZrxTi(0.9–x)(Cr1/5,Zn1/5,Sb3/5)0.1]O3 ceramics. Ceram. Int. 2007, 33, 293–296. [Google Scholar] [CrossRef]
- Kumari, N.; Monga, S.; Arif, M.; Sharma, N.; Sanger, A.; Singh, A.; Vilarinho, P.M.; Gupta, V.; Sreenivas, K.; Katiyar, R.S.; et al. Multifunctional behavior of acceptor-cation substitution at higher doping concentration in PZT ceramics. Ceram. Int. 2019, 45, 12716–12726. [Google Scholar] [CrossRef]
- Niemiec, P.; Bochenek, D.; Brzezińska, D. Effect of various sintering methods on the properties of PZT-type ceramics. Ceram. Inter. 2023, 49, 35687–35698. [Google Scholar] [CrossRef]
- Gao, B.; Yao, Z.; Lai, D.; Guo, Q.; Pan, W.; Hao, H.; Cao, M.; Liu, H. Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region. J. Alloys Compd. 2020, 836, 155474. [Google Scholar] [CrossRef]
- Khacheba, M.; Abdessalem, N.; Hamdi, A.; Khemakhem, H. Effect of acceptor and donor dopants (Na, Y) on the microstructure and dielectric characteristics of high Curie point PZT-modified ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 361–372. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q. Effects of Cr2O3 doping on the electrical properties and the temperature stabilities of PZT binary piezoelectric ceramics. Rare Met. 2008, 27, 362. [Google Scholar] [CrossRef]
- Kelley, K.P.; Morozovska, A.N.; Eliseev, E.A.; Sharma, V.; Yilmaz, D.E.; van Duin, A.C.T.; Ganesh, P.; Borisevich, A.; Jesse, S.; Maksymovych, P.; et al. Oxygen vacancy injection as a pathway to enhancing electromechanical response in ferroelectrics. Adv. Mater. 2022, 34, 2106426. [Google Scholar] [CrossRef]
- Tai, D.; Zhao, X.; Zheng, T.; Wu, J. Establishing a relationship between the piezoelectric response and oxygen vacancies in lead-free piezoelectrics. ACS Appl. Mater. Interfaces 2023, 15, 36564–36575. [Google Scholar] [CrossRef]
- Liu, C.L.; Du, Q.; Zhou, H.; Wu, J.M.; Zhang, G.; Shi, Y.S. Effect of the polystyrene particle size on performance of PZT piezoelectric ceramics via vat photopolymerization (VPP). Addit. Manuf. 2023, 78, 103857. [Google Scholar] [CrossRef]
- Ramana, M.V.; Kiran, S.R.; Reddy, N.R.; Kumar, K.V.S.; Murthy, V.R.K.; Murty, B.S. Investigation and characterization of Pb(Zr0.52Ti0.48)O3 nanocrystalline ferroelectric ceramics: By conventional and microwave sintering methods. Mater. Chem. Phys. 2011, 126, 295–300. [Google Scholar] [CrossRef]
- Bochenek, D.; Skulski, R.; Wawrzała, P.; Brzezińska, D. Dielectric properties of Pb0.75Ba0.25(Zr0.65Ti0.35)1-zSnzO3 ceramics. Ferroelectrics 2011, 418, 82–87. [Google Scholar] [CrossRef]
- Sharma, P.K.; Ounaies, Z.; Varadan, V.V.; Varadan, V.K. Dielectric and piezoelectric properties of microwave sintered PZT. Smart Mater. Struct. 2001, 10, 878–883. [Google Scholar] [CrossRef]
- Marakhovsky, M.A.; Panich, A.A.; Talanov, M.V.; Marakhovskiy, V.A. Comparative study of the hard and soft PZT-based ceramics sintered by various methods. Ferroelectrics 2021, 575, 43–49. [Google Scholar] [CrossRef]
- Wu, Y.J.; Uekawa, N.; Kakegawa, K.; Sasaki, Y. Compositional fluctuation and dielectric properties of Pb(Zr0.3Ti0.7)O3 ceramics prepared by spark plasma sintering. Mater. Lett. 2002, 57, 771–775. [Google Scholar] [CrossRef]
- Mudinepalli, V.R.; Leng, F. Dielectric and ferroelectric studies on high dense Pb(Zr0.52Ti0.48)O3 nanocrystalline ceramics by high energy ball milling and spark plasma sintering. Ceramics 2019, 2, 13–24. [Google Scholar] [CrossRef]
- Tokita, M. Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Jia, Y.; Su, X.; Wu, Y.; Bai, G.; Wang, Z.; Yan, X.; Ai, T.; Zhao, P. Fabrication of lead zirconate titanate ceramics by reaction flash sintering of PbO-ZrO2-TiO2 mixed oxides. J. Eur. Ceram. Soc. 2019, 39, 3915–3919. [Google Scholar] [CrossRef]
- Wang, D.; Tsuji, K.; Randall, C.A.; Trolier-McKinstry, S. Model for the cold sintering of lead zirconate titanate ceramic composites. J. Am. Ceram. Soc. 2020, 103, 4894–4902. [Google Scholar] [CrossRef]
- Gupta, S.; Wang, D.; Randall, C.A.; Trolier-McKinstry, S. Comparison of different sintering aids in cold sinter-assisted densification of lead zirconate titanate. J. Am. Ceram. Soc. 2021, 104, 5479–5488. [Google Scholar] [CrossRef]
- Fernándeza, C.P.; Zabottob, F.L.; Garciab, D.; Kiminami, R.H.G.A. In situ sol-gel cosynthesis at as low hydrolysis rate and microwave sintering of PZT/Fe2CoO4 magnetoelectric composite ceramics. Ceram. Int. 2017, 43, 5925–5933. [Google Scholar] [CrossRef]
- Wang, D.; Ou-Yang, J.; Guo, W.; Yang, X.; Zhu, B. Novel fabrication of PZT thick films by an oil-bath based hydrothermal method. Ceram. Int. 2017, 43, 9573–9576. [Google Scholar] [CrossRef]
- Djellabi, R.; Frias Ordonez, M.; Conte, F.; Falletta, E.; Bianchi, C.L.; Rossetti, I. A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production. J. Hazard. Mater. 2022, 421, 126792. [Google Scholar] [CrossRef]
- Fraile, I.; Gabilondo, M.; Burgos, N.; Azcona, M.; Castro, F. Laser sintered ceramic coatings of PZT nanoparticles deposited by inkjet printing on metallic and ceramic substrates. Ceram. Int. 2018, 44, 15603–15610. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.Y.; Song, X.; Zhu, B.; Hsiai, T.; Wu, P.-I.; Xiong, R.; Shi, J.; Chen, Y.; Zhou, Q.; et al. Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 2016, 22, 414–421. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Handerek, J.; Adamczyk, M.; Ujma, Z. Dielectric and pyroelectric properties of (Pb0.75Ba0.25)(Zr0.70Ti0.30)O3 [x = 0.25÷0.35] ceramics exhibiting the relaxor ferroelectrics behavior. Ferroelectrics 1999, 233, 253–270. [Google Scholar] [CrossRef]
- Roleder, K. Properties and phase transitions in PbZr1−xTixO3 (PZT). Key Eng. Mat. 1998, 155–156, 123–158. [Google Scholar] [CrossRef]
- Roleder, K. Polar regions in the paraelectric phase in a PbZr0.992Ti0. 008O3 single crystal. Phase Transit. 1989, 15, 77–821. [Google Scholar] [CrossRef]
- Dec, J.; Kwapulinski, J. Phase boundaries in NaNbO3 single crystals. Phase Transit. 1989, 18, 1–9. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1995, 192, 55–69. [Google Scholar] [CrossRef]
- Skulski, R.; Wawrzała, P.; Ćwikiel, K.; Bochenek, D. Dielectric and electromechanical behaviors of PMN-PT ceramic samples. J. Intel. Mat. Syst. Str. 2007, 18, 1049–1056. [Google Scholar] [CrossRef]
- Liu, H.-C.; Toraya, H. Ab initio structural study on Nb-doped Pb(Zr0.97Ti0.03)O3 ceramic material by synchrotron X-ray diffraction. Jpn. J. Appl. Phys. 1999, 38, 104. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Jaffe, B.; Roth, R.S.; Marzullo, S. Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate. J. Res. Natl. Bur. Stand. 1955, 55, 239–254. [Google Scholar] [CrossRef]
- Kornphom, C.; Panich, C.; Bongkarn, T. Phase formation and piezoelectric properties of (Pb0.95Ba0.05)(Zr1−xTix)O3 ceramics fabricated by solid state reaction technique. Mater. Res. Innov. 2014, 18, S2-146–S2-150. [Google Scholar] [CrossRef]
- Thongtha, A.; Wattanawikkam, C.; Bongkarn, T. Phase formation and dielectric properties of (Pb0.925Ba0.075)(Zr1−xTix)O3 ceramics prepared by the solid-state reaction method. Phase Transit. 2011, 84, 952–959. [Google Scholar] [CrossRef]
- Brzezińska, D.; Bochenek, D.; Niemiec, P.; Dercz, G. Properties of PBZTS ferroelectric ceramics obtained using spark plasma sintering. Materials 2023, 16, 5756. [Google Scholar] [CrossRef]
- Brzezińska, D. Properties of Pb1–xBax(Zr1–yTiy)1–zSnzO3 (x=0.03, y=0.02, z=0÷0.08) ceramics. Arch. Metall. Mater. 2020, 65, 975–982. [Google Scholar] [CrossRef]
- Gao, L.; Wang, J.; Yang, S.; Qian, B. Electrical properties of non-stoichiometric PZT 95/5 ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 2013, 24, 1664–1669. [Google Scholar] [CrossRef]
- He, W.; Li, Q.; Yan, Q.; Luo, N.; Zhang, Y.; Chu, X.; Shen, D. Temperature-dependent phase transition in orthorhombic [011]c Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 single crystal. Crystals 2014, 4, 262–272. [Google Scholar] [CrossRef]
- Berlincourt, D.; Krueger, H.H.A.; Jaffe, B. Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J. Phys. Chem. Solids 1964, 25, 659–674. [Google Scholar] [CrossRef]
- Singh, A.; Chatterjee, R.; Mishra, S.K.; Krishna, P.S.R.; Chaplot, S.L. Origin of large dielectric constant in La modified BiFeO3-PbTiO3 multiferroic. J. Appl. Phys. 2013, 111, 14113. [Google Scholar] [CrossRef]
- Mondal, R.A.; Murty, B.S.; Murthy, V.R.K. Maxwell-Wagner polarization in grain boundary segregated NiCuZn ferrite. Curr. Appl. Phys. 2014, 14, 1727–1733. [Google Scholar] [CrossRef]
- Mandal, S.K.; Singh, S.; Debnath, R.; Nath, A.; Dey, P. Magnetoelectric coupling, dielectric and electrical properties of xLa0.7Sr0.3MnO3-(1−x)Pb(Zr0.58Ti0.42)O3 (x = 0.05 and 0.1) multiferroic nanocomposites. J. Alloys Compd. 2017, 720, 550–561. [Google Scholar] [CrossRef]
- Kaur, R.; Sharma, V.; Kumar, M.; Singh, M.; Singh, A. Conductivity relaxation in Pb0.9Sm0.10Zr0.405Ti0.495Fe0.10O3 solid solution. J. Alloys Compds. 2018, 735, 1472–1479. [Google Scholar] [CrossRef]
- Erbil, A.; Kim, Y.; Gerhardt, R.A. Giant permittivity in epitaxial ferroelectric heterostructures. Phys. Rev. Lett. 1996, 77, 1628–1631. [Google Scholar] [CrossRef]
- Yu, Z.; Ang, C. Maxwell–Wagner polarization in ceramic composites. J. Appl. Phys. 2002, 91, 794–797. [Google Scholar] [CrossRef]
- Zhang, T.-F.; Tang, X.-G.; Liu, Q.-X.; Lu, S.-G.; Jiang, Y.-P.; Huang, X.-X.; Zhou, Q.-F. Oxygen-vacancy-related relaxation and conduction behavior in (Pb1−xBax)(Zr0.95Ti0.05)O3 ceramics. AIP Adv. 2014, 4, 107141. [Google Scholar] [CrossRef]
- Elissalde, C.; Ravez, J. Ferroelectric ceramics: Defects and dielectric relaxations. J. Mater. Chem. 2001, 11, 1957–1967. [Google Scholar] [CrossRef]
- Zhang, T.F.; Tang, X.G.; Liu, Q.X.; Jiang, Y.P.; Huang, X.X.; Zhou, Q.F. Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. J. Phys. D Appl. Phys. 2016, 49, 095302. [Google Scholar] [CrossRef]
- Wang, X.F.; Lu, X.M.; Zhang, C.; Wu, X.B.; Cai, W.; Peng, S.; Bo, H.F.; Kan, Y.; Huang, F.Z.; Zhu, J.S. Oxygen-vacancy-related high-temperature dielectric relaxation in SrTiO3 ceramics. J. Appl. Phys. 2010, 107, 114101. [Google Scholar] [CrossRef]
- Ke, Q.; Lou, X.; Wang, Y.; Wang, J. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. J. Phys. Rev. B 2010, 82, 024102. [Google Scholar] [CrossRef]
- Fasquelle, D.; Carru, J.C. Electrical characterizations of PZT ceramics in large frequency and temperature ranges. J. Eur. Ceram. Soc. 2008, 28, 2071–2074. [Google Scholar] [CrossRef]
- Belboukhari, A.; Mezzane, D.; Gagou, Y.; Elmarssi, M.; Luk’yanchuk, I.; Zegzouti, A.; Saint-Grégoire, P. Dielectric properties of new ferroelectric lead potassium niobate Pb0.9K0.2Nb2O6. Moroc. J. Condens. Matter 2010, 12, 103–107. [Google Scholar] [CrossRef]
- Sawaguchi, E. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J. Phys. Soc. Jpn. 1953, 8, 615–629. [Google Scholar] [CrossRef]
PBZT_0Sn | PBZT_2Sn | PBZT_4Sn | PBZT_6Sn | PBZT_8Sn | ||||||
---|---|---|---|---|---|---|---|---|---|---|
theor. | exper. | theor. | exper. | theor. | exper. | theor. | exper. | theor. | exper. | |
TiO2 | 0.47 | 0.20 | 0.46 | 0.38 | 0.45 | 0.32 | 0.44 | 0.45 | 0.43 | 0.33 |
ZrO2 | 35.16 | 30.04 | 34.4 | 28.74 | 33.64 | 28.86 | 32.89 | 27.90 | 32.13 | 26.79 |
SnO2 | 0 | 0 | 0.88 | 0.88 | 1.75 | 1.36 | 2.62 | 2.30 | 3.49 | 3.38 |
BaO | 1.34 | 1.48 | 1.34 | 1.18 | 1.33 | 1.12 | 1.33 | 0.84 | 1.33 | 1.15 |
PbO | 63.03 | 68.27 | 62.92 | 68.82 | 62.83 | 68.34 | 62.72 | 68.50 | 62.62 | 68.35 |
Parameter | PBZT_0Sn | PBZT_2Sn | PBZT_4Sn | PBZT_6Sn | PBZT_8Sn |
---|---|---|---|---|---|
ρ (g/cm3) | 7.34 | 7.38 | 7.42 | 7.60 | 7.53 |
d (μm) | 1.42 | 1.40 | 1.87 | 1.70 | 1.86 |
εr a,b | 274 | 275 | 269 | 265 | 269 |
tanδ a,b | 0.119 | 0.123 | 0.097 | 0.064 | 0.031 |
Tm (°C) b | 228 | 221 | 216 | 212 | 205 |
εm at Tm b | 12,141 | 11,526 | 10,850 | 10,861 | 8923 |
tanδ at Tm b | 0.194 | 0.194 | 0.151 | 0.114 | 0.056 |
Pr (μC/cm2) a | 0.53 | 0.40 | 0.50 | 0.31 | 0.30 |
Ec (kV/mm) a | 1.14 | 0.77 | 0.89 | 0.71 | 0.69 |
Pmax (μC/cm2) a | 1.81 | 1.85 | 2.08 | 1.52 | 1.63 |
Cycle | Heating | ||||||||
---|---|---|---|---|---|---|---|---|---|
Phase | Orthorhombic (OR) | Rhombohedral (RE) | Cubic (C) | Rp | Rwp | RB | |||
T (°C) | a (Å) | b (Å) | c (Å) | a (Å) | c (Å) | a (Å) | |||
30 | 5.8653(1) | 11.7453(2) | 8.2177(1) | - | - | - | 11.4 | 9.45 | 5.21 |
60 | 5.8659(1) | 11.7450(2) | 8.2232(1) | - | - | - | 11.0 | 8.72 | 3.40 |
90 | 5.8665(1) | 11.7451(2) | 8.2286(1) | - | - | - | 11.1 | 8.86 | 3.57 |
130 | 5.8668(1) | 11.7445(2) | 8.2358(1) | - | - | - | 13.8 | 11.5 | 4.91 |
170 | - | - | - | 5.8816(2) | 14.3585(5) | - | 16.2 | 14.2 | 3.17 |
230 | - | - | - | - | - | 4.1519(1) | 12.5 | 8.92 | 2.18 |
Cooling | |||||||||
170 | - | - | - | 5.8805(1) | 14.3585(1) | - | 15.4 | 13.6 | 2.93 |
130 | - | - | - | 5.8815(2) | 14.3503(5) | - | 16.8 | 15.0 | 3.27 |
90 | 5.8659(1) | 11.7450(2) | 8.2232(1) | 5.8779(1) | 14.3359(3) | - | 15.5 | 13.5 | 3.19 |
60 | 5.8667(1) | 11.7452(2) | 8.2242(2) | 5.8786(2) | 14.3245(6) | - | 11.6 | 9.44 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzezińska, D.; Bochenek, D.; Zubko, M.; Niemiec, P.; Matuła, I. Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method. Materials 2024, 17, 5072. https://doi.org/10.3390/ma17205072
Brzezińska D, Bochenek D, Zubko M, Niemiec P, Matuła I. Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method. Materials. 2024; 17(20):5072. https://doi.org/10.3390/ma17205072
Chicago/Turabian StyleBrzezińska, Dagmara, Dariusz Bochenek, Maciej Zubko, Przemysław Niemiec, and Izabela Matuła. 2024. "Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method" Materials 17, no. 20: 5072. https://doi.org/10.3390/ma17205072
APA StyleBrzezińska, D., Bochenek, D., Zubko, M., Niemiec, P., & Matuła, I. (2024). Properties of Sn-Doped PBZT Ferroelectric Ceramics Sintered by Hot-Pressing Method. Materials, 17(20), 5072. https://doi.org/10.3390/ma17205072