Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = orthopedic strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 11672 KiB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 (registering DOI) - 7 Aug 2025
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

19 pages, 1185 KiB  
Article
PredictMed-CDSS: Artificial Intelligence-Based Decision Support System Predicting the Probability to Develop Neuromuscular Hip Dysplasia
by Carlo M. Bertoncelli, Federico Solla, Michal Latalski, Sikha Bagui, Subhash C. Bagui, Stefania Costantini and Domenico Bertoncelli
Bioengineering 2025, 12(8), 846; https://doi.org/10.3390/bioengineering12080846 - 6 Aug 2025
Abstract
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability [...] Read more.
Neuromuscular hip dysplasia (NHD) is a common deformity in children with cerebral palsy (CP). Although some predictive factors of NHD are known, the prediction of NHD is in its infancy. We present a Clinical Decision Support System (CDSS) designed to calculate the probability of developing NHD in children with CP. The system utilizes an ensemble of three machine learning (ML) algorithms: Neural Network (NN), Support Vector Machine (SVM), and Logistic Regression (LR). The development and evaluation of the CDSS followed the DECIDE-AI guidelines for AI-driven clinical decision support tools. The ensemble was trained on a data series from 182 subjects. Inclusion criteria were age between 12 and 18 years and diagnosis of CP from two specialized units. Clinical and functional data were collected prospectively between 2005 and 2023, and then analyzed in a cross-sectional study. Accuracy and area under the receiver operating characteristic (AUROC) were calculated for each method. Best logistic regression scores highlighted history of previous orthopedic surgery (p = 0.001), poor motor function (p = 0.004), truncal tone disorder (p = 0.008), scoliosis (p = 0.031), number of affected limbs (p = 0.05), and epilepsy (p = 0.05) as predictors of NHD. Both accuracy and AUROC were highest for NN, 83.7% and 0.92, respectively. The novelty of this study lies in the development of an efficient Clinical Decision Support System (CDSS) prototype, specifically designed to predict future outcomes of neuromuscular hip dysplasia (NHD) in patients with cerebral palsy (CP) using clinical data. The proposed system, PredictMed-CDSS, demonstrated strong predictive performance for estimating the probability of NHD development in children with CP, with the highest accuracy achieved using neural networks (NN). PredictMed-CDSS has the potential to assist clinicians in anticipating the need for early interventions and preventive strategies in the management of NHD among CP patients. Full article
Show Figures

Figure 1

33 pages, 4268 KiB  
Review
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches
by Alessandro Calogero Scalia and Ziba Najmi
Antibiotics 2025, 14(8), 802; https://doi.org/10.3390/antibiotics14080802 - 6 Aug 2025
Abstract
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms [...] Read more.
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms contribute to water contamination, pipeline corrosion, and biofouling. Clinically, biofilm-associated infections are responsible for approximately 80% of all microbial infections, including endocarditis, osteomyelitis, cystic fibrosis, and chronic sinusitis. A particularly critical concern is their colonization of medical devices, where biofilms can lead to chronic infections, implant failure, and increased mortality. Implantable devices, such as orthopedic implants, cardiac pacemakers, cochlear implants, urinary catheters, and hernia meshes, are highly susceptible to microbial attachment and biofilm development. These infections are often recalcitrant to conventional antibiotics and frequently necessitate surgical revision. In the United States, over 500,000 biofilm-related implant infections occur annually, with prosthetic joint infections alone projected to incur revision surgery costs exceeding USD 500 million per year—a figure expected to rise to USD 1.62 billion by 2030. To address these challenges, surface modification of medical devices has emerged as a promising strategy to prevent bacterial adhesion and biofilm formation. This review focuses on recent advances in chemical surface functionalization using non-antibiotic agents, such as enzymes, chelating agents, quorum sensing quenching factors, biosurfactants, oxidizing compounds and nanoparticles, designed to enhance antifouling and mature biofilm eradication properties. These approaches aim not only to prevent device-associated infections but also to reduce dependence on antibiotics and mitigate the development of antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial and Antibiofilm Properties of Biomaterial)
Show Figures

Graphical abstract

41 pages, 3471 KiB  
Review
State of Art and Perspective of Calcium Phosphate-Based Coatings Coupled with Bioactive Compounds for Orthopedic Applications
by Matteo Montesissa, Viviana Tommasini, Katia Rubini, Marco Boi, Nicola Baldini and Elisa Boanini
Nanomaterials 2025, 15(15), 1199; https://doi.org/10.3390/nano15151199 - 5 Aug 2025
Abstract
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of [...] Read more.
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of implanted devices is an effective strategy to increase their osteoinductive and osseointegrative properties. Several coating fabrication technologies are presented, including chemical deposition and physical methods. The application of bioactive molecules in combination with calcium phosphate coatings may improve their osteointegrative, antibacterial, and antitumor properties, therefore increasing the performance of implantable devices. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

22 pages, 1937 KiB  
Review
Carbon Dot Nanozymes in Orthopedic Disease Treatment: Comprehensive Overview, Perspectives and Challenges
by Huihui Wang
C 2025, 11(3), 58; https://doi.org/10.3390/c11030058 - 1 Aug 2025
Viewed by 212
Abstract
Nanozymes, as a new generation of artificial enzymes, have attracted increasing attention in the field of biomedicine due to their multiple enzymatic characteristics, multi-functionality, low cost, and high stability. Among them, carbon dot nanozymes (CDzymes) possess excellent enzymatic-like catalytic activity and biocompatibility and [...] Read more.
Nanozymes, as a new generation of artificial enzymes, have attracted increasing attention in the field of biomedicine due to their multiple enzymatic characteristics, multi-functionality, low cost, and high stability. Among them, carbon dot nanozymes (CDzymes) possess excellent enzymatic-like catalytic activity and biocompatibility and have been developed for various diagnostic and therapeutic studies of diseases. Here, we briefly review the representative research on CDzymes in recent years, including their synthesis, modification, and applications, especially in orthopedic diseases, including osteoarthritis, osteoporosis, osteomyelitis, intervertebral disc degenerative diseases, bone tumors, and bone injury repair and periodontitis. Additionally, we briefly discuss the potential future applications and opportunities and challenges of CDzymes. We hope this review can provide some reference opinions for CDzymes and offer insights for promoting their application strategies in the treatment of orthopedic disease. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

16 pages, 5224 KiB  
Article
The Effects of Calcium Phosphate Bone Cement Preparation Parameters on Injectability and Compressive Strength for Minimally Invasive Surgery
by Qinfeng Qiao, Qianbin Zhao, Jinwen Wang, Mingjun Li, Huan Zhou and Lei Yang
Bioengineering 2025, 12(8), 834; https://doi.org/10.3390/bioengineering12080834 - 31 Jul 2025
Viewed by 285
Abstract
Compared with biocompatibility, osteoconductivity, and mechanical properties, the poor injectability of calcium phosphate bone cements (CPCs) is always ignored, which actually hinders the development of CPC clinical transfer in minimally invasive orthopedic surgeries. Moreover, currently, CPC preparation in the clinic is labor-intensive and [...] Read more.
Compared with biocompatibility, osteoconductivity, and mechanical properties, the poor injectability of calcium phosphate bone cements (CPCs) is always ignored, which actually hinders the development of CPC clinical transfer in minimally invasive orthopedic surgeries. Moreover, currently, CPC preparation in the clinic is labor-intensive and requires well-trained technicists, which might also result in the unstable quality of CPCs. In this work, we focused on three research objectives: (i) introducing a standardized preparation method for CPCs; (ii) studying the effects of preparation parameters on CPC injectability and compressive strength; and (iii) studying the injecting condition effects on CPC injectability, aiming to overcome CPCs’ disadvantages in minimally invasive surgeries. Firstly, two strategies, named “variable mixing barrel control (VMBC)” and the “nested blade–baffle stirring rod (NBBSR)”, were proposed in this study to solve the problems in the preparation of CPCs, which involved blending CPC powder and an agent to generate a paste, by enhancing the mixing performance and mimicking human manual stirring actions. Secondly, although the grinding parameter could significantly generate differences in the microstructure of CPCs, the compressive strength remained relatively stable. However, it was found to significantly affect the injectability of CPCs, leading to the inefficient injection of CPCs. Finally, the effects of syringe design, dimensions, and injecting conditions on CPC injectability were studied, and the results showed that the optimization of these factors enables the injection of CPCs, which has otherwise always been infeasible to implement in minimally invasive orthopedic surgeries. Full article
Show Figures

Figure 1

12 pages, 441 KiB  
Article
Optimizing Safety and Efficacy of Intravenous Vancomycin Therapy in Orthopedic Inpatients Through a Standardized Dosing Protocol: A Pre-Post Cohort Study
by Moritz Diers, Juliane Beschauner, Maria Felsberg, Alexander Zeh, Karl-Stefan Delank, Natalia Gutteck and Felix Werneburg
Antibiotics 2025, 14(8), 775; https://doi.org/10.3390/antibiotics14080775 - 31 Jul 2025
Viewed by 315
Abstract
Background: Intravenous vancomycin remains a key agent in the treatment of complex orthopedic infections, particularly those involving methicillin-resistant Staphylococcus aureus (MRSA). However, its use is associated with significant risks, most notably nephrotoxicity. Despite guideline recommendations, standardized dosing and monitoring protocols are often [...] Read more.
Background: Intravenous vancomycin remains a key agent in the treatment of complex orthopedic infections, particularly those involving methicillin-resistant Staphylococcus aureus (MRSA). However, its use is associated with significant risks, most notably nephrotoxicity. Despite guideline recommendations, standardized dosing and monitoring protocols are often absent in orthopedic settings, leading to inconsistent therapeutic drug exposure and preventable adverse events. This study evaluated the clinical impact of implementing a structured standard operating procedure (SOP) for intravenous vancomycin therapy in orthopedic inpatients. Methods: We conducted a single-center, pre-post cohort study at a university orthopedic department. The intervention consisted of a standard operating procedure (SOP) for intravenous vancomycin therapy, which mandated weight-based loading doses, renal function-adjusted maintenance dosing, trough level monitoring, and defined dose adjustments. Patients treated before SOP implementation (n = 58) formed the control group; those treated under the SOP (n = 56) were prospectively included. The primary outcome was the incidence of vancomycin-associated acute kidney injury (VA-AKI) defined by KDIGO Stage 1 criteria. Secondary outcomes included therapeutic trough level attainment and infusion-related or ototoxic adverse events. Results: All patients in the post-SOP group received a loading dose (100% vs. 31% pre-SOP, p < 0.001). The range of measured vancomycin trough levels narrowed substantially after SOP implementation (7.1–36.2 mg/L vs. 4.0–80.0 mg/L). The proportion of patients reaching therapeutic trough levels increased, although this was not statistically significant. Most notably, VA-AKI occurred in 17.2% of patients in the control group, but in none of the patients after SOP implementation (0%, p = 0.0013). No cases of ototoxicity were observed in either group. Infusion-related reactions decreased after the implementation of the SOP, though not significantly. Conclusions: The introduction of a structured vancomycin protocol significantly reduced adverse drug events and improved dosing control in orthopedic inpatients. Incorporating such protocols into routine practice represents a feasible and effective strategy to strengthen antibiotic stewardship and clinical quality in surgical disciplines. Full article
Show Figures

Figure 1

15 pages, 3018 KiB  
Article
Ultrasonographic Assessment of Meniscus Damage in the Context of Clinical Manifestations
by Tomasz Poboży, Wojciech Konarski, Kacper Janowski, Klaudia Michalak, Kamil Poboży and Julia Domańska-Poboża
Medicina 2025, 61(8), 1339; https://doi.org/10.3390/medicina61081339 - 24 Jul 2025
Viewed by 279
Abstract
Background and Objectives: Meniscal pathologies are common abnormalities of the knee joint and a frequent cause of knee pain. Prompt and accurate diagnosis is essential to ensure appropriate treatment. Ultrasonography is increasingly used due to its accessibility, cost- and time-efficiency, and capacity [...] Read more.
Background and Objectives: Meniscal pathologies are common abnormalities of the knee joint and a frequent cause of knee pain. Prompt and accurate diagnosis is essential to ensure appropriate treatment. Ultrasonography is increasingly used due to its accessibility, cost- and time-efficiency, and capacity for dynamic assessment. This study aimed to evaluate the usefulness of ultrasonography in identifying specific types of meniscal tears and to assess their frequency of occurrence. Materials and Methods: A retrospective study was conducted to assess the frequency and sonographic appearance of various meniscal pathologies. The study population included all patients who underwent ultrasonographic examination of the knee in our clinic over one year for various indications (n = 430). Archived ultrasound images were retrospectively reviewed and analyzed. Results: Meniscal pathologies were identified in 134 patients. The findings included 95 cases of degenerative lesions (70.9%), 18 meniscal cyst-related pathologies (13.4%), 8 complex tears (6.0%), 5 flap tears (3.7%), 3 vertical pericapsular tears (2.2%), 3 partial thickness tears (2.2%), and 2 bucket-handle-type tears (1.5%). Each lesion type was characterized and illustrated through representative ultrasound images. Conclusions: Ultrasound imaging of meniscal pathology offers a valuable diagnostic option. By characterizing and visually documenting different meniscal lesions, this study highlights the practical potential of ultrasonography in routine clinical settings. These findings may enhance diagnostic accuracy and guide more targeted management strategies. Moreover, the results contribute to the expanding body of research on musculoskeletal ultrasonography and may encourage broader adoption of ultrasound in orthopedic diagnostics. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

21 pages, 913 KiB  
Article
An Innovative Strategy for Sustainability Assurance in Orthopedic Surgery
by Flaviu Moldovan and Liviu Moldovan
Med. Sci. 2025, 13(3), 93; https://doi.org/10.3390/medsci13030093 - 22 Jul 2025
Viewed by 186
Abstract
Background/Objectives: Due to the aging population, orthopedics has become the surgical field with the fastest and greatest growth, and health systems must therefore ensure the sustainable development of this field. The objective of this study is to identify the key areas and the [...] Read more.
Background/Objectives: Due to the aging population, orthopedics has become the surgical field with the fastest and greatest growth, and health systems must therefore ensure the sustainable development of this field. The objective of this study is to identify the key areas and the most relevant activities for sustainability assurance in orthopedic surgery, as well as appropriate evaluation tools. Methods: Consisted in designing the key areas for sustainable surgery and evaluating them with the support of new indicators. These areas are based on the most current and relevant practices reported by hospitals around the world. This process was followed by practical validation in an orthopedic hospital. Results: Four key areas were revealed: rationalization and reduction of consumption, correct separation and recycling of waste, reuse of textiles and equipment, and anesthetics and alternative interventions. The indicators for the evaluation of these areas were developed with the support of results reported in international studies. Each indicator has five levels of fulfilment. Their importance is evaluated on a scale from 1 to 5. Conclusions: The practical implementation at an orthopedic emergency hospital highlighted the suitability of the indicators within the purpose of the research. Sustaining the values of these changes by surgeons and patients facilitates long-term results and the orientation towards assuring the sustainability of orthopedic surgery. Full article
Show Figures

Figure 1

15 pages, 4368 KiB  
Article
Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface
by Mariusz Winiecki, Magdalena Stepczyńska, Maciej Walczak, Ewelina Soszczyńska, Magdalena Twarużek, Dorota Bociaga, Marek Trzcinski, Marta Michalska-Sionkowska and Krzysztof Moraczewski
Int. J. Mol. Sci. 2025, 26(15), 7051; https://doi.org/10.3390/ijms26157051 - 22 Jul 2025
Viewed by 448
Abstract
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing [...] Read more.
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing antimicrobial coatings on Ti implants is therefore a promising strategy. In this study, tannic acid (TA) coatings were deposited by immersing Ti alloy surfaces—beforehand activated by low-temperature oxygen plasma—in TA solutions at 2, 5, and 8 wt%. Coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and Folin–Ciocalteu release assays, and their cytocompatibility and antimicrobial performance were assessed in vitro. Surface characterization confirmed the formation of uniform TA layers, and WCA measurements indicated enhanced hydrophilicity relative to unmodified Ti (82.0° ± 3.6°), with values decreasing as TA concentration increased (from 35.2° ± 3.2° for 2% TA to 26.6° ± 2.8° for 8% TA). TA release profiles exhibited an initial burst followed by sustained diffusion, with 5% and 8% coatings releasing significantly more TA than 2% coatings. Coatings containing ≥ 5% TA demonstrated bactericidal activity—achieving > 2-log10 reductions—against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and also showed inhibitory effects against Candida albicans. Importantly, all coatings remained cytocompatible with NIH/3T3 fibroblasts, and the released tannic acid hydrolysis products (particularly gallic acid) enhanced their proliferation. These findings indicate that plasma-activated titanium surfaces coated with ≥5 wt% tannic acid impart broad-spectrum antimicrobial efficacy and hold potential to reduce implant-associated infections and improve long-term outcomes in orthopedic and dental applications. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

15 pages, 1443 KiB  
Article
Prediction of Waiting Lists for Medical Specialties in Hospitals in Costa Rica Using Queuing Theory and Monte Carlo Simulation
by Bernal Vargas-Vargas, Erick Pérez-Murillo, Jaime González-Domínguez and Justo García-Sanz-Calcedo
Hospitals 2025, 2(3), 17; https://doi.org/10.3390/hospitals2030017 - 22 Jul 2025
Viewed by 298
Abstract
This study applies stochastic discrete event modeling to demonstrate that reducing wait times for specialized outpatient clinics in the Costa Rican public healthcare system is possible. The classification process identified four medical specialties with the longest wait times. It includes the creation of [...] Read more.
This study applies stochastic discrete event modeling to demonstrate that reducing wait times for specialized outpatient clinics in the Costa Rican public healthcare system is possible. The classification process identified four medical specialties with the longest wait times. It includes the creation of a separate queuing theory model for each specialty. The birth and death model allowed for estimating the number of arrivals and consultations in the simulation. Validation was performed by comparing the model’s input and output data with real-world statistical reports. An analysis of medical specialists revealed that approximately 22% of patients referred to secondary care did not require specialized medical consultation. Through simulation and the use of stochastic input data, patient waiting times decreased. In an optimistic scenario, waiting times decreased steadily across all specialties over 24 months. Ophthalmology and orthopedics reduced their waiting times to less than 300 days. Otorhinolaryngology decreased from 370 to 250 days, and urology showed the most significant improvement, decreasing from 350 to 100 days in the first year and remaining stable. This evidence transforms the traditional paradigm of increasing capacity as the only solution to the waiting list problem and positions improving the referral process as an alternative. To achieve these results, the study highlights the importance of implementing improved triage protocols in primary care, integrating decision-support tools for general practitioners using machine learning, for example, to reduce unnecessary referrals. Training programs and feedback mechanisms could also align referral practices with specialty criteria. While these strategies were not implemented in this study, the simulation results provide a solid basis for their design and future evaluation. Full article
Show Figures

Figure 1

20 pages, 4241 KiB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 - 19 Jul 2025
Viewed by 393
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

24 pages, 816 KiB  
Systematic Review
Impact of Obstructive Sleep Apnea in Surgical Patients: A Systematic Review
by Ioana-Medeea Titu, Damiana Maria Vulturar, Ana Florica Chis, Alexandru Oprea, Alexandru Manea and Doina Adina Todea
J. Clin. Med. 2025, 14(14), 5095; https://doi.org/10.3390/jcm14145095 - 17 Jul 2025
Viewed by 555
Abstract
Background/Objectives: Obstructive sleep apnea is a prevalent, yet often underdiagnosed, condition characterized by recurrent upper airway obstruction during sleep, leading to significant perioperative risks in surgical patients. This systematic review aims to evaluate the incidence and impact of objectively diagnosed obstructive sleep [...] Read more.
Background/Objectives: Obstructive sleep apnea is a prevalent, yet often underdiagnosed, condition characterized by recurrent upper airway obstruction during sleep, leading to significant perioperative risks in surgical patients. This systematic review aims to evaluate the incidence and impact of objectively diagnosed obstructive sleep apnea on postoperative outcomes across various surgical specialties—including bariatric, orthopedic, cardiac, and otorhinolaryngologic surgeries—and to assess the effectiveness of preoperative screening and perioperative management strategies. Methods: A comprehensive literature search of PubMed was conducted for studies published between January 2013 and December 2024, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Included studies involved adult surgical patients with OSA confirmed by polysomnography or respiratory polygraphy. Studies were assessed for methodological quality using the Oxford Centre for Evidence-Based Medicine Levels of Evidence framework. Results: The findings consistently indicated that obstructive sleep apnea significantly increases the risk of postoperative complications, such as respiratory depression, atrial fibrillation, acute kidney injury, delirium, and prolonged hospital stay. Continuous positive airway pressure therapy demonstrated a protective effect in bariatric and cardiac surgeries, though its effectiveness in orthopedic and otorhinolaryngologic contexts was inconsistent, largely due to adherence variability and limited implementation. Preoperative screening tools such as the STOP-BANG questionnaire were widely used, but their utility depended on integration with confirmatory diagnostics. Conclusions: Obstructive sleep apnea represents a significant, modifiable risk factor in surgical populations. Preoperative identification and risk-adapted perioperative management, including CPAP therapy and multimodal analgesia, may substantially reduce postoperative morbidity. However, further randomized trials and cost-effectiveness studies are needed to optimize care pathways and ensure consistent implementation across surgical disciplines. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

15 pages, 751 KiB  
Article
Kinesiological Analysis Using Inertial Sensor Systems: Methodological Framework and Clinical Applications in Pathological Gait
by Danelina Emilova Vacheva and Atanas Kostadinov Drumev
Sensors 2025, 25(14), 4435; https://doi.org/10.3390/s25144435 - 16 Jul 2025
Viewed by 275
Abstract
Accurate gait assessment is essential for managing pathological locomotion, especially in elderly patients recovering from hip joint surgeries. Inertial measurement units (IMUs) provide real-time, objective data in clinical settings. This study examined pelvic oscillations in sagittal, frontal, and transverse planes using a wearable [...] Read more.
Accurate gait assessment is essential for managing pathological locomotion, especially in elderly patients recovering from hip joint surgeries. Inertial measurement units (IMUs) provide real-time, objective data in clinical settings. This study examined pelvic oscillations in sagittal, frontal, and transverse planes using a wearable IMU system in two groups: Group A (n = 15, osteosynthesis metallica) and Group B (n = 34, arthroplasty), all over age 65. Gait analysis was conducted during assisted and unassisted walking. In the frontal plane, both groups showed statistically significant improvements: Group A from 46.4% to 75.2% (p = 0.001) and Group B from 52.6% to 72.2% (p = 0.001), reflecting enhanced lateral stability. In the transverse plane, Group A improved significantly from 47.7% to 80.2% (p = 0.001), while Group B showed a non-significant increase from 73.0% to 80.5% (p = 0.068). Sagittal plane changes were not statistically significant (Group A: 68.8% to 71.1%, p = 0.313; Group B: 76.4% to 69.1%, p = 0.065). These improvements correspond to better pelvic symmetry and postural control, which are critical for a safe and stable gait. Improvements were more pronounced during unassisted walking, indicating better pelvic control. These results confirm the clinical utility of IMUs in capturing subtle gait asymmetries and monitoring recovery progress. The findings support their use in tailoring rehabilitation strategies, particularly for enhancing frontal and transverse pelvic stability in elderly orthopedic patients. Full article
(This article belongs to the Special Issue Sensor Technologies for Gait Analysis: 2nd Edition)
Show Figures

Figure 1

30 pages, 2419 KiB  
Systematic Review
Rehabilitation Protocols for Surgically Treated Acetabular Fractures in Older Adults: Current Practices and Outcomes
by Silviya Ivanova, Ondrej Prochazka, Peter V. Giannoudis, Theodoros Tosounidis, Moritz Tannast and Johannes D. Bastian
J. Clin. Med. 2025, 14(14), 4912; https://doi.org/10.3390/jcm14144912 - 10 Jul 2025
Viewed by 443
Abstract
Background/Objectives: Acetabular fractures in older adults pose significant challenges due to bone fragility, complex fracture patterns, and increased comorbidities. Surgical management, including isolated open reduction and internal fixation (ORIF) and ORIF combined with acute total hip arthroplasty (THA) (combined hip procedure—CHP), have [...] Read more.
Background/Objectives: Acetabular fractures in older adults pose significant challenges due to bone fragility, complex fracture patterns, and increased comorbidities. Surgical management, including isolated open reduction and internal fixation (ORIF) and ORIF combined with acute total hip arthroplasty (THA) (combined hip procedure—CHP), have advanced considerably. Nevertheless, optimal postoperative rehabilitation and particularly weight-bearing (WB) recommendations remain controversial and inconsistent. This review aims to assess rehabilitation protocols, focusing on WB strategies following the surgical treatment of acetabular fractures in older adults. It also examines differences in WB restrictions by surgical technique (ORIF vs. CHP) and their impact on recovery, complications, reoperations, and mortality. Methods: A systematic review of PubMed, Embase, and the Cochrane Library (2006–2024) included studies involving patients aged ≥65 years treated surgically for displaced acetabular fractures. Data included WB protocols (full, partial, toe-touch), length of stay (LOS), healing, functional outcomes (mobility, Harris and Oxford Hip Scores), complications, reoperations, delayed THA, compliance, readmission, and mortality. Due to heterogeneity, findings were narratively synthesized. Risk of bias was assessed using ROBINS-I and RoB2. Results: Twenty studies involving 929 patients (530 isolated ORIF, 399 CHP) were analyzed. The overall mean follow-up was 3.5 years (range: 1–5.25 years). Postoperative WB protocols were reported in 19 studies (95%). Immediate full WB was permitted in 0% of isolated ORIF studies (0/13), with partial WB recommended by 62% (8/13) for durations typically between 6 and 12 weeks. On the other hand, immediate full WB was allowed in 53% (9/17) of CHP studies. Functional outcomes were moderate following isolated ORIF (mean HHS: 63–82 points), with delayed THA conversion rates ranging from 16.5% to 45%. CHP demonstrated superior functional outcomes (mean HHS: 70–92 points), earlier independent ambulation, and higher patient satisfaction (74–90%), yet increased orthopedic complications, including dislocations (8–11%) and implant loosening (up to 18%). LOS varied from 12 to 21 days (mean 16 days) for isolated ORIF and from 8 to 25 days (mean 17 days) for CHP. Readmission within 30 days was not explicitly reported in any study. Mortality at 1 year varied significantly (ORIF: 0–25%; CHP: 0–14%), increasing markedly at long-term follow-up (up to 42% ORIF, up to 70% CHP at five years). Compliance with WB restrictions was monitored in only two studies (11%). Conclusions: Postoperative rehabilitation after acetabular fracture surgery in older adults remains inconsistent and lacks standardization. Combining ORIF with acute THA may enable earlier weight-bearing and improved short-term function but carries risks such as dislocation and implant loosening. In contrast, isolated ORIF avoids these implant-related complications but often requires prolonged weight-bearing restrictions. Robust evidence is still missing. Future trials are essential to establish standardized protocols that balance mechanical protection and functional recovery. Full article
(This article belongs to the Special Issue The “Orthogeriatric Fracture Syndrome”—Issues and Perspectives)
Show Figures

Figure 1

Back to TopTop