Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (273)

Search Parameters:
Keywords = orphan diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1595 KiB  
Review
Gene Therapy of Adrenomyeloneuropathy: Challenges, Target Cells, and Prospectives
by Pierre Bougnères, Catherine Le Stunff and Romina Aron Badin
Biomedicines 2025, 13(8), 1892; https://doi.org/10.3390/biomedicines13081892 - 4 Aug 2025
Viewed by 277
Abstract
Gene replacement using adeno-associated viral (AAV) vectors has become a major therapeutic avenue for neurodegenerative diseases (NDD). In single-gene diseases with loss-of-function mutations, the objective of gene therapy is to express therapeutic transgenes abundantly in cell populations that are implicated in the pathological [...] Read more.
Gene replacement using adeno-associated viral (AAV) vectors has become a major therapeutic avenue for neurodegenerative diseases (NDD). In single-gene diseases with loss-of-function mutations, the objective of gene therapy is to express therapeutic transgenes abundantly in cell populations that are implicated in the pathological phenotype. X-ALD is one of these orphan diseases. It is caused by ABCD1 gene mutations and its main clinical form is adreno-myelo-neuropathy (AMN), a disabling spinal cord axonopathy starting in middle-aged adults. Unfortunately, the main cell types involved are yet poorly identified, complicating the choice of cells to be targeted by AAV vectors. Pioneering gene therapy studies were performed in the Abcd1-/y mouse model of AMN with AAV9 capsids carrying the ABCD1 gene. These studies tested ubiquitous or cell-specific promoters, various routes of vector injection, and different ages at intervention to either prevent or reverse the disease. The expression of one of these vectors was studied in the spinal cord of a healthy primate. In summary, gene therapy has made promising progress in the Abcd1-/y mouse model, inaugurating gene replacement strategies in AMN patients. Because X-ALD is screened neonatally in a growing number of countries, gene therapy might be applied in the future to patients before they become overtly symptomatic. Full article
Show Figures

Figure 1

2 pages, 145 KiB  
Correction
Correction: Szebeni, J. Expanded Spectrum and Increased Incidence of Adverse Events Linked to COVID-19 Genetic Vaccines: New Concepts on Prophylactic Immuno-Gene Therapy, Iatrogenic Orphan Disease, and Platform-Inherent Challenges. Pharmaceutics 2025, 17, 450
by Janos Szebeni
Pharmaceutics 2025, 17(7), 801; https://doi.org/10.3390/pharmaceutics17070801 - 20 Jun 2025
Viewed by 337
Abstract
To make the sentences clearer and easier for readers to read, the grammatical format of some sentences has been modified, as follows:Change “on the prevalence of AEs and incidents” into “on the prevalence and incidence of AEs ” and change “The review” into [...] Read more.
To make the sentences clearer and easier for readers to read, the grammatical format of some sentences has been modified, as follows:Change “on the prevalence of AEs and incidents” into “on the prevalence and incidence of AEs ” and change “The review” into “This review” in abstract [...] Full article
16 pages, 5646 KiB  
Article
Retinoic-Acid-Related Orphan Receptor Alpha Is Involved in the Regulation of the Cytoskeleton of Hair Follicle Stem Cells
by Yu Zhang, Xuefei Zhao, Shuqi Li, Suying Bai and Wei Zhang
Biomolecules 2025, 15(6), 863; https://doi.org/10.3390/biom15060863 - 13 Jun 2025
Viewed by 553
Abstract
The development and replacement of hair play a significant role in the life history of animals. In recent years, retinoic-acid-related orphan receptor alpha (Rorα) has been found to participate in the regulation of hair follicle development, yet the underlying mechanisms remain [...] Read more.
The development and replacement of hair play a significant role in the life history of animals. In recent years, retinoic-acid-related orphan receptor alpha (Rorα) has been found to participate in the regulation of hair follicle development, yet the underlying mechanisms remain incompletely understood. This study aims to analyze the regulatory role of Rorα on the cytoskeleton of hair follicle stem cells (HFSCs). We treated HFSCs with a RORA agonist and subsequently analyzed differential gene expression using qPCR, Western blotting, and immunofluorescence, finding that agonist-induced activation of RORA suppressed the expression levels of cytoskeleton-related genes. Additionally, F-actin staining with phalloidin, followed by migration assays and wound healing tests for cell migration detection, revealed that this process affected the cytoskeletal state of HFSCs and inhibited their migration and adhesion capabilities. We further conducted interaction analyses using CUT&RUN combined with ddPCR and EMSA, demonstrating that RORA can bind to the promoter regions of the Actg1 gene and regulate their transcription. This study contributes to a comprehensive understanding of the regulatory processes involved in hair follicle development and may provide broader insights into the treatment of diseases such as alopecia. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

17 pages, 922 KiB  
Review
Isoforms of Phosphorylated Tau as Potential Biomarkers for Alzheimer’s Disease: The Contribution of Mass Spectrometry-Based Proteomics
by Marco Agostini, Pietro Traldi and Mahmoud Hamdan
NeuroSci 2025, 6(2), 50; https://doi.org/10.3390/neurosci6020050 - 3 Jun 2025
Viewed by 1595
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, heterogeneous at the molecular level and characterized by diverse and complex pathological features. Such features are known to accumulate silently in the brain over years or even decades before the onset of detectable symptoms. Despite [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, heterogeneous at the molecular level and characterized by diverse and complex pathological features. Such features are known to accumulate silently in the brain over years or even decades before the onset of detectable symptoms. Despite long years of intense research activities, the disease remains orphaned of either disease-modifying therapies or a specific blood test capable of predicting the disease in the pre-symptomatic stages. This disappointing outcome of such efforts can be attributed to a number of factors. One of these factors is the failure of earlier research to capture the heterogeneity of the disease. Such failure has the direct consequence of poor patient stratification, which in turn impacts negatively on the development of specific and effective therapy. The second factor is the absence of detailed and accurate information on proteins and associated post-translational modifications, which may influence the initiation and progress of the disease. Recent studies have demonstrated that the quantification of various isoforms of phosphorylated tau protein in plasma and other biofluids can be considered as potential biomarkers for the early detection of Alzheimer’s disease. Mass spectrometry-based proteomics and immunoassay-based multiplex proteomics are the two technologies in current use for probing the human proteome, both in tissues and biofluids. In the present review, we discuss the contribution of MS-based proteomics to efforts aimed at the identification and eventual characterization of the heterogeneity of the disease, and the key role of the same technique in the analysis of protein post-translational modifications associated with the disease is also discussed. Full article
Show Figures

Figure 1

21 pages, 2278 KiB  
Review
Orphan Nuclear Receptors TR2 and TR4 in Erythropoiesis: From Mechanisms to Therapies
by Yunlong Liu, Helian Yang, Mengtian Ren, Qing Yu, Qingyang Xu and Xiuping Fu
Biomolecules 2025, 15(6), 798; https://doi.org/10.3390/biom15060798 - 31 May 2025
Viewed by 668
Abstract
Testicular orphan receptors TR2 and TR4 serve as central regulators of erythropoiesis, orchestrating the entire continuum of erythroid progenitor cell proliferation, differentiation, and maturation. As core components of the direct repeat erythroid determinant (DRED) complex, they activate erythroid-specific transcriptional programs to dynamically control [...] Read more.
Testicular orphan receptors TR2 and TR4 serve as central regulators of erythropoiesis, orchestrating the entire continuum of erythroid progenitor cell proliferation, differentiation, and maturation. As core components of the direct repeat erythroid determinant (DRED) complex, they activate erythroid-specific transcriptional programs to dynamically control the spatiotemporal expression of globin genes. These nuclear receptors not only engage in functional interactions with key erythroid transcription factors GATA1 and KLF1 to coregulate erythroid differentiation and maturation but also recruit epigenetic modifier complexes such as DNMT1 and LSD1 to modulate chromatin states dynamically. Research has established that dysfunctions in TR2/TR4 are implicated in β-thalassemia and sickle cell disease (SCD): β-thalassemia is associated with the defective silencing of γ-globin genes, while in SCD, TR2/TR4 antagonizes BCL11A to reactivate fetal hemoglobin (HbF) expression. This review systematically dissects the molecular regulatory networks of TR2/TR4 in erythroid cells, interprets their dual regulatory properties across different stages of erythroid differentiation, and explores the therapeutic potential of targeting TR2/TR4 for treating erythroid-related disorders such as β-thalassemia and SCD, thereby providing novel directions for hematological disorder therapy. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

15 pages, 2129 KiB  
Article
Optimizing Patient Access to Orphan Medicinal Products: Lessons from Central and Eastern Europe
by Tomasz Kluszczynski, Bertalan Nemeth, Magdalena Władysiuk, Marcin Czech, Maria Kamusheva, Nicolae Fotin, Sandra Rose, Tomáš Doležal and Rok Hren
J. Mark. Access Health Policy 2025, 13(2), 24; https://doi.org/10.3390/jmahp13020024 - 26 May 2025
Viewed by 615
Abstract
This study examines patient access to orphan medicinal products (OMPs) in Central and Eastern Europe (CEE) over the past five years, focusing on seven countries: Bulgaria, Czechia, Hungary, Poland, Romania, Slovakia, and Slovenia. While these jurisdictions have undergone rapid healthcare transformations, significant disparities [...] Read more.
This study examines patient access to orphan medicinal products (OMPs) in Central and Eastern Europe (CEE) over the past five years, focusing on seven countries: Bulgaria, Czechia, Hungary, Poland, Romania, Slovakia, and Slovenia. While these jurisdictions have undergone rapid healthcare transformations, significant disparities in OMP access persist compared to Western Europe. This study aimed to address this gap by identifying barriers and enablers to optimize patient access to OMPs in a sustainable and equitable manner. A mixed-methodology approach was utilized, combining systematic literature reviews, in-depth interviews, and advisory board insights. Perspectives were gathered from a wide range of stakeholders, including policymakers, payers, academia, industry associations, and patient advocacy groups. Additionally, the study incorporated data from CEE-specific initiatives to triangulate findings and evaluate barriers, enablers, and best practices in OMP access. The analysis identified sub-optimal OMP access across most CEE countries, marked by prolonged delays and lower reimbursement rates compared to Western Europe, with Slovenia and Czechia as notable exceptions. Key barriers include limited awareness, inadequate health technology assessment (HTA) frameworks, insufficient financing mechanisms, underutilization of novel access schemes, and fragmented patient engagement. Conversely, enablers include the presence of rare disease policies, OMP-specific HTA frameworks, and patient-inclusive decision-making processes. Full article
Show Figures

Figure 1

16 pages, 2753 KiB  
Review
The Multifaceted Role of STK35/STK35L1 in Human Diseases: A Time for Critical Appraisal
by Arpana Yadav, Kritika Gaur, Phulwanti Kumari Sharma, Pragya Gehlot, Saloni Bage, Mahesh Saini, Daniela Brünnert and Pankaj Goyal
Kinases Phosphatases 2025, 3(2), 12; https://doi.org/10.3390/kinasesphosphatases3020012 - 23 May 2025
Viewed by 834
Abstract
Dysregulation of protein kinases is associated with developmental defects and various human diseases. The human kinome comprises 518 kinases, including several orphan kinases whose functions remain to be fully characterized. The NKF4 family, which includes STK35L1 and PDIK1L, is one such uncharacterized kinase [...] Read more.
Dysregulation of protein kinases is associated with developmental defects and various human diseases. The human kinome comprises 518 kinases, including several orphan kinases whose functions remain to be fully characterized. The NKF4 family, which includes STK35L1 and PDIK1L, is one such uncharacterized kinase family. STK35L1, also known as Clik1, was initially identified as a nuclear kinase associated with actin fibers. Subsequent studies have demonstrated that STK35L1 plays critical roles in cellular processes such as cell cycle regulation, migration, angiogenesis, the DNA damage response, and related processes such as spermatogenesis. STK35L1 has also been implicated in various developmental processes and its knockout mice exhibited defects in the testis, ovary, and eye. STK35L1 acts as a central regulator of the fundamental cellular functions, and its dysregulation leads to various diseases. Research has established that STK35L1 regulates tumor growth and proliferation in cancers such as osteosarcoma, colorectal cancer, and acute myeloid leukemia. Notably, it also affects chemosensitivity in colorectal cancer and metabolism in acute myeloid leukemia. Additionally, STK35L1 is crucial for the infection of hepatocytes by Plasmodium sporozoites during the liver stage of Malaria. This review discusses the current understanding of STK35L1, highlighting its role in various diseases. Full article
Show Figures

Figure 1

22 pages, 1676 KiB  
Review
Millets: Journey from an Ancient Crop to Sustainable and Healthy Food
by Mrudula M. Mohanan, Akshitha Vijayakumar, Claus Heiner Bang-Berthelsen, Kiran Kumar Mudnakudu-Nagaraju and Radhakrishna Shetty
Foods 2025, 14(10), 1733; https://doi.org/10.3390/foods14101733 - 13 May 2025
Viewed by 1882
Abstract
Millets, often known as “nutri-cereals”, have garnered renewed global interest due to their numerous health benefits, rich nutritional composition, resilience to extreme climatic conditions, and minimal environmental footprint. The advent of rice and wheat as staple foods in the 1960s led to drastic [...] Read more.
Millets, often known as “nutri-cereals”, have garnered renewed global interest due to their numerous health benefits, rich nutritional composition, resilience to extreme climatic conditions, and minimal environmental footprint. The advent of rice and wheat as staple foods in the 1960s led to drastic decline in millet cultivation worldwide. Recognizing the importance of millet, the United Nations (UN) declared 2023 as the International Year of Millets in an effort to accomplish Sustainable Development Goal 2 (SDG-2), i.e., zero hunger, by increasing millet production and fostering research and development to improve the integration of these grains into mainstream food systems. In recent years, global production of millets has surged, with India leading as the top producer. Millets are nutritionally advantageous, consisting of carbohydrates, antioxidants, and biologically active compounds such as flavonoids, carotenoids, phenolic acids, minerals, and vitamins. Incorporating millets into a balanced diet can help control and prevent diseases such as cardiovascular disease, diabetes, inflammation, and malnutrition due to their enriched vital nutrients, low glycemic index, and gluten-free nature. This indicates a transition of millets from an “orphan crop” to being used as ingredients for products (with or without fermentation) that are nutrient-rich, climate-resilient, sustainable, and health-promoting. Full article
(This article belongs to the Special Issue Feature Review on Plant Foods)
Show Figures

Graphical abstract

11 pages, 3119 KiB  
Case Report
Severe Hypoglycemia and Pituitary Stalk Interruption Syndrome in a 5-Year-Old Boy with Coexistent Hyperprolinaemia: A Case Report and Literature Review
by Aikaterini Theodosiadi, Ilektra Toulia, Maria G. Grammatikopoulou, Fotini Adamidou, Danai Chourmouzi, Charalampos Antachopoulos, Athanasios E. Evangeliou, Dimitrios G. Goulis and Kyriaki Tsiroukidou
Endocrines 2025, 6(2), 20; https://doi.org/10.3390/endocrines6020020 - 6 May 2025
Viewed by 613
Abstract
Background/Objectives: Hyperprolinemia is a rare autosomal recessive disorder with two distinct types: I (HPI) and II (HPII). The clinical presentation varies widely, with some individuals remaining asymptomatic and others exhibiting neurological, renal, or auditory defects and seizures. However, it has never been associated [...] Read more.
Background/Objectives: Hyperprolinemia is a rare autosomal recessive disorder with two distinct types: I (HPI) and II (HPII). The clinical presentation varies widely, with some individuals remaining asymptomatic and others exhibiting neurological, renal, or auditory defects and seizures. However, it has never been associated with hypoglycemia. The present case report describes a 5-year and 6/12-month-old boy with HPII, with an episode of severe hypoglycemia and Pituitary Stalk Interruption Syndrome (PSIS) with isolated growth hormone (GH) deficiency (GHD). Results: The boy was presented to the Department of Pediatric Endocrinology for routine thyroid function assessment due to hypothyroidism. He was diagnosed with HPII at the age of 2 years old during an investigation for seizure episodes. Clinically, the boy exhibited attention deficit hyperactivity disorder (ADHD) and a reduction in growth velocity (1.6 cm/year). Hematological and biochemical analyses were within the reference range. Hormone profiling revealed lower-than-expected insulin-like growth factor-1 (IGF-1) concentrations, prompting a GH stimulation test, which, in turn, revealed GHD. Brain magnetic resonance imaging (MRI) showed features consistent with PSIS. Noteworthy is the occurrence of severe hypoglycemia during an episode of gastroenteritis, leading to hospitalization, eventually attributed to GHD. Following the exogenous administration of recombinant human GH, the boy exhibited increased growth velocity, with no adverse events over the follow-up period. Conclusions: Hyperprolinemia is a rare condition; in this context, the occurrence of severe hypoglycemia accompanied by a low growth velocity poses a challenge for the clinical pediatrician. Furthermore, the coexistence of hyperprolinemia and PSIS has never been reported in the literature thus far. Full article
(This article belongs to the Section Pediatric Endocrinology and Growth Disorders)
Show Figures

Figure 1

21 pages, 2014 KiB  
Review
GPR75: Advances, Challenges in Deorphanization, and Potential as a Novel Drug Target for Disease Treatment
by Jingyi Han, Jiaojiao Li, Sirui Yao, Zao Wei, Hui Jiang, Tao Xu, Junwei Zeng, Lin Xu and Yong Han
Int. J. Mol. Sci. 2025, 26(9), 4084; https://doi.org/10.3390/ijms26094084 - 25 Apr 2025
Viewed by 1895
Abstract
G protein-coupled receptor 75 (GPR75), a novel member of the rhodopsin-like G protein-coupled receptor (GPCR) family, has been identified across various tissues and organs, where it contributes to biological regulation and disease progression. Recent studies suggest potential interactions between GPR75 and ligands such [...] Read more.
G protein-coupled receptor 75 (GPR75), a novel member of the rhodopsin-like G protein-coupled receptor (GPCR) family, has been identified across various tissues and organs, where it contributes to biological regulation and disease progression. Recent studies suggest potential interactions between GPR75 and ligands such as 20-hydroxyeicosatetraenoic acid (20-HETE) and C-C motif chemokine ligand 5 (CCL5/RANTES); however, its definitive endogenous ligand remains unidentified, and GPR75 is currently classified as an orphan receptor by International Union of Basic and Clinical Pharmacology (IUPHAR). Research on GPR75 deorphanization has underscored its critical roles in disease models, particularly in metabolic health, glucose regulation, and stability of the nervous and cardiovascular systems. However, the signaling pathways of GPR75 across different pathological conditions require further investigation. Importantly, ongoing studies are targeting GPR75 for drug development, exploring small molecule inhibitors, antibodies, and gene silencing techniques, positioning GPR75 as a promising GPCR target for treating related diseases. This review summarizes the recent advancements in GPR75 deorphanization research, examines its functions across tissues and systems, and highlights its links to metabolic, cardiovascular, and neurological disorders, thereby providing a resource for researchers to better understand the biological functions of this receptor. Full article
(This article belongs to the Special Issue G Protein-Coupled Receptors)
Show Figures

Figure 1

14 pages, 4272 KiB  
Article
Identification of a Highly Virulent Verticillium nonalfalfae Strain Vn011 and Expression Analysis of Its Orphan Genes During Potato Inoculation
by Mengyuan Wan, Xinlong Chen, Xiaoxi Yi, Yi Fu, Yuanliang Jin and Dianqiu Lyu
Plants 2025, 14(9), 1281; https://doi.org/10.3390/plants14091281 - 23 Apr 2025
Viewed by 523
Abstract
Potato (Solanum tuberosum L.) is an important food crop and in recent years, Verticillium wilt has become one of the major diseases limiting potato production. To study potato Verticillium wilt, a highly pathogenic strain was isolated from field samples in Heilongjiang. After [...] Read more.
Potato (Solanum tuberosum L.) is an important food crop and in recent years, Verticillium wilt has become one of the major diseases limiting potato production. To study potato Verticillium wilt, a highly pathogenic strain was isolated from field samples in Heilongjiang. After sequencing and morphological identification, the strain was confirmed as a host-specialized Verticillium nonalfalfae (V. nonalfalfae), Vn011. The genome analysis revealed 151 orphan genes in Vn011, and comparative transcriptomic analysis before and after potato inoculation showed differential expression of 21 genes, including several encoding low-complexity regions (LCRs) and transmembrane (TM) domains. These domains are known to be involved in pathogen signaling, protein folding, and phase separation processes. This study presents the whole-genome sequence of Vn011, having predicted and analyzed the expression changes of orphan genes during the infection process of V. nonalfalfae in potato, and provides new insights into the pathogenic mechanisms of the pathogen. Further research on these orphan genes will not only enhance the understanding of the evolutionary adaptation of V. nonalfalfae, but may also provide new molecular targets for the control of potato wilt disease. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

16 pages, 2069 KiB  
Review
Expanded Spectrum and Increased Incidence of Adverse Events Linked to COVID-19 Genetic Vaccines: New Concepts on Prophylactic Immuno-Gene Therapy, Iatrogenic Orphan Disease, and Platform-Inherent Challenges
by Janos Szebeni
Pharmaceutics 2025, 17(4), 450; https://doi.org/10.3390/pharmaceutics17040450 - 31 Mar 2025
Cited by 2 | Viewed by 30288 | Correction
Abstract
The mRNA- and DNA-based “genetic” COVID-19 vaccines can induce a broad range of adverse events (AEs), with statistics showing significant variation depending on the timing and data analysis methods used. Focusing only on lipid nanoparticle-enclosed mRNA (mRNA-LNP) vaccines, this review traces the evolution [...] Read more.
The mRNA- and DNA-based “genetic” COVID-19 vaccines can induce a broad range of adverse events (AEs), with statistics showing significant variation depending on the timing and data analysis methods used. Focusing only on lipid nanoparticle-enclosed mRNA (mRNA-LNP) vaccines, this review traces the evolution of statistical conclusions on the prevalence of AEs and incidents associated with these vaccines, from initial underestimation of atypical, severe toxicities to recent claims suggesting the possible contribution of COVID-19 vaccinations to the excess deaths observed in many countries over the past few years. Among hundreds of different AEs listed in Pfizer’s pharmacovigilance survey, the present analysis categorizes the main symptoms according to organ systems, with nearly all of them being affected. Using data from the US Vaccine Adverse Event Reporting System and a global vaccination dataset, a comparison of the prevalence and incidence rates of AEs induced by genetic versus flu vaccines revealed an average 26-fold increase in AEs with the use of genetic vaccines. The difference is especially pronounced in the case of severe ‘Brighton-listed’ AEs, which are also observed in COVID-19 and post-COVID conditions. Among these, the increases in incidence rates relative to flu vaccines, given as x-fold rises, were 1152x, 455x, 226x, 218x, 162x, 152x, and 131x for myocarditis, thrombosis, death, myocardial infarction, tachycardia, dyspnea, and hypertension, respectively. The review delineates the concept that genetic vaccines can be regarded as prophylactic immuno-gene therapies and that the observed chronic disabling AEs might be categorized as iatrogenic orphan diseases. It also examines the unique vaccine characteristics that could be causally related to abnormal immune responses which potentially lead to adverse events and complications. These new insights may contribute to improving the safety of this platform technology and assessing the risk/benefit balance of various products. Full article
(This article belongs to the Special Issue Trends in mRNA Vaccine Development and Applications)
Show Figures

Figure 1

32 pages, 3475 KiB  
Review
Revolutionizing Drug Delivery: The Impact of Advanced Materials Science and Technology on Precision Medicine
by Mohamed El-Tanani, Shakta Mani Satyam, Syed Arman Rabbani, Yahia El-Tanani, Alaa A. A. Aljabali, Ibrahim Al Faouri and Abdul Rehman
Pharmaceutics 2025, 17(3), 375; https://doi.org/10.3390/pharmaceutics17030375 - 15 Mar 2025
Cited by 11 | Viewed by 3107
Abstract
Recent progress in material science has led to the development of new drug delivery systems that go beyond the conventional approaches and offer greater accuracy and convenience in the application of therapeutic agents. This review discusses the evolutionary role of nanocarriers, hydrogels, and [...] Read more.
Recent progress in material science has led to the development of new drug delivery systems that go beyond the conventional approaches and offer greater accuracy and convenience in the application of therapeutic agents. This review discusses the evolutionary role of nanocarriers, hydrogels, and bioresponsive polymers that offer enhanced drug release, target accuracy, and bioavailability. Oncology, chronic disease management, and vaccine delivery are some of the applications explored in this paper to show how these materials improve the therapeutic results, counteract multidrug resistance, and allow for sustained and localized treatments. The review also discusses the translational barriers of bringing advanced materials into the clinical setting, which include issues of biocompatibility, scalability, and regulatory approval. Methods to overcome these challenges include surface modifications to reduce immunogenicity, scalable production methods such as microfluidics, and the harmonization of regulatory systems. In addition, the convergence of artificial intelligence (AI) and machine learning (ML) is opening new frontiers in material science and personalized medicine. These technologies allow for predictive modeling and real-time adjustments to optimize drug delivery to the needs of individual patients. The use of advanced materials can also be applied to rare and underserved diseases; thus, new strategies in gene therapy, orphan drugs development, and global vaccine distribution may offer new hopes for millions of patients. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

14 pages, 3578 KiB  
Article
RORA Regulates Autophagy in Hair Follicle Stem Cells by Upregulating the Expression Level of the Sqstm1 Gene
by Xuefei Zhao, Yanchun Xu, Shuqi Li, Suying Bai, Wei Zhang and Yu Zhang
Biomolecules 2025, 15(2), 299; https://doi.org/10.3390/biom15020299 - 18 Feb 2025
Viewed by 971
Abstract
The hair coat is an adaptive evolutionary trait unique to mammals, aiding them in adapting to complex environmental challenges. Although some of the factors involved in regulating hair follicle development have been characterized, further in-depth research is still needed. Retinoic acid receptor-related orphan [...] Read more.
The hair coat is an adaptive evolutionary trait unique to mammals, aiding them in adapting to complex environmental challenges. Although some of the factors involved in regulating hair follicle development have been characterized, further in-depth research is still needed. Retinoic acid receptor-related orphan receptor alpha (RORA), as a member of the nuclear receptor family, is highly involved in the regulation of cellular states. Previous studies have shown that autophagy plays a significant role in hair follicle development. This study uses rat hair follicle stem cells (HFSCs) as a model to analyze the impact of RORA on the autophagy levels of HFSCs. Upon activation of RORA, autophagy indicators such as the LC3-II/LC3-I ratio and MDC staining significantly increased, suggesting an elevated level of autophagy in HFSCs. Following treatment with chloroquine, the LC3-II/LC3-I ratio, as well as the expression levels of BECN1 protein and SQSTM1 protein, were markedly elevated in the cells, indicating that the autophagic flux was unobstructed and ruling out the possibility that RORA activation impeded autophagy. Additionally, the level of the Sqstm1 gene increased markedly after RORA activation promoted autophagy in the cells. We found that RORA regulates the transcription level of Sqstm1 by binding to its promoter region. We believe that RORA activation significantly promotes the level of autophagy, particularly selective autophagy, in HFSCs, suggesting that RORA has the potential to become a new target for research on hair follicle development. This research provides a theoretical foundation for studies on hair follicle development and also offers new insights for the treatment of diseases such as alopecia. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 628 KiB  
Review
Therapeutic Advancements in Psoriasis and Psoriatic Arthritis
by Robin C. Yi, Maya Akbik, Logan R. Smith, Yael Klionsky and Steven R. Feldman
J. Clin. Med. 2025, 14(4), 1312; https://doi.org/10.3390/jcm14041312 - 16 Feb 2025
Cited by 3 | Viewed by 4399
Abstract
Background: Within the past few years, many new therapies have emerged for psoriasis and psoriatic arthritis (PsA). Current topical therapies—including corticosteroids, vitamin D analogs, tapinarof, and roflumilast—remain the mainstay for mild disease, while oral systemic and biologic options are for moderate to severe [...] Read more.
Background: Within the past few years, many new therapies have emerged for psoriasis and psoriatic arthritis (PsA). Current topical therapies—including corticosteroids, vitamin D analogs, tapinarof, and roflumilast—remain the mainstay for mild disease, while oral systemic and biologic options are for moderate to severe cases. Biologics—such as Tumor necrosis factor-alpha (TNF-alpha), Interleukin 12/23 (IL-12/23), Interleukin-17 (IL-17), and Interleukin-23 (IL-23)—have revolutionized care by providing highly effective and safer alternatives. Oral small molecules, including Janus kinase (JAK) and tyrosine kinase 2 (TYK2) inhibitors, further expand the therapeutic options. Objectives: The goal for this review article was to examine current and latest treatments for psoriasis and PsA and discuss whether these emerging therapeutic options address the unmet needs of current treatments. Methods: The search for this review article included PubMed, Google Scholar, and ClinicalTrials.gov for relevant articles and current clinical trials using keywords. Results: A wide range of novel psoriatic and PsA therapies are currently undergoing clinical trials. These include selective JAK inhibitors, TYK2 inhibitors, retinoic acid-related orphan receptor (RORγT) inhibitors, oral IL-23 receptor inhibitors, oral IL-17A inhibitors, nanobody products, sphingosine-1-phosphate (S1P1R) antagonists, A3 adenosine receptor (A3AR) agonists, heat shock protein (HSP) 90 inhibitors, and rho-associated protein kinases (ROCK-2) inhibitors. Conclusions: These different mechanisms of action not only expand treatment options but may offer potential solutions for patients who do not achieve adequate response with existing therapies. However, the safety and contraindications of these newer agents remain an important consideration to ensure appropriate patient selection and minimize potential risks. Certain mechanisms may pose increased risks for infection, cardiovascular manifestations, malignancy, or other immune-related adverse events, necessitating careful monitoring and individualized treatment decisions. Ongoing clinical research aims to address unmet needs for patients who do not respond to previous agents to achieve sustained remission, monitor long-term safety outcomes, and assess patient preferences for delivery, including a preference for oral delivery. Oral IL-23 inhibitors hold potential due to their robust safety profiles. In contrast, oral IL-17 inhibitors and TYK-2 inhibitors are effective but may present side effects that could impact their acceptability. It is essential to balance efficacy, safety, and patient preferences to guide the selection of appropriate therapies. Full article
(This article belongs to the Special Issue Therapeutic Advancements in Psoriasis and Psoriatic Arthritis)
Show Figures

Figure 1

Back to TopTop