Millets: Journey from an Ancient Crop to Sustainable and Healthy Food
Abstract
:1. Introduction
2. Rise of the Millet Era: A Historic View
3. Overview of Global Production: Current Status
4. Millet Varieties: Diverse Options for Food
4.1. Sorghum
4.2. Finger Millet
4.3. Pearl Millet
4.4. Foxtail Millet
4.5. Proso Millet
4.6. Kodo Millet
4.7. Browntop Millet
4.8. Barnyard Millet
4.9. Little Millet
5. Nutrient Profiling: The Treasure from Millets
6. Nutrient-Rich Millets: A Way to a Healthy Life
6.1. Cardiovascular Disease
6.2. Type 2 Diabetes Mellitus
6.3. Immunomodulatory Effects of Millets
6.4. Prebiotic Properties of Millets
6.5. Antioxidant Properties of Millets
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, K.M.; Jayasinghe, S.L.; Kariyawasam, S.C.; Kogo, B.K.; Ratnayake, S. Climate change and future of agri-food production. In Future Foods; Elsevier: Amsterdam, The Netherlands, 2022; pp. 49–79. [Google Scholar] [CrossRef]
- Holden, N.M.; White, E.P.; Lange, M.C.; Oldfield, T.L. Review of the sustainability of food systems and transition using the Internet of Food. NPJ Sci. Food 2018, 2, 18. [Google Scholar] [CrossRef] [PubMed]
- Mohod, N.B.; Ashoka, P.; Borah, A.; Goswami, P.; Koshariya, A.K.; Sahoo, S.N. Prabhavathi. The International Year of Millet 2023: A Global Initiative for Sustainable Food Security and Nutrition. Int. J. Plant Soil. Sci. 2023, 35, 1204–1211. [Google Scholar] [CrossRef]
- Ceasar, S.A.; Maharajan, T. The role of millets in attaining United Nation’s sustainable developmental goals. Plants People Planet. 2022, 4, 345–349. [Google Scholar] [CrossRef]
- Nations, U. Transforming Our World: The 2030 Agenda for Sustainable Development. UN General Assembly. Available online: https://docs.un.org/en/A/RES/70/1 (accessed on 28 August 2024).
- Nations, U. The 17 Goals. Department of Economic and Social Affairs: Sustainable Development, United Nations. Available online: https://sdgs.un.org/goals (accessed on 28 August 2024).
- Saxena, R.; Vanga, S.K.; Wang, J.; Orsat, V.; Raghavan, V. Millets for Food Security in the Context of Climate Change: A Review. Sustainability 2018, 10, 2228. [Google Scholar] [CrossRef]
- Bhutada, P.O.; Jawale, L.N.; Patil, M. Millets for Sustainable Food Security. In Futuristic Trends in Agriculture Engineering & Food Sciences; IIP Series; Selfypage Developers Pvt Ltd.: Chikmagalur, India, 2024; Volume 3, pp. 87–90. [Google Scholar] [CrossRef]
- Kumar, A.; Pramanik, J.; Jangra, A.; Prajapati, B.; Kumar, S.; Mehra, R. Nourishment beyond grains: Unveiling the multifaceted contributions of millets to United Nations Sustainable Development Goals. Z. Naturforschung C 2025, 80, 151–162. [Google Scholar] [CrossRef]
- Sonkamble, S.S.; Kumbhar, A.C.; Pawar, K.R.; Nalawade, D.S.V. Sustainable Cultivation of Millets. Int. J. Multidiscip. Res. Anal. 2024, 7, 1971–1977. [Google Scholar] [CrossRef]
- Amadou, I.; Gounga, M.E.; Le, G.W. Millets: Nutritional composition, some health benefits and processing—A review. Emir. J. Food Agric. 2013, 25, 501–508. [Google Scholar] [CrossRef]
- Yousaf, L.; Hou, D.; Liaqat, H.; Shen, Q. Millet: A review of its nutritional and functional changes during processing. Food Res. Int. 2021, 142, 110197. [Google Scholar] [CrossRef]
- Chandrashekar, A.; Satyanarayana, K.V. Disease and pest resistance in grains of sorghum and millets. J. Cereal Sci. 2006, 44, 287–304. [Google Scholar] [CrossRef]
- Kumar, A.; Tomer, V.; Kaur, A.; Kumar, V.; Gupta, K. Millets: A solution to agrarian and nutritional challenges. Agric. Food Secur. 2018, 7, 31. [Google Scholar] [CrossRef]
- Sheethal, H.V.; Baruah, C.; Subhash, K.; Ananthan, R.; Longvah, T. Insights of Nutritional and Anti-nutritional Retention in Traditionally Processed Millets. Front. Sustain. Food Syst. 2022, 5, 735356. [Google Scholar] [CrossRef]
- Hassan, Z.M.; Sebola, N.A.; Mabelebele, M. The nutritional use of millet grain for food and feed: A review. Agric. Food Secur. 2021, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.P.; Joshi, D.; Bisht, J.K.; Kant, L. Global Scenario of Millets Cultivation. In Millets and Millet Technology; Springer: Singapore, 2021; pp. 33–50. [Google Scholar] [CrossRef]
- Tripathi, T.; Vyas, S. From Ancient Grains to Modern Solutions: A History of Millets and Their Significance in Agriculture and Food Security. Int. J. Home Sci. 2023, 9, 72–78. [Google Scholar] [CrossRef]
- Bhat, V.; Rao, B.D.; Tonapi, A.V.; Prabhakar; Boraiah, B.; Ganiger, P.C. The Story of Millets; Karnataka State Department of Agriculture, Bengaluru, India with ICAR-Indian Institute of Millets Research: Hyderabad, India, 2018. [Google Scholar]
- Choy, K.; Yun, H.Y.; Lee, J.; Fuller, B.T.; Shin, K.-H. Direct isotopic evidence for human millet consumption in the Middle Mumun period: Implication and importance of millets in early agriculture on the Korean Peninsula. J. Archaeol. Sci. 2021, 129, 105372. [Google Scholar] [CrossRef]
- Kim, J.; Park, J. Millet vs rice: An evaluation of the farming/language dispersal hypothesis in the Korean context. Evol. Hum. Sci. 2020, 2, e12. [Google Scholar] [CrossRef]
- Crawford, G.W. Advances in understanding early agriculture in Japan. Curr. Anthropol. 2011, 52, S331–S345. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, J.; Liu, K.-B.; Wu, N.; Li, Y.; Zhou, K.; Ye, M.; Zhang, T.; Zhang, H.; Yang, X.; et al. Earliest Domestication of Common Millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA 2009, 106, 7367–7372. [Google Scholar] [CrossRef]
- Smith, C.W. Sorghum: Origin; History; Technology, and Production; Wiley Series in Crop Science; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Venkateswaran, K.; Elangovan, M.; Sivaraj, N. Origin, domestication and diffusion of Sorghum bicolor. In Breeding Sorghum for Diverse End Uses; Elsevier: Amsterdam, The Netherlands, 2018; pp. 15–31. [Google Scholar] [CrossRef]
- Fuller, Q.; Barron, A.; Champion, L.; Dupuy, C.; Commelin, D.; Raimbault, M.; Denham, T. Transition From Wild to Domesticated Pearl Millet (Pennisetum glaucum) Revealed in Ceramic Temper at Three Middle Holocene Sites in Northern Mali. Afr. Archaeol. Rev. 2021, 38, 211–230. [Google Scholar] [CrossRef]
- Hilu, K.W.; De Wet, J.M.J. Racial Evolution in Eleusine coracana ssp. Coracana (Finger Millet). Am. J. Bot. 1976, 63, 1311. [Google Scholar] [CrossRef]
- Sood, S.; Joshi, D.C.; Chandra, A.K.; Kumar, A. Phenomics and genomics of finger millet: Current status and future prospects. Planta 2019, 250, 731–751. [Google Scholar] [CrossRef]
- Paschapur, U.; Joshi, D.; Mishra, K.K.; Kant, L.; Kumar, V.; Kumar, A. Millets for Life: A Brief Introduction. In Millets and Millet Technology; Springer: Singapore, 2021; pp. 1–32. [Google Scholar] [CrossRef]
- Goron, T.L.; Raizada, M.N. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front. Plant Sci. 2015, 6, 157. [Google Scholar] [CrossRef]
- Pokharia, K.; Kharakwal, J.S.; Srivastava, A. Archaeobotanical evidence of millets in the Indian subcontinent with some observations on their role in the Indus civilization. J. Archaeol. Sci. 2014, 42, 442–455. [Google Scholar] [CrossRef]
- Diao, X.; Jia, G. Origin and Domestication of Foxtail Millet. In Genetics and Genomics of Setaria. In Genetics and Genomics of Setaria; Springer Nature: Cham, Switzerland, 2017; pp. 61–72. [Google Scholar] [CrossRef]
- Habiyaremye, C.; Matanguihan, J.B.; Guedes, J.D.; Ganjyal, G.M.; Whiteman, W.R.; Kidwell, K.K.; Murphy, K.M. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, U.S.: A review. Front. Plant Sci. 2017, 7, 1961. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Shelach-Lavi, G.; Zhang, H.; Teng, M.; Fuller, D.Q. A model for the domestication of Panicum miliaceum (common, proso or broomcorn millet) in China. Veg. Hist. Archaeobot 2021, 30, 21–33. [Google Scholar] [CrossRef]
- Swamy, K.R.M. Origin, Domestication, Taxonomy, Botanical Description, Genetics and Cytogenetics, Genetic Diversity and Breeding of Kodo Millet (Paspalum scrobiculatum L.). Int. J. Curr. Res. 2023, 15, 25898–25921. [Google Scholar] [CrossRef]
- Ranjan, R.; Singh, S.; Dhua, S.; Mishra, P.; Chauhan, A.K.; Gupta, A.K. Kodo Millet (Paspalum scrobiculatum): Bioactive Profile, Health Benefits and Techno- Functionality. In Nutri-Cereals: Nutraceutical and Techno-Functional Potential; CRC Press: Boca Raton, FL, USA, 2023; pp. 193–211. [Google Scholar] [CrossRef]
- Fuller, Q. Finger Millet: Origins and Development. In Encyclopedia of Global Archaeology; Smith, C., Ed.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Yadav, H.P.; Gupta, S.K.; Rajpurohit, B.S.; Pareek, N. Pearl millet. In Broadening the Genetic Base of Grain Cereals; Springer: New Delhi, India, 2016; pp. 205–224. [Google Scholar] [CrossRef]
- Kingwell-Banham, E.; Fuller, D.Q. Brown Top Millet: Origins and Development. In Encyclopedia of Global Archaeology; Springer: New York, NY, USA, 2014; pp. 1021–1024. [Google Scholar] [CrossRef]
- Sood, S.; Khulbe, R.K.; Gupta, A.K.; Agrawal, P.K.; Upadhyaya, H.D.; Bhatt, J.C. Barnyard millet—A potential food and feed crop of future. Plant Breed. 2015, 134, 135–147. [Google Scholar] [CrossRef]
- Bhinda, M.S.; Joshi, D.C.; Parihar, M.; Meena, R.P.; Joshi, P.; Gupta, A.; Kant, L.; Sood, S. Genetics, breeding, and genomics of Indian barnyard millet (Echinochloa frumentacea): Status and perspectives. In Neglected and Underutilized Crops: Future Smart Food; Academic Press: Cambridge, MA, USA, 2023; pp. 115–135. [Google Scholar] [CrossRef]
- Kheya, S.A.; Talukder, K.S.; Datta, P.; Yeasmin, S.; Rashid, H.M.; Hasan, K.A.; Anwar, P.M.; Islam, A.A.K.M.; Islam, A.K.M.M. Millets: The future crops for the tropics–Status, challenges and future prospects. Heliyon 2023, 9, e22123. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization) FAOSTAT. Available online: https://www.fao.org/millets-2023/en (accessed on 16 August 2024).
- Deevi, K.C.; Swamikannu, N.; Pingali, P.R.; Gumma, M.K. Current Trends and Future Prospects in Global Production, Utilization, and Trade of Pearl Millet. In Pearl Millet in the 21st Century; Springer: Singapore, 2024. [Google Scholar]
- Price, R.K.; Welch, R.W. Cereal Grains. In Encyclopedia of Human Nutrition; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 1–4, pp. 307–316. [Google Scholar] [CrossRef]
- Simoes, A.K.G.; Hidalgo, C.A. The Economic Complexity Observatory: An Analytical Tool for Understanding the Dynamics of Economic Development. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011. [Google Scholar]
- Millet. Trade Data from OEC. OEC. Available online: https://oec.world/en/profile/hs/millet (accessed on 25 April 2025).
- International Production Assessment Division (IPAD), Foreign Agricultural Service, US Department of Agriculture. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0459100 (accessed on 11 March 2024).
- Jacob, J.; Krishnan, V.; Antony, C.; Bhavyasri, M.; Aruna, C.; Mishra, K.; Nepolean, T.; Satyavathi, C.T. The nutrition and therapeutic potential of millets: An updated narrative review. Front. Nutr. 2024, 11, 1346869. [Google Scholar] [CrossRef]
- MILLETS: The Future Food from India Science Technology and Innovation Portal. India Science Technology and Innovation Portal. Available online: https://www.indiascienceandtechnology.gov.in/listingpage/millets-future-food (accessed on 29 August 2024).
- Sharma, N.; Sahu, K.J.; Bansal, V.; Esua, O.J.; Rana, S.; Bhardwaj, A.; Bangar, P.S.; Adedeji, A.A. Trends in millet and pseudomillet proteins—Characterization, processing and food applications. Food Res. Int. 2023, 164, 112310. [Google Scholar] [CrossRef]
- Winchell, F.; Stevens, C.J.; Murphy, C.; Champion, L.; Fuller, D. Evidence for Sorghum Domestication in Fourth Millennium BC Eastern Sudan: Spikelet Morphology from Ceramic Impressions of the Butana Group. Curr. Anthropol. 2017, 58, 673–683. [Google Scholar] [CrossRef]
- Ananda, K.S.; Myrans, H.; Norton, S.L.; Gleadow, R.; Furtado, A.; Henry, R.J. Wild Sorghum as a Promising Resource for Crop Improvement. Front. Plant Sci. 2020, 11, 1108. [Google Scholar] [CrossRef] [PubMed]
- Girard, L.; Awika, J.M. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J. Cereal Sci. 2018, 84, 112–124. [Google Scholar] [CrossRef]
- Awika, M.; Rose, D.J.; Simsek, S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. R. Soc. Chemistry. Food Funct. 2018, 9, 1389–1409. [Google Scholar] [CrossRef] [PubMed]
- de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.; Kim, J.E.; Weller, C.L. Policosanol Contents and Compositions in Wax-Like Materials Extracted from Selected Cereals of Korean Origin. Cereal Chem. 2005, 82, 242–245. [Google Scholar] [CrossRef]
- Simnadis, T.G.; Tapsell, L.C.; Beck, E.J. Effect of sorghum consumption on health outcomes: A systematic review. Nutr. Rev. 2016, 74, 690–707. [Google Scholar] [CrossRef]
- Shamkuwar, S.; Srivastava, K.; Tirkey, A.E.; Prakash, D.; Madankar, K.; Saha, S. Reproductive Biology, Genetics, Evolution, and Diversity in Finger Millet (Eleusine coracana (L.) Gaertn.). In Genetic improvement of Small Millets; Springer Nature: Singapore, 2024; pp. 175–211. [Google Scholar] [CrossRef]
- Chandra, D.; Chandra, S.; Pallavi; Sharma, A.K. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sci. Human Wellness 2016, 5, 149–155. [Google Scholar] [CrossRef]
- Abioye, V.F.; Babarinde, G.O.; Ogunlakin, G.O.; Adejuyitan, J.A.; Olatunde, S.J.; Abioye, A.O. Varietal and processing influence on nutritional and phytochemical properties of finger millet: A review. Heliyon 2022, 8, e12310. [Google Scholar] [CrossRef]
- Kumar, S.I.; Babu, C.G. Anti-Nutritional Factors in Finger Millet. J. Nutr. Food Sci. 2016, 6, 491. [Google Scholar] [CrossRef]
- Shobana, S.; Krishnaswamy, K.; Sudha, V.; Malleshi, N.G.; Anjana, R.M.; Palaniappan, L.; Mohan, V. Finger Millet (Ragi, Eleusine coracana L.): A Review of Its Nutritional Properties, Processing, and Plausible Health Benefits. Adv. Food Nutr. Res. 2013, 69, 1–39. [Google Scholar] [CrossRef]
- Winchell, F.; Brass, M.; Manzo, A.; Beldados, A.; Perna, V.; Murphy, C.; Stevens, C.; Fuller, D.Q. On the Origins and Dissemination of Domesticated Sorghum and Pearl Millet across Africa and into India: A View from the Butana Group of the Far Eastern Sahel. Afr. Archaeol. Rev. 2018, 35, 483–505. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.N. MILLET|Pearl. In Encyclopedia of Grain Science; Elsevier: Amsterdam, The Netherlands, 2004; pp. 253–261. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A.; Gupta, S.K.; Prasad, P.V.V. Quantifying pearl millet response to high temperature stress: Thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. Plant Cell Environ. 2018, 41, 993–1007. [Google Scholar] [CrossRef]
- Krishnan, R.; Meera, M.S. Pearl millet minerals: Effect of processing on bioaccessibility. J. Food Sci. Technol. 2018, 55, 3362–3372. [Google Scholar] [CrossRef]
- Satyavathi, C.T.; Ambawat, S.; Khandelwal, V.; Srivastava, R.K. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. Front. Plant Sci. 2021, 12, 659938. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.J.; Umapathy, V.R.; Vengadassalapathy, S.; Hussain, S.F.J.; Rajagopal, P.; Jayaraman, S.; Veeraraghavan, V.P.; Palanisamy, C.P.; Gopinath, K. A Review of the Potential Consequences of Pearl Millet (Pennisetum glaucum) for Diabetes Mellitus and Other Biomedical Applications. Nutrients 2022, 14, 2932. [Google Scholar] [CrossRef] [PubMed]
- Pattanashetti, S.K.; Upadhyaya, H.D.; Dwivedi, S.L.; Vetriventhan, M.; Reddy, K.N. Pearl millet. In Genetic and Genomic Resources for Grain Cereals Improvement; Academic Press: Cambridge, MA, USA, 2016; pp. 253–289. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Kalsi, R.; Bhasin, J.K. Nutritional exploration of foxtail millet (Setaria italica) in addressing food security and its utilization trends in food system. eFood 2023, 4, e111. [Google Scholar] [CrossRef]
- Lata, C.; Gupta, S.; Prasad, M. Foxtail millet: A model crop for genetic and genomic studies in bioenergy grasses. Crit. Rev. Biotechnol. 2013, 33, 328–343. [Google Scholar] [CrossRef]
- Dekker, J. The foxtail (Setaria) species-group. Weed Sci. 2003, 51, 641–656. [Google Scholar] [CrossRef]
- Hutabarat, D.J.C.; Bowie, V.A. Bioactive compounds in foxtail millet (Setaria italica)-extraction, biochemical activity, and health functional: A Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 998, 012060. [Google Scholar] [CrossRef]
- Ramashia, S.E.; Anyasi, T.A.; Gwata, E.T.; Meddows-Taylor, S.; Jideani, A.I.O. Processing, nutritional composition and health benefits of finger millet in sub-saharan Africa. Food Sci. Technol. 2019, 39, 253–266. [Google Scholar] [CrossRef]
- Sharma, N.; Niranjan, K. Foxtail millet: Properties, processing, health benefits, and uses. Food Rev. Int. 2017, 34, 329–363. [Google Scholar] [CrossRef]
- Kumar, S.R.; Tangsrianugul, N.; Suphantharika, M. A Review on Isolation, Characterization, Modification, and Applications of Proso Millet Starch. Foods 2023, 12, 2413. [Google Scholar] [CrossRef]
- Bharathi, C.S.; Elango, A. Minor Millets: Miracle Grain of South India. J. Exp. Agric. Int. 2024, 46, 881–893. [Google Scholar] [CrossRef]
- Joshi, R.P.; Jain, A.K.; Malhotra, N.; Kumari, M. Origin, domestication, and spread. In Millets and Pseudo Cereals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 33–38. [Google Scholar] [CrossRef]
- Rajasekaran, R.; Francis, N.; Mani, V.; Ganesan, J. Proso millet (Panicum miliaceum L.). In Neglected and Underutilized Crops: Future Smart Food; Academic Press: Cambridge, MA, USA, 2023; pp. 247–278. [Google Scholar] [CrossRef]
- Baltensperger, D.D. Progress with Proso, Pearl and Other Millets. In Trends in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002. [Google Scholar]
- Mathanghi, S.K.; Kanchana, S.; Perasiriyan, V. Pinnacles of Proso millet (Panicum miliaceum L.): A nutri millet. Trop. Plant Res. 2020, 7, 238–244. [Google Scholar] [CrossRef]
- Bora, P.; Das, P.; Bhattacharyya, R.; Saikia, A. Effect of processing on the phytochemical content and antioxidant capacity of proso millet (Panicum miliaceum L.) milled fractions. Int. J. Chem. Stud. 2018, 6, 18–22. [Google Scholar]
- Bunkar, D.S.; Goyal, S.K.; Meena, K.K.; Kamalvanshi, V. Nutritional, Functional Role of Kodo Millet and its Processing: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 1972–1985. [Google Scholar] [CrossRef]
- Chourasia, R.; Jain, A.K. Effect of Organic Manures and Microbes on Striga asiatica (L.) Kuntze Management in Kodo Millet. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2357–2364. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Vetriventhan, M.; Dwivedi, S.L.; Pattanashetti, S.K.; Singh, S.K. Proso, barnyard, little, and kodo millets. In Genetic and Genomic Resources for Grain Cereals Improvement; Elsevier: Amsterdam, The Netherlands, 2016; pp. 321–343. [Google Scholar] [CrossRef]
- Ravikesavan, R.; Jeeva, G.; Jency, J.P.; Muthamilarasan, M.; Francis, N. Kodo Millet (Paspalum scorbiculatum L.). In Neglected and Underutilized Crops: Future Smart Food; Academic Press: Cambridge, MA, USA, 2023; pp. 279–304. [Google Scholar] [CrossRef]
- Jeeva, G.; Jency, J.P.; Joshi, P.; Ravikesavan, R.; Elango, D. Unlocking the potential of Kodo millet: Reviving an indigenous super grain for tomorrow’s nutrition. Planta 2024, 259, 140. [Google Scholar] [CrossRef]
- Singh, N.; Kumari, P.; Gulati, J.; Bassi, N. Nutrient rich Kodo millet, importance and value addition: An overview. Pharma Innov. J. 2023, 12, 3713–3719. [Google Scholar]
- Abhigna, D.; Kalpana, R.; Radhamani, S.; Ravichandran, V.; Janaki, P.; Geetha, P. Performance of Brown top millet (Brachiaria ramosa L.) grown under problematic soils. J. Appl. Nat. Sci. 2024, 16, 503–507. [Google Scholar] [CrossRef]
- Pranusha, P.; Kumar, M.R.; Sahi, V.P.; Durai, S.C. Brown Top Millet. In Plant Genebank Utilization for Trait Discovery in Millets; Springer: Singapore, 2025; pp. 231–246. [Google Scholar] [CrossRef]
- Srivastav, S.; Chauhan, E.S. Browntop Millet (Brachiaria ramosa): An Overview of the Underutilized Miraculous Multifunctional Millet. Int. J. Health Sci. Res. 2024, 14, 181–187. [Google Scholar] [CrossRef]
- Ashoka, P.; Sunitha, N.H. Review on Browntop Millet—A Forgotten Crop. J. Exp. Agric. Int. 2020, 42, 54–60. [Google Scholar] [CrossRef]
- Renganathan, V.G.; Vanniarajan, C.; Karthikeyan, A.; Ramalingam, J. Barnyard Millet for Food and Nutritional Security: Current Status and Future Research Direction. Front. Genet. 2020, 11, 500. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Sharma, S. An overview of Barnyard millet (Echinochloa frumentacea). J. Pharmacogn. Phytochem. 2020, 9, 819–822. [Google Scholar]
- Singh, A.; Bharath, M.; Kotiyal, A.; Rana, L.; Rajpal, D. Barnyard millet: The underutilized nutraceutical minor millet crop. Pharma Innov. J. 2022, 11, 115–128. [Google Scholar]
- Anuradha, N.; Priya, P.K.; Patro, T.; Rani, Y.S.; Triveni, U. Association Studies in Little Millet (Panicum sumatrense L.) for Yield and Other Important Traits. Int. J. Curr. Microbiol. Appl. Sci. 2020, 11, 1465–1472. [Google Scholar]
- Kalaisekar, A.; Padmaja, P.G.; Bhagwat, V.R.; Patil, J.V. Introduction. In Insect Pests of Millets; Academic Press: Cambridge, MA, USA, 2017; pp. 1–25. [Google Scholar] [CrossRef]
- Saloni, S.; Sindhu; Sujata; Kumari, S.; Suman, S. Little millets: Properties, functions and future prospects. Int. J. Agric. Eng. 2018, 11, 179–181. [Google Scholar] [CrossRef]
- Indirani, K.; Devasena, M. Review on Nutritional Profiles and Health Benefits of Little Millets-India. Int. J. Res. Eng. Sci. (IJRES) 2021, 9, 7–11. [Google Scholar]
- Guha, M.; Sreerama, Y.N.; Malleshi, N.G. Influence of Processing on Nutraceuticals of Little Millet (Panicum sumatrense). In Processing and Impact on Active Components in Food; Academic Press: Cambridge, MA, USA, 2015; pp. 353–360. [Google Scholar] [CrossRef]
- Dixit, P.; Ravichandran, R. The Potential of Millet Grains: A Comprehensive Review of Nutritional Value, Processing Technologies, and Future Prospects for Food Security and Health Promotion. J. Food Technol. Nutr. Sci. 2024, 6, 1–8. [Google Scholar] [CrossRef]
- Anitha, S.; Taku, W.T.; Rosemary, B.; Kane-Potaka, J.; Ian, G.; Ananthan, R.; Raj Kumar, B. Are Millets More Effective in Managing Hyperlipidaemia and Obesity than Major Cereal Staples? A Systematic Review and Meta-Analysis. Sustainability 2022, 14, 6659. [Google Scholar] [CrossRef]
- Anitha, S.; Kane-Potaka, J.; Botha, R.; Givens, D.I.; Sulaiman, N.L.B.; Upadhyay, S.; Vetriventhan, M.; Tsusaka, T.W.; Parasannanavar, D.J.; Longvah, T.; et al. Millets Can Have a Major Impact on Improving Iron Status, Hemoglobin Level, and in Reducing Iron Deficiency Anemia–A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 725529. [Google Scholar] [CrossRef] [PubMed]
- Anitha, S.; Kane-Potaka, J.; Tsusaka, T.W.; Botha, R.; Rajendran, A.; Givens, D.I.; Parasannanavar, D.J.; Subramaniam, K.; Prasad, K.D.V.; Vetriventhan, M.; et al. A Systematic Review and Meta-Analysis of the Potential of Millets for Managing and Reducing the Risk of Developing Diabetes Mellitus. Front. Nutr. 2021, 8, 687428. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, G.; Jitendrakumar, P.H.; Borah, A.; Nath, D.; Das, H.; Bansal, S.; Singh, N.; Singh, B.V. A Review on Nutritional and Health Benefits of Millets. Int. J. Plant Soil. Sci. 2023, 35, 1736–1743. [Google Scholar] [CrossRef]
- Gowda, N.A.N.; Siliveru, K.; Prasad, P.V.V.; Bhatt, Y.; Netravati, B.P.; Gurikar, C. Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties. Foods 2022, 11, 499. [Google Scholar] [CrossRef]
- Wegary, D. Potentials and possibilities of producing edible oils from maize in Ethiopia. In Oilseeds: Engine for Economic Development; Ethiopian Institute of Agricultural Research: Nazret, Ethiopia, 2011. [Google Scholar]
- Serna-Saldivar, S.O.; Espinosa-Ramírez, J. Grain structure and grain chemical composition. In Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes, 2nd ed.; AACC International: Nashville, TN, USA, 2019; pp. 85–129. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.; Dar, B.N.; Singh, B. Millets as potential nutri-cereals: A review of nutrient composition, phytochemical profile and techno-functionality. Int. J. Food Sci. Technol. 2021, 56, 3703–3718. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Yang, G.; Zhang, Q.; Meng, L.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef]
- Gupta, M.; Asfaha, D.M.; Ponnaiah, G. Millets: A Nutritional Powerhouse With Anti-cancer Potential. Cureus 2023, 15, e47769. [Google Scholar] [CrossRef]
- Rao, B.D.; Bhaskarachar, K.; Christina, G.D.A.; Devi, G.S.; Vilas, A.T. Nutritional and Health Benefits of Millets; ICAR—Indian Institute of Millets Research: Hyderabad, India, 2017. [Google Scholar]
- Singh, R.; Ritu, S.; Kumar, S.P.; Shivangi; Omkar, S. Climate Smart Foods_ Nutritional Composition and Health Benefits of Millets. Int. J. Environ. Clim. Chang. 2023, 13, 1112–1122. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Schüssler, L. The protein compositions of the different anatomical parts of sorghum grain. J. Cereal Sci. 1986, 4, 361–369. [Google Scholar] [CrossRef]
- Ji, J.; Liu, Y.; Ge, Z.; Zhang, Y.; Wang, X. Oleochemical properties for different fractions of foxtail millet bran. J. Oleo Sci. 2019, 68, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Anitha, S.; Rajendran, A.; Botha, R.; Baruah, C.; Mer, P.; Sebastian, J.; Upadhyay, S.; Kane-Potaka, J. Variation in the nutrient content of different genotypes and varieties of millets, studied globally: A systematic review. Front. Sustain. Food Syst. 2024, 8, 1324046. [Google Scholar] [CrossRef]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Pujari, S.N.; Hoskeri, J.H. Minor Millet Phytochemicals and their Pharmacological Potentials. Pharmacogn. Rev. 2022, 16, 100–106. [Google Scholar] [CrossRef]
- Duodu, K.G.; Awika, J.M. Phytochemical-related health-promoting attributes of sorghum and millets. In Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes; AACC International: Nashville, TN, USA, 2019; pp. 225–258. [Google Scholar] [CrossRef]
- Narciso, J.O.; Nyström, L. The genetic diversity and nutritional quality of proso millet (Panicum miliaceum) and its Philippine ecotype, the ancient grain ‘kabog millet’: A review. J. Agric. Food Res. 2023, 11, 100499. [Google Scholar] [CrossRef]
- Widowati, S.; Luna, P. Nutritional and Functional Properties of Sorghum (Sorghum bicolor (L.) Moench)-based Products and Potential Valorisation of Sorghum Bran. IOP Conf. Ser. Earth Environ. Sci. 2022, 1024, 012031. [Google Scholar] [CrossRef]
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol. 2014, 51, 1021–1040. [Google Scholar] [CrossRef]
- Nakarani, M.; Singh, D.; Suthar, K.P.; Karmakar, N.; Faldu, P.; Patil, H.E. Nutritional and phytochemical profiling of nutracereal finger millet (Eleusine coracana L.) genotypes. Food Chem. 2021, 341, 128271. [Google Scholar] [CrossRef]
- Mathanghi, S.K.; Sudha, K. Functional and phytochemical properties of finger millet (Eleusine coracana L.) for health. Int. J. Pharm. Chem. Sci. 2021, 2, 431–438. [Google Scholar]
- Patni, D.; Agrawal, M. Wonder millet-pearl millet, nutrient composition and potential health benefits-A review. Int. J. Innov. Res. Rev. 2017, 5, 6–14. [Google Scholar]
- Hariprasanna, K. Foxtail Millet-Nutritional importance and cultivation aspects. Indian. Farming 2016, 65, 25–29. [Google Scholar]
- Arora, L.; Aggarwal, R.; Dhaliwal, I.; Gupta, O.P.; Kaushik, P. Assessment of sensory and nutritional attributes of foxtail millet-based food products. Front. Nutr. 2023, 10, 1146545. [Google Scholar] [CrossRef]
- Abedin, M.J.; Abdullah, A.T.M.; Satter, M.A.; Farzana, T. Physical, functional, nutritional and antioxidant properties of foxtail millet in Bangladesh. Heliyon 2022, 8, e11186. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Li, D.; Wan, C.; Luo, Y.; Yang, Q.; Gao, X.; Feng, B. Improving the functionality of proso millet protein and its potential as a functional food ingredient by applying nitrogen fertiliser. Foods 2021, 10, 1332. [Google Scholar] [CrossRef]
- Das, S.; Khound, R.; Santra, M.; Santra, D.K. Beyond bird feed: Proso millet for human health and environment. Agriculture 2019, 9, 64. [Google Scholar] [CrossRef]
- Kalinová, J.P.; Tříska, J.; Hořejší, K. Comparison of the Main Constituents in Two Varieties of Proso Millet Using GC–MS. Foods 2023, 12, 2294. [Google Scholar] [CrossRef]
- Dey, S.; Saxena, A.; Kumar, Y.; Maity, T.; Tarafdar, A. Understanding the Antinutritional Factors and Bioactive Compounds of Kodo Millet (Paspalum scrobiculatum) and Little Millet (Panicum sumatrense). J. Food Qual. 2022, 2022, 1578448. [Google Scholar] [CrossRef]
- Sabuz, A.A.; Rana, M.R.; Ahmed, T.; Molla, M.M.; Islam, N.; Khan, H.H.; Chowdhury, G.F.; Zhao, Q.; Shen, Q. Health-Promoting Potential of Millet: A Review. Separations 2023, 10, 80. [Google Scholar] [CrossRef]
- Singh, S.; Suri, S.; Singh, R. Potential and unrealized future possibilities of browntop millet in the food sector. Front. Sustain. Food Syst. 2022, 6, 974126. [Google Scholar] [CrossRef]
- Jocelyne, R.E.; Béhiblo, K.; Ernest, A.K. Comparative Study of Nutritional Value of Wheat, Maize, Sorghum, Millet, and Fonio: Some Cereals Commonly Consumed in Côte d’Ivoire. Eur. Sci. J. 2020, 16, 118. [Google Scholar] [CrossRef]
- Saritha, A.; Ramanajaneyulu, A.V.; Sainath, N.; Umarani, E. Nutritional Importance and Value of Maize. Biot. Res. Today 2020, 2, 974–977. [Google Scholar]
- Behera, S.K.; Shukla, A.K.; Singh, M.V.; Wanjari, R.H.; Singh, P. Yield and Zinc, Copper, Manganese and Iron Concentration in Maize (Zea mays L.) Grown on Vertisol as Influenced by Zinc Application from Various Zinc Fertilizers. J. Plant Nutr. 2015, 38, 1544–1557. [Google Scholar] [CrossRef]
- Bathla, S.; Jaidka, M.; Kaur, R. Nutritive Value. In Maize—Production and Use; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Hasan, M.; Maheshwari, C.; Garg, N.K.; Kumar, M. Millets: Nutri-Cereals. Biotech Express 2019, 6, 18–21. [Google Scholar]
- Bressani, R.; Breuner, M.; Ortiz, M.A. Acid- and neutro-detergent fiber and minor mineral contents in maize and its tortilla. Arch. Latinoam. Nutr. 1989, 39, 382–391. [Google Scholar]
- Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current Trends in Ancient Grains-Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 123–136. [Google Scholar] [CrossRef]
- Ram, H.; Gandass, N.; Sharma, A.; Singh, A.; Sonah, H.; Deshmukh, R.; Pandey, A.K.; Sharma, T.R. Spatio-temporal distribution of micronutrients in rice grains and its regulation. Crit. Rev. Biotechnol. 2020, 40, 490–507. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Proximate Composition, Mineral Content and Fatty Acids Analyses of Aromatic and Non-Aromatic Indian Rice. Rice Sci. 2017, 24, 21–31. [Google Scholar] [CrossRef]
- Rajakumar, R.; Bagavathi Ammal, U.; Sankar, R.; Selvaraj, S.; Jayalakshmi, C.; Umamageswari, M.; Vandana, G.P. Anti-nutritional factors in millets and their reduction strategies. In Sensitizing the Millet Farming, Consumption and Nutritional Security-Challenges and Opportunities; Pandit Jawaharlal Nehru College of Agriculture & Research Institute: Puducherry, India, 2023. [Google Scholar]
- Tharifkhan, S.A.; Perumal, A.B.; Elumalai, A.; Moses, J.A.; Anandharamakrishnan, C. Improvement of nutrient bioavailability in millets: Emphasis on the application of enzymes. J. Sci. Food Agric. 2021, 101, 4869–4878. [Google Scholar] [CrossRef]
- Samtiya, M.; Soni, K.; Chawla, S.; Poonia, A.; Sehgal, S.; Dhewa, T. Key Anti-nutrients of Millet and their Reduction Strategies: An Overview. Acta Sci. Nutr. Health 2021, 5, 68–80. [Google Scholar] [CrossRef]
- Kate, A.; Singh, A. Processing Technology for Value Addition in Millets. In Millets and Millet Technology; Springer: Singapore, 2021; pp. 239–254. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Di Giacinto, G.; Bahmid, N.A.; Mehdizadeh, M.; et al. An overview of fermentation in the food industry—Looking back from a new perspective. Bioresour. Bioprocess 2023, 10, 85. [Google Scholar] [CrossRef]
- Pinta, W.; Aninbon, C.; Kaewtaphan, P.; Kunyanee, K. Effects of Parboiling on Chemical Properties, Phenolic Content and Antioxidant Capacity in Colored Landrace Rice. Foods 2024, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Oke, E.K.; Idowu, M.A.; Sobukola, O.P.; Adeyeye, S.A.O.; Akinsola, A.O. Frying of Food: A Critical Review. J. Culin. Sci. Technol. 2018, 16, 107–127. [Google Scholar] [CrossRef]
- Baranwal, D. Malting: An indigenous technology used for improving the nutritional quality of grains—A review. Asian J. Dairy Food Res. 2017, 36, 179–183. [Google Scholar] [CrossRef]
- İlter, I.; Altay, Ö.; Köprüalan, Ö.; Ertekin, F.K.; Jafari, S.M. An overview of high-temperature food processes. In Unit Operations and Processing Equipment in the Food Industry, High-Temperature Processing of Food Products; Woodhead Publishing: Delhi, India, 2023; pp. 1–43. [Google Scholar] [CrossRef]
- Mounir, S.; Ghandour, A.; Farid, E.; Shatta, A. Popped and Puffed Cereal Products. In Cereal-Based Food Products; Springer International Publishing: Cham, Switzerland, 2023; pp. 169–195. [Google Scholar] [CrossRef]
- Balakumar, P.; Maung-U, K.; Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 2016, 113 Pt A, 600–609. [Google Scholar] [CrossRef]
- Anitha, S.; Botha, R.; Kane-Potaka, J.; Givens, D.I.; Rajendran, A.; Tsusaka, T.W.; Bhandari, R.K. Can Millet Consumption Help Manage Hyperlipidemia and Obesity?: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 700778. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumari, P.; Kumar, M. Role of millets in disease prevention and health promotion. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Academic Press: Cambridge, MA, USA, 2022; pp. 341–357. [Google Scholar] [CrossRef]
- Li, T.; Chiang, J.Y.L. Regulation of Bile Acid and Cholesterol Metabolism by PPARs. PPAR Res. 2009, 2009, 501739. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Carr, T.P.; Weller, C.L.; Cuppett, S.; Dweikat, I.M.; Schlegel, V. Grain sorghum whole kernel oil lowers plasma and liver cholesterol in male hamsters with minimal wax involvement. J. Funct. Foods 2014, 7, 709–718. [Google Scholar] [CrossRef]
- Althwab, S.; Carr, T.P.; Weller, C.L.; Dweikat, I.M.; Schlegel, V. Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Res. Int. 2015, 77, 349–359. [Google Scholar] [CrossRef]
- Yin, R.; Fu, Y.; Yousaf, L.; Xue, Y.; Hu, J.; Hu, X.; Shen, Q. Crude and refined millet bran oil alleviate lipid metabolism disorders, oxidative stress and affect the gut microbiota composition in high-fat diet-induced mice. Int. J. Food Sci. Technol. 2022, 57, 2600–2610. [Google Scholar] [CrossRef]
- Kumar, S.; Kotwal, N. Millets (Shrianna) and lifestyle diseases: A healing touch. Med. J. Armed Forces India 2023, 79, 249–252. [Google Scholar] [CrossRef]
- Kim, J.; Park, Y. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr. Metab. 2012, 9, 106. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Elahi, F.; Daliri, E.B.; Chelliah, R.; Ham, H.J.; Kim, J.H.; Han, S.I.; Hur, J.H.; Oh, D.H. Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants 2020, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Martín-Timón, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; Del Canizo-Gomez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444. [Google Scholar] [CrossRef]
- Geetha, K.; Yankanchi, G.M.; Hulamani, S.; Hiremath, N. Glycemic index of millet based food mix and its effect on pre diabetic subjects. J. Food Sci. Technol. 2020, 57, 2732–2738. [Google Scholar] [CrossRef] [PubMed]
- Järvi, E.; Karlström, B.E.; Granfeldt, Y.E.; Björck, I.E.; Asp, N.G.; Vessby, B.O. Improved glycemic control and lipid profile and normalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 1999, 22, 10–18. [Google Scholar] [CrossRef]
- Wang, H.; Fu, Y.; Zhao, Q.; Liu, Z.; Wang, C.; Xue, Y.; Shen, Q. Effects of heat-treated starch and protein from foxtail millet (Setaria italica) on type 2 diabetic mice. Food Chem. 2023, 404, 134735. [Google Scholar] [CrossRef]
- Deng, X.; Liang, J.; Wang, L.; Niu, L.; Xiao, J.; Guo, Q.; Liu, X.; Xiao, C. Whole Grain Proso Millet (Panicum miliaceum L.) Attenuates Hyperglycemia in Type 2 Diabetic Mice: Involvement of miRNA Profile. J. Agric. Food Chem. 2023, 71, 9324–9336. [Google Scholar] [CrossRef]
- Ji, Z.; Mao, J.; Chen, S.; Mao, J. Antioxidant and anti-inflammatory activity of peptides from foxtail millet (Setaria italica) prolamins in HaCaT cells and RAW264.7 murine macrophages. Food Biosci. 2020, 36, 100636. [Google Scholar] [CrossRef]
- Cao, R.A.; Palanisamy, S.; Ma, N.; Talapphet, N.; Zhang, J.; Wang, C.; You, S. Extraction, structural characterization, and immunostimulatory activity of soluble non-starch polysaccharides of finger millet. Process Biochem. 2021, 111, 40–50. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Liu, R.H. Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chem. 2015, 174, 495–501. [Google Scholar] [CrossRef]
- He, R.; Liu, M.; Zou, Z.; Wang, M.; Wang, Z.; Ju, X.; Hao, G. Anti-inflammatory activity of peptides derived from millet bran in vitro and in vivo. Food Funct. 2022, 13, 1881–1889. [Google Scholar] [CrossRef]
- Srinivasan, A.; Aruldhas, J.; Perumal, S.S.; Ekambaram, S.P. Phenolic acid bound arabinoxylans extracted from Little and Kodo millets modulate immune system mediators and pathways in RAW 264.7 cells. J. Food Biochem. 2021, 45, 1. [Google Scholar] [CrossRef] [PubMed]
- Pineiro, M.; Asp, N.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO Technical Meeting on Prebiotics. J. Clin. Gastroenterol. 2008, 42, S156–S159. [Google Scholar] [CrossRef]
- Ahmad, S.K. Health Benefits and Application of Prebiotics in Foods. J. Food Process Technol. 2015, 6, 4. [Google Scholar] [CrossRef]
- Wilson, B.; Whelan, K. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 2017, 32, 64–68. [Google Scholar] [CrossRef]
- Krumbeck, J.A.; Maldonado-Gomez, M.X.; Ramer-Tait, A.E.; Hutkins, R.W. Prebiotics and synbiotics. Curr. Opin. Gastroenterol. 2016, 32, 110–119. [Google Scholar] [CrossRef]
- Singh, S.B.; Meena, A.K.; Sisodia, B.S.; Sharma, S.; Sharma, M.; Mansoria, P. From farm to gut: Unraveling the role of millets in promoting metabolic well-being via gut microbiota. J. Drug Res. Ayurvedic Sci. 2023, 8 (Suppl. S1), S50–S54. [Google Scholar] [CrossRef]
- Ren, G.; Fan, X.; Teng, C.; Li, Y.; Everaert, N.; Blecker, C. The beneficial effect of coarse cereals on chronic diseases through regulating gut microbiota. Foods 2021, 10, 2891. [Google Scholar] [CrossRef]
- Mondal, S.; Balasubramanian, A.; Biswas, P.; Agrawal, S.; Ghosh, S.; Dey, S. Characterization of pearl millet oligosaccharides and evaluation of their prebiotic potential. Bioact. Carbohydr. Diet. Fibre 2022, 28, 100324. [Google Scholar] [CrossRef]
- Arya, S.S.; Shakya, N.K. High fiber, low glycaemic index (GI) prebiotic multigrain functional beverage from barnyard, foxtail and kodo millet. LWT 2021, 135, 109991. [Google Scholar] [CrossRef]
- Peerkhan, N.; Pandey, M.; Bhandari, Y. Formulation of prebiotic, low glycemic index millet soups using foxtail, barnyard and kodo millet. Discov. Food 2024, 4, 62. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Xu, J.; Ren, Q. Alteration of intestinal microflora by the intake of millet porridge improves gastrointestinal motility. Front. Nutr. 2022, 9, 965687. [Google Scholar] [CrossRef]
- Theodoro, J.M.V.; Grancieri, M.; Gomes, M.J.C.; Toledo, R.C.L.; de São José, V.P.B.; Mantovani, H.C.; Carvalho, C.W.P.; da Silva, B.P.; Stampini, H. Germinated Millet (Pennisetum glaucum (L.) R. Br.) Flour Improved the Gut Function and Its Microbiota Composition in Rats Fed with High-Fat High-Fructose Diet. Int. J. Environ. Res. Public Health 2022, 19, 15217. [Google Scholar] [CrossRef]
- Hegde, P.S.; Rajasekaran, N.S.; Chandra, T.S. Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr. Res. 2005, 25, 1109–1120. [Google Scholar] [CrossRef]
- Rotela, S.; Borkar, S.; Borah, D.A. Health benefits of millets and their significance as functional food: A review. Pharma Innov. 2021, 10, 158–162. [Google Scholar] [CrossRef]
- Schneider, C. Chemistry and biology of vitamin E. Mol. Nutr. Food Res. 2005, 49, 7–30. [Google Scholar] [CrossRef]
- Pushparaj, F.S.; Urooj, A. Antioxidant activity in two pearl millet (Pennisetum typhoideum) cultivars as influenced by processing. Antioxidants 2014, 3, 55–66. [Google Scholar] [CrossRef]
- Kumari, D.; Madhujith, T.; Chandrasekara, A. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka. Food Sci. Nutr. 2017, 5, 474–485. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Naczk, M.; Shahidi, F. Effect of processing on the antioxidant activity of millet grains. Food Chem. 2012, 133, 1–9. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Funct. Foods 2012, 4, 226–237. [Google Scholar] [CrossRef]
Millet | Origin | Period | References | |
---|---|---|---|---|
Common Name | Scientific Name | |||
Foxtail millet | Setaria italica | Northern China | Neolithic period (9050 to 7050 BC) | [32] |
Proso/Common/Broomcorn millet | Panicum miliaceum | Northern China | Neolithic period (8350–6750 BC) | [23,33,34] |
Sorghum | Sorghum bicolor | Northeast-central Africa | Neolithic period (8000 BC) | [24,25] |
Kodo millet | Paspalum scrobiculatum | India | Iron age (977 BC) | [30,35,36] |
Finger millet | Eleusine coracana | Eastern Africa (Western Uganda to Ethiopia) | Iron age (2977 BC) | [28,30,37] |
Pearl millet | Pennisetum glaucum | Northeast Mali | Middle Holocene (~5000 BC) | [26,38] |
Little millet | Panicum sumatrense | India | Early Harappan period (3300–2600 BC) | [29,31] |
Browntop millet | Brachiaria ramosa | India | Neolithic-Chalcolithic period (~2800 BC) | [39] |
Japanese Barnyard Millet | Echinochloa esculenta | Japan | Yayoi period (5000–4000 BC) | [40] |
Indian Barnyard Millet | Echinochloa frumentacea | India and Africa | 5000 BC | [40,41] |
Exporters | Importers | ||
---|---|---|---|
Country | Trade Value (USD) | Country | Trade Value (USD) |
India | 41 M * | Pakistan | 37.1 M |
Uzbekistan | 40.5 M | Indonesia | 31 M |
United States | 33.8 M | Germany | 12.4 M |
Russia | 29.2 M | Belgium | 12 M |
Ukraine | 23.9 M | United Arab Emirates | 8.74 M |
France | 14.4 M | Italy | 8.25 M |
China | 11.1 M | Turkey | 8.19 M |
Tanzania | 8.87 M | United Kingdom | 8.02 M |
Poland | 8.7 M | Canada | 8.01 M |
Turkey | 6.16 M | Kenya | 7.81 M |
Netherlands | 4.41 M | Japan | 6.4 M |
Germany | 4.39 M | Netherlands | 6.03 M |
Ethiopia | 3.15 M | Nepal | 5.44 M |
Canada | 3.1 M | Morocco | 5.19 M |
Austria | 2.57 M | Malaysia | 4.95 M |
Argentina | 2.14 M | Spain | 4.67 M |
Belgium | 2.11 M | United States | 4.35 M |
Kazakhstan | 1.96 M | Philippines | 4.18 M |
South Africa | 1.28 M | Iraq | 4.05 M |
Uganda | 1.14 M | Saudi Arabia | 3.84 M |
Bulgaria | 1.04 M | Thailand | 3.84 |
Poland | 3.77 M | ||
Israel | 3.75 M | ||
Senegal | 3.74 M | ||
South Korea | 3.45 M | ||
Libya | 3.06 M |
Millets | Carbohydrate (%) | Dietary Fibre (%) | Proteins (%) | Fat (%) | Vitamins (mg/100 g) | Minerals (mg/100 g) | References |
---|---|---|---|---|---|---|---|
Sorghum | 67.6–79 | 10.2 | 6.2–15.6 | 1.5–4 | Riboflavin—0.14, Thiamine—0.09, Niacin—2.8 | Calcium—27–28 Iron—4.4 Phosphorus—222–287 Sodium—7 Potassium—249 | [108,117,125] |
Finger millet | 65–77 | 4–20 | 5–12.7 | 1–2 | Riboflavin—0.19–0.33 Thiamin—0.33–0.48 | Calcium—240—344 Iron—3.5–6 Zinc—1–2 Phosphorus—150–300 Potassium—350–550 Manganese—5–6 mg | [107,117,126,127,128] |
Pearl millet | 61–62 | 8–19.5 | 9–13 | 1.5–7 | Riboflavin—0.2 Thiamine—0.25 Niacin—0.9 Vitamin E—2 | Calcium 27.4—48.6 Iron—6.4–16 Zinc—2.7 Phosphorus—289 Magnesium—124 | [16,68,117,129] |
Foxtail millet | 60–75 | 14 | 8–14 | 3–5 | Folate—42 Vitamin E—31 | Calcium—30–50 Iron—3–5 Zinc—2–3, Phosphorous—200–300, Potassium 250–400, Sulfur—100–200, Magnesium—40–150 | [72,107,117,130,131,132] |
Proso millet | 68.2–70 | 8.5—12.5 | 9.5–17 | 1.1–3.5 | Riboflavin—0.29 Thiamine—0.42 Niacin—4.72 | Calcium—8–14 Iron—2–3 Zinc—1.68–2 Phosphorus—206–285 Magnesium—114 Potassium—195 | [124,133,134,135] |
Kodo millet | 63–66.6 | 6.39–15 | 8–9 | 1.4–2.55 | Riboflavin—0.09–0.2 Thiamine—0.15–0.29 Niacin—1.49–2 | Calcium—15–27 Iron—0.5–2.34 Zinc—1.65 Phosphorus—101–188 Magnesium—122–147 Potassium—188 Sodium—3.35 Manganese—0.33 | [85,136,137] |
Browntop millet | 71.32–72 | 8.5–12.5 | 8.98–11.5 | 1.89–4.88 | Calcium—28 Iron—7.72 Zinc—2.5 Phosphorus—276 Magnesium—94.5 Potassium—60 Sodium—7.60 Manganese—1.99 Copper—1.23 | [93,138] | |
Barnyard millet | 51.5–66 | 6.4–31.7 | 5–14 | 2.5–6.3 | Riboflavin—0.1 Thiamine—0.4 Niacin—4.2 | Calcium—14–22 Iron—15.6–18.6 Zinc—4.9 Phosphorus—121 Magnesium—86.2 Manganese—0.7 Copper—0.6 | [40,95,107,108] |
Little millet | 65.55 | 7.72–12.2 | 7.7–10.13 | 3.89–4.7 | Riboflavin—0.05–0.09 Thiamine—0.26 Niacin—1.29–3.2 | Calcium—16–17 Iron—1.26–9.3 Zinc—1.82 Phosphorus—130–220 Magnesium—91.41–133 Potassium—220 Sodium—4.77 Manganese—0.23 | [136,137] |
Maize | 63.19–74.5 | 6.69–13.17 | 8.31–9.29 | 3.29–4.25 | Riboflavin—0.08 Thiamine—0.3 Niacin—1.9 | Calcium—10 Iron—2.3 Zinc—0.49–8.66 Phosphorus—348 Magnesium-139 Potassium—286 Manganese—0.35–0.47 | [109,139,140,141,142] |
Wheat | 68–75 | 1.2–2.9 | 12–13.9 | 1.3–3.1 | Riboflavin—0.07 Thiamine—0.26 Niacin—2.0 | Calcium—41 Iron—5.3 Zinc—4.6–5.8 Phosphorus—299.6–357.4 Magnesium—107.9–117.3 Potassium—324.8–358.7 Manganese—1–1.2 | [109,143,144,145] |
Rice | 75.87–82.70 | 0.2–0.85 | 6.8–9.51 | 0.6–0.92 | Riboflavin—0.03 Thiamine—0.12 Niacin—1.5 | Calcium—23–28 Iron—0.8–1.4 Zinc—1.1–2 Phosphorus—115–223 Magnesium—25–143 Potassium—115–223 Manganese—1.1–3.7 | [109,143,146,147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanan, M.M.; Vijayakumar, A.; Bang-Berthelsen, C.H.; Mudnakudu-Nagaraju, K.K.; Shetty, R. Millets: Journey from an Ancient Crop to Sustainable and Healthy Food. Foods 2025, 14, 1733. https://doi.org/10.3390/foods14101733
Mohanan MM, Vijayakumar A, Bang-Berthelsen CH, Mudnakudu-Nagaraju KK, Shetty R. Millets: Journey from an Ancient Crop to Sustainable and Healthy Food. Foods. 2025; 14(10):1733. https://doi.org/10.3390/foods14101733
Chicago/Turabian StyleMohanan, Mrudula M., Akshitha Vijayakumar, Claus Heiner Bang-Berthelsen, Kiran Kumar Mudnakudu-Nagaraju, and Radhakrishna Shetty. 2025. "Millets: Journey from an Ancient Crop to Sustainable and Healthy Food" Foods 14, no. 10: 1733. https://doi.org/10.3390/foods14101733
APA StyleMohanan, M. M., Vijayakumar, A., Bang-Berthelsen, C. H., Mudnakudu-Nagaraju, K. K., & Shetty, R. (2025). Millets: Journey from an Ancient Crop to Sustainable and Healthy Food. Foods, 14(10), 1733. https://doi.org/10.3390/foods14101733