The Multifaceted Role of STK35/STK35L1 in Human Diseases: A Time for Critical Appraisal
Abstract
:1. Introduction
2. Characterization of the STK35 Locus
3. Evolution of STK35 Family Members
4. Structural Features of STK35L1
5. Cellular Functions of STK35L1
5.1. Cell Cycle
5.2. Angiogenesis
5.3. Cell Migration
5.4. Cell Death
5.5. DNA Damage and Repair
6. Pathophysiological Role of STK35L1 in Diseases
6.1. STK35L1 in Malaria
6.2. Colorectal Cancer
6.3. Osteosarcoma Cancer
6.4. Acute Myeloid Leukemia
7. Reproduction
8. Eye Development
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [PubMed]
- Gajulapalli, V.P.R. Development of kinase-centric drugs: A computational perspective. ChemMedChem 2023, 18, e202200693. [Google Scholar] [CrossRef]
- Xiao, Y.; Dong, J. Coming of Age: Targeting Cyclin K in cancers. Cells 2023, 12, 2044. [Google Scholar] [CrossRef]
- Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov. 2021, 20, 551–569. [Google Scholar] [CrossRef]
- Krupa, A.; Srinivasan, N. The repertoire of protein kinases encoded in the draft version of the human genome: Atypical variations and uncommon domain combinations. Genome Biol. 2002, 3, research0066.1. [Google Scholar] [CrossRef]
- Kostich, M.; English, J.; Madison, V.; Gheyas, F.; Wang, L.; Qiu, P.; Greene, J.; Laz, T.M. Human members of the eukaryotic protein kinase family. Genome Biol. 2002, 3, research0043.1. [Google Scholar] [CrossRef]
- Hanks, S.K. Genomic analysis of the eukaryotic protein kinase superfamily: A perspective. Genome Biol. 2003, 4, 111. [Google Scholar] [CrossRef]
- Modi, V.; Dunbrack, R.L. A structurally-validated multiple sequence alignment of 497 human protein kinase domains. Sci. Rep. 2019, 9, 19790. [Google Scholar] [CrossRef]
- Vallenius, T.; Mäkelä, T.P. Clik1: A novel kinase targeted to actin stress fibers by the CLP-36 PDZ-LIM protein. J. Cell Sci. 2002, 115, 2067–2073. [Google Scholar] [CrossRef]
- Guo, L.; Ji, C.; Gu, S.; Ying, K.; Cheng, H.; Ni, X.; Liu, J.; Xie, Y.; Mao, Y. Molecular cloning and characterization of a novel human kinase gene, PDIK1L. J. Genet. 2003, 82, 27–32. [Google Scholar] [CrossRef]
- Goyal, P.; Behring, A.; Kumar, A.; Siess, W. Identifying and characterizing a novel protein kinase STK35L1 and deciphering its orthologs and close-homologs in vertebrates. PLoS ONE 2009, 4, e6981. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Behring, A.; Kumar, A.; Siess, W. STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells. PLoS ONE 2011, 6, e16249. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.K.; Kalia, I.; Kaushik, V.; Brünnert, D.; Quadiri, A.; Kashif, M.; Chahar, K.R.; Agrawal, A.; Singh, A.P.; Goyal, P. STK35L1 regulates host cell cycle-related genes and is essential for Plasmodium infection during the liver stage of malaria. Exp. Cell Res. 2021, 406, 112764. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhu, J.; Wang, G.; Liu, H.; Zhou, Y.; Qian, J. STK35 Is ubiquitinated by NEDD4L and promotes glycolysis and inhibits apoptosis through regulating the AKT signaling pathway, influencing chemoresistance of colorectal cancer. Front. Cell Dev. Biol. 2020, 8, 582695. [Google Scholar] [CrossRef]
- Polyanskaya, S.A.; Moreno, R.Y.; Lu, B.; Feng, R.; Yao, Y.; Irani, S.; Klingbeil, O.; Yang, Z.; Wei, Y.; Demerdash, O.E.; et al. SCP4-STK35/PDIK1L complex is a dual phospho-catalytic signaling dependency in acute myeloid leukemia. Cell Rep. 2022, 38, 110233. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, J.; Hu, S.; Zhu, Y.; Li, S. Serine/Threonine Kinase 35, a target gene of STAT3, regulates the proliferation and apoptosis of osteosarcoma cells. Cell. Physiol. Biochem. 2018, 45, 808–818. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, Z.; Xiong, Y.; Bao, Y.; Chen, T.; Xu, P.; Liu, Z.; Ma, H.; Yu, Y.; Zhou, Z.; et al. Mapping functional elements of the DNA damage response through base editor screens. Cell Rep. 2024, 43, 115047. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Whiley, P.A.F.; Goh, H.Y.; Wong, C.; Higgins, G.; Tachibana, T.; McMenamin, P.G.; Mayne, L.; Loveland, K.L. The STK35 locus contributes to normal gametogenesis and encodes a lncRNA responsive to oxidative stress. Biol. Open 2018, 7, bio032631. [Google Scholar]
- Veltri, D.; Wight, M.M.; Crouch, J.A. SimpleSynteny: A web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res. 2016, 44, W41–W45. [Google Scholar] [CrossRef]
- Craig, A.W.B.; Cosentino, G.P.; Donzé, O.; Sonenberg, N. The kinase insert domain of interferon-induced protein kinase PKR is required for activity but not for interaction with the pseudosubstrate K3L. J. Biol. Chem. 1996, 271, 24526–24533. [Google Scholar] [CrossRef]
- Tokumitsu, H.; Takahashi, N.; Eto, K.; Yano, S.; Soderling, T.R.; Muramatsu, M.-a. Substrate recognition by Ca2+/Calmodulin-dependent protein kinase kinase: Role of the Arg-Pro-rich insert domain. J. Biol. Chem. 1999, 274, 15803–15810. [Google Scholar] [CrossRef] [PubMed]
- Kaneshige, R.; Ohtsuka, S.; Harada, Y.; Kawamata, I.; Magari, M.; Kanayama, N.; Hatano, N.; Sakagami, H.; Tokumitsu, H. Substrate recognition by Arg/Pro-rich insert domain in calcium/calmodulin-dependent protein kinase kinase for target protein kinases. FEBS J. 2022, 289, 5971–5984. [Google Scholar] [CrossRef]
- Mills, R.D.; Sim, C.H.; Mok, S.S.; Mulhern, T.D.; Culvenor, J.G.; Cheng, H.-C. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J. Neurochem. 2008, 105, 18–33. [Google Scholar] [CrossRef]
- Schubert, A.F.; Gladkova, C.; Pardon, E.; Wagstaff, J.L.; Freund, S.M.V.; Steyaert, J.; Maslen, S.L.; Komander, D. Structure of PINK1 in complex with its substrate ubiquitin. Nature 2017, 552, 51–56. [Google Scholar] [CrossRef]
- Kazlauskas, A.; Cooper, J.A. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 1989, 58, 1121–1133. [Google Scholar] [CrossRef]
- Shewchuk, L.M.; Hassell, A.M.; Ellis, B.; Holmes, W.D.; Davis, R.; Horne, E.L.; Kadwell, S.H.; McKee, D.D.; Moore, J.T. Structure of the Tie2 RTK domain: Sslf-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail. Structure 2000, 8, 1105–1113. [Google Scholar] [CrossRef]
- Jauch, R.; Cho, M.-K.; Jäkel, S.; Netter, C.; Schreiter, K.; Aicher, B.; Zweckstetter, M.; Jäckle, H.; Wahl, M.C. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment. EMBO J. 2006, 25, 4020–4032. [Google Scholar] [CrossRef]
- Espinoza-Fonseca, L.M.; Kast, D.; Thomas, D.D. Molecular dynamics Simulations Reveal a Disorder-to-Order Transition on Phosphorylation of Smooth Muscle Myosin. Biophys. J. 2007, 93, 2083–2090. [Google Scholar] [CrossRef]
- Baker, J.M.R.; Hudson, R.P.; Kanelis, V.; Choy, W.-Y.; Thibodeau, P.H.; Thomas, P.J.; Forman-Kay, J.D. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat. Struct. Mol. Biol. 2007, 14, 738–745. [Google Scholar] [CrossRef]
- Liu, N.; Guo, Y.; Ning, S.; Duan, M. Phosphorylation regulates the binding of intrinsically disordered proteins via a flexible conformation selection mechanism. Commun Chem. 2020, 3, 123. [Google Scholar] [CrossRef]
- Lu, J.; Wu, T.; Zhang, B.; Liu, S.; Song, W.; Qiao, J.; Ruan, H. Types of nuclear localization signals and mechanisms of protein import into the nucleus. J. Cell Commun. Signal. 2021, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Görlich, D.; Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 1999, 15, 607–660. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, H.G.; Mumford, G.K.; Newton, K.; Ford, L.V.; Farrall, R.; Dellaire, G.; Cáceres, J.F.; Bickmore, W.A. Large-scale identification of mammalian proteins localized to nuclear sub-compartments. Hum. Mol. Genet. 2001, 10, 1995–2011. [Google Scholar] [CrossRef]
- Andersen, J.S.; Lyon, C.E.; Fox, A.H.; Leung, A.K.; Lam, Y.W.; Steen, H.; Mann, M.; Lamond, A.I. Directed proteomic analysis of the human nucleolus. Curr. Biol. 2002, 12, 1–11. [Google Scholar] [CrossRef]
- Andersen, J.S.; Lam, Y.W.; Leung, A.K.L.; Ong, S.-E.; Lyon, C.E.; Lamond, A.I.; Mann, M. Nucleolar proteome dynamics. Nature 2005, 433, 77–83. [Google Scholar] [CrossRef]
- Olson, M.O.J. Sensing Cellular Stress: Another new function for the nucleolus? Sci. STKE 2004, 2004, pe10. [Google Scholar] [CrossRef]
- Bauer, K.; Kratzer, M.; Otte, M.; de Quintana, K.L.; Hagmann, J.; Arnold, G.J.; Eckerskorn, C.; Lottspeich, F.; Siesset, W. Human CLP36, a PDZ-domain and LIM-domain protein, binds to α-actinin-1 and associates with actin filaments and stress fibers in activated platelets and endothelial cells. Blood 2000, 96, 4236–4245. [Google Scholar] [CrossRef]
- Vallenius, T.; Luukko, K.; Mäkelä, T.P. CLP-36 PDZ-LIM protein associates with nonmuscle α-Actinin-1 and α-Actinin-4. J. Biol. Chem. 2000, 275, 11100–11105. [Google Scholar] [CrossRef]
- Caridi, C.P.; Plessner, M.; Grosse, R.; Chiolo, I. Nuclear actin filaments in DNA repair dynamics. Nat. Cell Biol. 2019, 21, 1068–1077. [Google Scholar] [CrossRef]
- Kyheröinen, S.; Vartiainen, M.K. Nuclear actin dynamics in gene expression and genome organization. Semin. Cell Dev. Biol. 2020, 102, 105–112. [Google Scholar] [CrossRef]
- Lesueur, F.; French Familial Melanoma Study Group; de Lichy, M.; Barrois, M.; Durand, G.; Bombled, J.; Avril, M.-F.; Chompret, A.; Boitier, F.; Lenoir, G.M.; et al. The contribution of large genomic deletions at the CDKN2A locus to the burden of familial melanoma. Br. J. Cancer 2008, 99, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Raschke, S.; Balz, V.; Efferth, T.; Schulz, W.A.; Florl, A.R. Homozygous deletions of CDKN2A caused by alternative mechanisms in various human cancer cell lines. Genes Chromosomes Cancer 2005, 42, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Stott, F.J.; Bates, S.; James, M.C.; McConnell, B.B.; Starborg, M.; Brookes, S.; Palmero, I.; Ryan, K.; Hara, E.; Vousden, K.H.; et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998, 17, 5001–5014. [Google Scholar] [CrossRef]
- Cánepa, E.T.; Scassa, M.E.; Ceruti, J.M.; Marazita, M.C.; Carcagno, A.L.; Sirkin, P.F.; Ogara, M.F. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007, 59, 419–426. [Google Scholar] [CrossRef]
- Kim, N.-G.; Xu, C.; Gumbiner, B.M. Identification of targets of the Wnt pathway destruction complex in addition to β-catenin. Proc. Natl. Acad. Sci. USA 2009, 106, 5165–5170. [Google Scholar] [CrossRef]
- Clevers, H. Wnt/β-Catenin signaling in development and disease. Cell 2006, 127, 469–480. [Google Scholar] [CrossRef]
- Saegusa, M.; Hashimura, M.; Kuwata, T.; Hamano, M.; Okayasu, I. Induction of p16INK4A mediated by β catenin in a TCF4-independent manner: Implications for alterations in p16INK4A and pRb expression during trans-differentiation of endometrial carcinoma cells. Int. J. Cancer 2006, 119, 2294–2303. [Google Scholar] [CrossRef]
- Wassermann, S.; Scheel, S.K.; Hiendlmeyer, E.; Palmqvist, R.; Horst, D.; Hlubek, F.; Haynl, A.; Kriegl, L.; Reu, S.; Merkel, S.; et al. p16INK4a is a β-Catenin target gene and indicates low survival in human colorectal tumors. Gastroenterology 2009, 136, 196–205.e2. [Google Scholar] [CrossRef]
- Hollander, M.C.; Philburn, R.T.; Patterson, A.D.; Wyatt, M.A.; Fornace, J.A.J. Genomic instability in Gadd45a-/- cells is coupled with S-phase checkpoint defects. Cell Cycle 2005, 4, 704–709. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, L.; Enkemann, S.A.; Pledger, W.J. Role of Gadd45α in the density-dependent G1 arrest induced by p27Kip1. Oncogene 2003, 22, 4166–4174. [Google Scholar] [CrossRef]
- Niehrs, C.; Schäfer, A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol. 2012, 22, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Kim, E.H.; Mun, J.-Y.; Park, S.; Smith, M.L.; Han, S.S.; Seo, Y.R. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 2007, 26, 7517–7525. [Google Scholar] [CrossRef]
- Glesne, D.A.; Zhang, W.; Mandava, S.; Ursos, L.; Buell, M.E.; Makowski, L.; Rodi, D.J. Subtractive transcriptomics: Establishing polarity drives in vitro human endothelial morphogenesis. Cancer Res. 2006, 66, 4030–4040. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, H.; Zhou, H.; Song, X.; Yuan, S.; Luo, Y. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 2006, 107, 3564–3571. [Google Scholar] [CrossRef]
- Pederson, T. The plurifunctional nucleolus. Nucleic Acids Res. 1998, 26, 3871–3876. [Google Scholar] [CrossRef]
- Visintin, R.; Amon, A. The nucleolus: The magician’s hat for cell cycle tricks. Curr. Opin. Cell Biol. 2000, 12, 372–377. [Google Scholar] [CrossRef]
- Boisvert, F.M.; van Koningsbruggen, S.; Navascués, J.; Lamond, A.I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 2007, 8, 574–585. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, W.; Li, D.; Zhan, Q. Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J. Biol. Chem. 2013, 288, 6552–6560. [Google Scholar] [CrossRef]
- Clark, A.G.; Vignjevic, D.M. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 2015, 36, 13–22. [Google Scholar] [CrossRef]
- Friedl, P.; Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2009, 10, 445–457. [Google Scholar] [CrossRef]
- Merino-Casallo, F.; Gomez-Benito, M.J.; Hervas-Raluy, S.; Garcia-Aznar, J.M. Unravelling cell migration: Defining movement from the cell surface. Cell Adhes. Migr. 2022, 16, 25–64. [Google Scholar] [CrossRef] [PubMed]
- Seetharaman, S.; Etienne-Manneville, S. Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 2020, 30, 720–735. [Google Scholar] [CrossRef] [PubMed]
- Tower, J. Programmed cell death in aging. Ageing Res. Rev. 2015, 23, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, Y.; Miyamoto, Y.; Yamashiro, T.; Asally, M.; Masui, A.; Wong, C.; Loveland, K.L.; Yoneda, Y. Nuclear retention of importin α coordinates cell fate through changes in gene expression. EMBO J. 2012, 31, 83–94. [Google Scholar] [CrossRef]
- Jegadesan, N.K.; Branzei, D. DDX11 loss causes replication stress and pharmacologically exploitable DNA repair defects. Proc. Natl. Acad. Sci. USA 2021, 118, e2024258118. [Google Scholar] [CrossRef]
- Shah, N.; Inoue, A.; Woo Lee, S.; Beishline, K.; Lahti, J.M.; Noguchi, E. Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp. Cell Res. 2013, 319, 2244–2253. [Google Scholar] [CrossRef]
- Sung, P.; Krejci, L.; Van Komen, S.; Sehorn, M.G. Rad51 Recombinase and recombination mediators. J. Biol. Chem. 2003, 278, 42729–42732. [Google Scholar] [CrossRef]
- Hourani, M.A.; Berretta, R.; Mendes, A.; Moscato, P. Genetic signatures for a rodent model of parkinson’s disease using combinatorial optimization methods. In Bioinformatics: Structure, Function and Applications. Methods in Molecular Biology™; Keith, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 379–392. [Google Scholar]
- Prudêncio, M.; Rodrigues, C.D.; Hannus, M.; Martin, C.; Real, E.; Gonçalves, L.A.; Carret, C.; Dorkin, R.; Röhl, I.; Jahn-Hoffmann, K.; et al. Kinome-wide RNAi screen implicates at least 5 host hepatocyte kinases in plasmodium sporozoite infection. PLoS Pathog. 2008, 4, e1000201. [Google Scholar] [CrossRef]
- Doerig, C.; Abdi, A.; Bland, N.; Eschenlauer, S.; Dorin-Semblat, D.; Fennell, C.; Halbert, J.; Holland, Z.; Nivez, M.-P.; Semblat, J.-P.; et al. Malaria: Targeting parasite and host cell kinomes. Biochim. Biophys. Acta Proteins Proteom. 2010, 1804, 604–612. [Google Scholar] [CrossRef]
- Arang, N.; Kain, H.S.; Glennon, E.K.; Bello, T.; Dudgeon, D.R.; Walter, E.N.F.; Gujral, T.S.; Kaushansky, A. Identifying host regulators and inhibitors of liver stage malaria infection using kinase activity profiles. Nat. Commun. 2017, 8, 1232. [Google Scholar] [CrossRef]
- Albuquerque, S.S.; Carret, C.; Grosso, A.R.; Tarun, A.S.; Peng, X.; Kappe, S.H.; Prudêncio, M.; Mota, M.M. Host cell transcriptional profiling during malaria liver stage infection reveals a coordinated and sequential set of biological events. BMC Genom. 2009, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, R.; de la Vega, P.; Paik, S.H.; Murata, Y.; Ferguson, E.W.; Richie, T.L.; Ooi, G.T. Early transcriptional responses of HepG2-A16 liver cells to infection by Plasmodium falciparum sporozoites. J. Biol. Chem. 2011, 286, 26396–26405. [Google Scholar] [CrossRef]
- Asghar, M.; Yman, V.; Homann, M.V.; Sondén, K.; Hammar, U.; Hasselquist, D.; Färnert, A. Cellular aging dynamics after acute malaria infection: A 12-month longitudinal study. Aging Cell 2018, 17, e12702. [Google Scholar] [CrossRef]
- Capra, M.; Nuciforo, P.G.; Confalonieri, S.; Quarto, M.; Bianchi, M.; Nebuloni, M.; Boldorini, R.; Pallotti, F.; Viale, G.; Gishizky, M.L.; et al. Frequent alterations in the expression of Serine/Threonine kinases in human cancers. Cancer Res. 2006, 66, 8147–8154. [Google Scholar] [CrossRef]
- Tanksley, J.P.; Chen, X.; Coffey, R.J. NEDD4L Is downregulated in colorectal cancer and inhibits canonical WNT signaling. PLoS ONE 2013, 8, e81514. [Google Scholar] [CrossRef]
- Duda, P.; Akula, S.M.; Abrams, S.L.; Steelman, L.S.; Martelli, A.M.; Cocco, L.; Ratti, S.; Candido, S.; Libra, M.; Montalto, G.; et al. Targeting GSK3 and associated signaling pathways involved in cancer. Cells 2020, 9, 1110. [Google Scholar] [CrossRef]
- Aghabozorgi, A.S.; Ebrahimi, R.; Bahiraee, A.; Tehrani, S.S.; Nabizadeh, F.; Setayesh, L.; Jafarzadeh-Esfehani, R.; Ferns, G.A.; Avan, A.; Rashidi, Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci. 2020, 256, 118006. [Google Scholar] [CrossRef]
- Vasilyeva, T.A.; Sukhanova, N.V.; Khalanskaya, O.V.; Marakhonov, A.V.; Prokhorov, N.S.; Kadyshev, V.V.; Skryabin, N.A.; Kutsev, S.I.; Zinchenko, R.A. An unusual presentation of novel missense variant in PAX6 gene: NM_000280.4:c.341A>G, p.(Asn114Ser). Curr. Issues Mol. Biol. 2024, 46, 96–105. [Google Scholar] [CrossRef]
- Shaham, O.; Menuchin, Y.; Farhy, C.; Ashery-Padan, R. Pax6: A multi-level regulator of ocular development. Prog. Retin. Eye Res. 2012, 31, 351–376. [Google Scholar]
- Tidu, A.; Schanne-Klein, M.-C.; Borderie, V.M. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants. Exp. Eye Res. 2020, 200, 108256. [Google Scholar] [CrossRef]
- Saika, S. TGFβ pathobiology in the eye. Lab. Investig. 2006, 86, 106–115. [Google Scholar] [CrossRef]
- Barrios-Rodiles, M.; Brown, K.R.; Ozdamar, B.; Bose, R.; Liu, Z.; Donovan, R.S.; Shinjo, F.; Liu, Y.; Dembowy, J.; Tayloret, I.W.; et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 2005, 307, 1621–1625. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, A.; Gaur, K.; Sharma, P.K.; Gehlot, P.; Bage, S.; Saini, M.; Brünnert, D.; Goyal, P. The Multifaceted Role of STK35/STK35L1 in Human Diseases: A Time for Critical Appraisal. Kinases Phosphatases 2025, 3, 12. https://doi.org/10.3390/kinasesphosphatases3020012
Yadav A, Gaur K, Sharma PK, Gehlot P, Bage S, Saini M, Brünnert D, Goyal P. The Multifaceted Role of STK35/STK35L1 in Human Diseases: A Time for Critical Appraisal. Kinases and Phosphatases. 2025; 3(2):12. https://doi.org/10.3390/kinasesphosphatases3020012
Chicago/Turabian StyleYadav, Arpana, Kritika Gaur, Phulwanti Kumari Sharma, Pragya Gehlot, Saloni Bage, Mahesh Saini, Daniela Brünnert, and Pankaj Goyal. 2025. "The Multifaceted Role of STK35/STK35L1 in Human Diseases: A Time for Critical Appraisal" Kinases and Phosphatases 3, no. 2: 12. https://doi.org/10.3390/kinasesphosphatases3020012
APA StyleYadav, A., Gaur, K., Sharma, P. K., Gehlot, P., Bage, S., Saini, M., Brünnert, D., & Goyal, P. (2025). The Multifaceted Role of STK35/STK35L1 in Human Diseases: A Time for Critical Appraisal. Kinases and Phosphatases, 3(2), 12. https://doi.org/10.3390/kinasesphosphatases3020012