Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = organochlorine organophosphate pesticides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 774 KB  
Review
Sublethal Effects of Neonicotinoids: How Physiological and Behavioral Disruptions in Non-Target Insects Threaten Biodiversity and Ecosystem Services
by Sarah K. Spence, Shorooq A. M. Alharbi, Afure Ejomah, Feizollah A. Maleki, Michael S. Wolfin and Mônica F. Kersch-Becker
Insects 2026, 17(1), 26; https://doi.org/10.3390/insects17010026 - 24 Dec 2025
Viewed by 788
Abstract
Neonicotinoid insecticides were initially hailed as safer alternatives to organochlorine and organophosphate pesticides due to their perceived lower toxicity to non-target organisms. However, it has been recently discovered that sublethal exposure to neonicotinoids negatively affects beneficial arthropods that are essential for a functional [...] Read more.
Neonicotinoid insecticides were initially hailed as safer alternatives to organochlorine and organophosphate pesticides due to their perceived lower toxicity to non-target organisms. However, it has been recently discovered that sublethal exposure to neonicotinoids negatively affects beneficial arthropods that are essential for a functional ecosystem. These beneficial arthropods include pollinators, biological control agents, and decomposers. This review synthesizes current research on the physiological, behavioral, and reproductive consequences of neonicotinoids on non-target arthropods and their broader ecological impact. The chemical and physical properties of neonicotinoids raise concerns about long-term ecological consequences of neonicotinoid use because these chemicals are persistent in plants and soil, which contributes to prolonged exposure risks for organisms. Sublethal doses of neonicotinoids can disrupt the ecological services provided by these organisms by impairing essential biological processes including motor function, odor detection, development, and reproduction in insects, while also altering behavior such as foraging, mating, and nesting. Furthermore, neonicotinoid exposure can alter community structure, disrupting trophic interactions and food web stability. Recognizing the sublethal impacts of neonicotinoids is critical for the development of more sustainable pest management strategies. It is imperative that future research investigates the underlying mechanisms of sublethal toxicity and identifies safer, more effective approaches to neonicotinoid-based pest control to mitigate adverse ecological effects. Incorporating this knowledge into future environmental risk assessments will be essential for protecting biodiversity and maintaining ecosystem functionality. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

31 pages, 2142 KB  
Review
Pesticide Degradation by Soil Bacteria: Mechanisms, Bioremediation Strategies, and Implications for Sustainable Agriculture
by Gyanendra Dhakal, Srijana Thapa Magar and Takeshi Fujino
Environments 2025, 12(12), 492; https://doi.org/10.3390/environments12120492 - 16 Dec 2025
Viewed by 1822
Abstract
Pesticides remain indispensable for modern agriculture, yet their persistence in soil poses serious ecological and human-health risks through bioaccumulation, groundwater contamination, and impacts on non-target organisms. Although extensive research exists on pesticide degradation, most reviews separate biochemical pathways, environmental controls, and applied bioremediation [...] Read more.
Pesticides remain indispensable for modern agriculture, yet their persistence in soil poses serious ecological and human-health risks through bioaccumulation, groundwater contamination, and impacts on non-target organisms. Although extensive research exists on pesticide degradation, most reviews separate biochemical pathways, environmental controls, and applied bioremediation strategies, limiting the ability to predict real-world field performance. This review integrates mechanistic enzymology, soil ecological responses, quantitative degradation kinetics, and emerging synthetic biology innovations into one unified framework. Soil bacteria including Pseudomonas, Bacillus, Rhodococcus, and Arthrobacter degrade organophosphates, carbamates, triazines, neonicotinoids, pyrethroids, and organochlorines through hydrolysis, oxidation, nitroreduction, and ring-cleavage pathways, often supported by plasmid-encoded genes and horizontal gene transfer. Bioaugmented systems typically achieve 70 to 95 percent removal within 10 to 30 days, with highly efficient cases such as Pseudomonas putida KT2440 removing 96 percent chlorpyrifos in 5 days, Rhodococcus koreensis mineralizing 98 percent endosulfan in 7 days, and Arthrobacter sp. AD26 degrading 95 percent atrazine in 72 h. Field-scale Azotobacter–Pseudomonas consortia have reduced chlorpyrifos from 25 mg kg−1 to less than 1 mg kg−1 within 30 days. Environmental conditions strongly influence degradation efficiency. Acidic soils increase pyrethroid half-lives by two to three times, anaerobic conditions can extend pesticide persistence from months to years, and drought or low organic matter reduces microbial activity by 60 to 80 percent, increasing neonicotinoid DT50 to more than 1000 days. Advances in omics, metagenomics, kinetic assays, and synthetic biology now enable engineered strains and synthetic consortia capable of more than 90 percent mineralization within 7 to 21 days. By linking molecular mechanisms, ecological constraints, quantitative outcomes, and emerging biotechnologies, this review provides a predictive roadmap for climate-resilient, scalable, and sustainable bioremediation strategies. Full article
Show Figures

Figure 1

18 pages, 511 KB  
Article
Early Childhood Exposure to Endocrine Disrupting and Neurotoxic Chemicals: Associations with Internalizing and Externalizing Difficulties from Childhood to Adolescence in the Rhea Cohort, Crete, Greece
by Chrysi Mouatsou, Katerina Margetaki, Mariza Kampouri, Marianna Karachaliou, Antonis Myridakis, Danae Costopoulou, Leondios Leondiadis, Euripides G. Stephanou, Lida Chatzi, Manolis Kogevinas and Katerina Koutra
Toxics 2025, 13(10), 854; https://doi.org/10.3390/toxics13100854 - 10 Oct 2025
Viewed by 1051
Abstract
Many common chemicals are known or suspected to harm brain development, and children are particularly vulnerable, yet research on their long-term effects on mental health is limited. This study investigated the associations of early childhood exposure to endocrine disrupting and neurotoxic chemicals with [...] Read more.
Many common chemicals are known or suspected to harm brain development, and children are particularly vulnerable, yet research on their long-term effects on mental health is limited. This study investigated the associations of early childhood exposure to endocrine disrupting and neurotoxic chemicals with the development of internalizing, externalizing, and attention-deficit/hyperactivity disorder (ADHD) symptoms from early childhood through adolescence in 387 children from the Rhea cohort in Crete, Greece. At age 4, serum concentrations of 3 organochlorine pesticides and 14 polychlorinated biphenyls, and urinary concentrations of 7 phthalate metabolites and 6 dialkyl phosphate metabolites were measured. Children’s symptoms were assessed via maternal reports at ages 4, 6, 11 and 15 years. Using generalized estimating equation models, the study found that early exposure to hexachlorobenzene (HCB) and dichlorodiphenyldichloroethylene (DDE) was associated with increased externalizing symptoms across ages in girls [beta (95% CI): 0.20 (0.04, 0.37) and 0.11 (0.01, 0.21), respectively]. Among girls, low molecular weight (LMW) phthalates were also linked to elevated internalizing and externalizing symptoms, as well as ADHD-related difficulties [beta (95% CI): 0.15 (0.04, 0.26), 0.13 (0.01, 0.25), and 0.13 (0.02, 0.24), respectively]. Additionally, exposure to organophosphate pesticides was associated with increased externalizing and ADHD symptoms [beta (95% CI): 0.13 (0.04, 0.22) and 0.12 (0.04, 0.20), respectively]. The findings suggest that early childhood exposure to environmental chemicals may have long-term effects on emotional and behavioral development, with pronounced effects observed only in girls. Full article
Show Figures

Graphical abstract

16 pages, 523 KB  
Article
Molecular and Ionic Signatures in Rainwater: Unveiling Sources of Atmospheric Pollution
by Grace Stamm, Arka Bhattacharjee, Gayatri Basapuram, Avishek Dutta and Srimanti Duttagupta
Environments 2025, 12(10), 351; https://doi.org/10.3390/environments12100351 - 29 Sep 2025
Cited by 1 | Viewed by 1371
Abstract
Atmospheric deposition through rainfall plays a significant role in transporting various anthropogenic contaminants to terrestrial and aquatic ecosystems. However, rainwater’s integrated ionic and molecular composition remains underexplored in semiurban environments. This study provides a comprehensive chemical characterization of rainwater collected during seven precipitation [...] Read more.
Atmospheric deposition through rainfall plays a significant role in transporting various anthropogenic contaminants to terrestrial and aquatic ecosystems. However, rainwater’s integrated ionic and molecular composition remains underexplored in semiurban environments. This study provides a comprehensive chemical characterization of rainwater collected during seven precipitation events from February to April 2025 in Athens, Georgia, USA. This semiurban area is characterized by substantial vehicular traffic, seasonal agricultural activities, and ongoing construction, while lacking significant industrial emissions. Targeted spectrophotometric analyses revealed heightened concentrations of nitrate (ranging from 2.0 to 4.3 mg/L), sulfate (17 to 26 mg/L), and phosphate (2.4 to 3.1 mg/L), with peak concentrations observed during high-intensity rainfall events. These findings are consistent with enhanced wet scavenging of atmospheric emissions. Concurrently, both targeted and non-targeted gas chromatography-mass spectrometry (GC-MS) analyses identified a diverse array of organic pollutants in the rainwater, including organophosphate, organochlorine, and triazine pesticides; polycyclic aromatic hydrocarbons (PAHs); plasticizers; flame retardants; surfactant degradation products; and industrial additives such as bisphenol A, triclosan, and nicotine. Furthermore, several legacy contaminants, such as organochlorines, were detected alongside currently utilized compounds, including glyphosate and its metabolite aminomethylphosphonic acid (AMPA). The concurrent presence of elevated anion and organic pollutant levels during significant storm events suggests that atmospheric washout can be the primary deposition mechanism. These findings underscore the capability of semiurban atmospheres to accumulate and redistribute complex mixtures of pollutants through rainfall, even in the absence of large-scale industrial activity. The study emphasizes the importance of integrated ionic and molecular analyses for uncovering concealed pollution sources. It highlights the potential of rainwater chemistry as a diagnostic tool for monitoring atmospheric contamination in urbanizing environments. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution: 2nd Edition)
Show Figures

Figure 1

14 pages, 631 KB  
Article
A Comparative Study of the Effect of Commonly Used Pesticides on Cervical Contractions in Pregnant Cows, In Vitro
by Michal Hubert Wrobel
Toxics 2025, 13(9), 793; https://doi.org/10.3390/toxics13090793 - 17 Sep 2025
Viewed by 808
Abstract
Organochlorine insecticides (DDTs), organophosphate insecticides (malathion), carbamate insecticides (carbaryl and thiram), pyrethroid (cypermethrin and fenvalarate) insecticides, and herbicides (glyphosate and atrazine) were selected for this study because they disrupt cervical and myometrial function in the bovine oestrous cycle. However, their potential to affect [...] Read more.
Organochlorine insecticides (DDTs), organophosphate insecticides (malathion), carbamate insecticides (carbaryl and thiram), pyrethroid (cypermethrin and fenvalarate) insecticides, and herbicides (glyphosate and atrazine) were selected for this study because they disrupt cervical and myometrial function in the bovine oestrous cycle. However, their potential to affect reproductive success in cattle during pregnancy has not been directly confirmed. The aim of this study was to determine the effects of the investigated pesticides on cervical contractions in pregnant cows. Cervical strips from cows at 4–6 months of gestation were treated with the eight singular pesticides (used at non-toxic, environmental dose) or oestradiol (E2) under two different conditions (37.5 °C for 24 h and 4 °C for 48 h), which were applied to assess pesticide effects under both physiological and prolonged-exposure settings. The strength of the contractions was then measured. The findings of the study demonstrated that both the carbamates and glyphosate increased the force of cervical strip contractions to a greater extent than cypermethrin. In contrast, fenvalerate was observed to induce a state of cervical relaxation, analogous to the effects of E2, while DDT, malathion and atrazine exerted no effect on cervical motor function during the period of pregnancy under investigation. These preliminary findings indicate a potential impact of pesticides on cervical function during pregnancy, but should be interpreted with caution as they are based on isolated tissue at a single concentration. Further in vivo and dose–response studies are needed to confirm their biological and clinical relevance. Full article
(This article belongs to the Special Issue Endocrine-Disrupting Chemicals and Reproductive Toxicology)
Show Figures

Graphical abstract

37 pages, 1634 KB  
Review
Assessing the Effects of Pesticides on Aquacultured Fish and Ecosystems: A Comprehensive Environmental Health Review
by Emily Burch, Mohamed Ali Hussein, Manar Zaki, Lereen T. Kamal, Ghada Zaki, Tamer Shoeib, Mahmoud Dawood, Hani Sewilam and Anwar Abdelnaser
Fishes 2025, 10(5), 223; https://doi.org/10.3390/fishes10050223 - 13 May 2025
Cited by 7 | Viewed by 5742
Abstract
Aquaculture has been rapidly growing during the past decade to accommodate the increasing need for seafood as a vital source of nutrients for human beings. The nutritional benefits of incorporating fish into one’s diet are paramount in promoting overall health, bolstering immunity and [...] Read more.
Aquaculture has been rapidly growing during the past decade to accommodate the increasing need for seafood as a vital source of nutrients for human beings. The nutritional benefits of incorporating fish into one’s diet are paramount in promoting overall health, bolstering immunity and warding off diseases. Nonetheless, farm-raised aquatic species are frequently subjected to elevated contamination levels due to pesticides, antibiotics, and heavy metals in the marine environment. Pesticides affect fish differently based on species, class, dosage, and exposure duration. They can induce histological damage or neurobehavioral changes by inhibiting acetylcholinesterase production. This can promote liver dysfunction, metabolism deregulation, oxidative stress, and hematological imbalances, impair immune responses, and adversely affect fish reproduction. Furthermore, pesticides negatively affect the nutritional composition of fish by reducing the total protein levels in muscle, liver, gills, and kidney tissues. They disrupt lipid metabolism, resulting in lipid accumulation in the liver and a decrease in polyunsaturated fatty acids. Additionally, pesticides interfere with metabolism by altering carbohydrate levels in the gills, muscles, and kidneys while decreasing glycogen storage in the liver. Pesticide exposure has been linked to severe health impacts in humans, such as non-communicable diseases, reproductive issues, cognitive dysfunction, and cancer. The current review comprehensively emphasizes the harmful effects of pesticides on fish and human health, urging the establishment of environmental monitoring programs and biomonitoring studies. It accentuates the need for risk assessment models to evaluate pesticide impacts on marine ecosystems and advocates for stricter safety standards and lower pesticide residue limits in aquaculture products. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Figure 1

10 pages, 859 KB  
Communication
Some Aspects of the Use of Carbon Dioxide as a Carrier and Makeup Gas in GC–FID Analysis
by Łukasz Dąbrowski
Separations 2024, 11(12), 347; https://doi.org/10.3390/separations11120347 - 8 Dec 2024
Cited by 2 | Viewed by 1780
Abstract
The paper presents the possibility of using carbon dioxide as a carrier gas in capillary gas chromatography (with a stationary liquid phase) to analyze semi-volatile compounds (boiling points of up to 400 °C). Based on the experiments carried out for compounds from the [...] Read more.
The paper presents the possibility of using carbon dioxide as a carrier gas in capillary gas chromatography (with a stationary liquid phase) to analyze semi-volatile compounds (boiling points of up to 400 °C). Based on the experiments carried out for compounds from the group of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the maximum volumetric flow rate (2.4 mL/min for CO2) was determined, enabling the correct separation of the tested standard mixtures (except for two compounds from the OCP group: 4,4′-DDD and Endrin aldehyde and two other pairs of compounds with Rs slightly less than 1.5). Compared to using helium as a carrier gas (and makeup), carbon dioxide produces wider (about 1.6 times) and lower (about 1.8 times) peaks of analytes; these values can vary depending on the separation efficiency of the column. Carbon dioxide can also be effectively used as a makeup gas for the FID detector. The signal increase is comparable to that obtained with helium used as makeup (on average 40–50% depending on the carrier gas). When high sensitivity and high resolution are not required, CO2 can be an alternative carrier and makeup gas to helium under the same flow conditions. The paper also describes practical aspects related to the implementation of CO2 as a carrier and makeup gas in GC. Full article
Show Figures

Figure 1

19 pages, 18460 KB  
Article
Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico
by José de Anda, Harvey Shear, Ofelia Yadira Lugo-Melchor, Luis Eduardo Padilla-Tovar, Sandra Daniela Bravo and Luis Alberto Olvera-Vargas
Water 2024, 16(20), 3008; https://doi.org/10.3390/w16203008 - 21 Oct 2024
Cited by 4 | Viewed by 3957
Abstract
The Santiago-Guadalajara River Basin (SGRB), located in western Mexico, is one of the most polluted rivers in the country. A pesticide monitoring program was carried out from January 2022 to September 2022, during which time water samples collected at 25 sites in the [...] Read more.
The Santiago-Guadalajara River Basin (SGRB), located in western Mexico, is one of the most polluted rivers in the country. A pesticide monitoring program was carried out from January 2022 to September 2022, during which time water samples collected at 25 sites in the main stem and tributaries revealed the presence of 13 of the 24 pesticides analyzed, including α-BHC, β-BHC, γ-BHC (Lindane), γ-Chlordane, Hexachlorobenzene, Heptachlor, Aldrin, α-Endosulfan, DDT, -4,4, Methoxychlor, Chlorpyrifos-methyl, Endosulfan sulfate, and Dicofol. A high level of correlation was found between the identified pesticides, which could mean that several of these pesticides reached a stable level within the monitored water bodies. Most of the identified pesticides are classified as high environmental risk according to the Stockholm Convention because of their persistence and high degree of toxicity to the environment and human health. A Pesticide Toxicity Index (PTI) was applied to identify the streams considered to be of concern due to the presence of pesticides exceeding the threshold limits established by national and international guidelines. Performing a calculation for the entire Santiago-Guadalajara River Basin, the PTI reached a value of 0.833, which, according to the criteria of this method, classifies it as a “Moderate” level of risk for aquatic life. Increased regulatory and surveillance measures by state and federal authorities are required to prevent the use of these pesticides, which have been restricted globally. Full article
(This article belongs to the Special Issue Aquatic Environmental Pollution and Ecotoxicological Studies)
Show Figures

Figure 1

19 pages, 669 KB  
Article
Pesticides and Polychlorinated Biphenyls in Milk and Dairy Products in Croatia: A Health Risk Assessment
by Maja Đokić, Tamara Nekić, Ivana Varenina, Ines Varga, Božica Solomun Kolanović, Marija Sedak, Bruno Čalopek, Darija Vratarić and Nina Bilandžić
Foods 2024, 13(8), 1155; https://doi.org/10.3390/foods13081155 - 10 Apr 2024
Cited by 13 | Viewed by 4296
Abstract
The aim of this study was to evaluate contamination levels and the frequency of detection of organochlorine (OCPs) and organophosphate pesticides (OPPs), pyrethroids, carbamates and polychlorinated biphenyls (seven PCB congeners) in a total of 534 samples of cow’s, sheep’s and goat’s milk and [...] Read more.
The aim of this study was to evaluate contamination levels and the frequency of detection of organochlorine (OCPs) and organophosphate pesticides (OPPs), pyrethroids, carbamates and polychlorinated biphenyls (seven PCB congeners) in a total of 534 samples of cow’s, sheep’s and goat’s milk and dairy products from Croatia. Concentrations above the limit of quantification (LOQ) were measured for fourteen OCPs, nine OPPs, six pyrethroids, one carbamate and PCBs with a total of 172 results, and no concentrations exceeded the maximal residue levels defined by the European Union. The mean concentrations of pesticides and the sum of seven PCBs were determined in the ranges 0.92–17.4 μg/kg and 1.38–2.74 μg/kg. Pesticides were quantified in 27% of samples, and seven PCBs were quantified in 5.23% of samples. Among the three pesticide groups, the highest numbers of quantified results were found for OCPs (12.1–20.8%). The highest frequencies of detection were found for the sum of 4,4’-dichlorodiphenyltrichloroethane and its isomers (DDTs), hexachlorobenzene and seven PCBs. The sum of seven PCBs was quantified within the range of 3.3–6.67% of samples per milk type and dairy products. Among the OPPs, the highest frequency of detection was found for chlorpyrifos in cow’s milk. Based on the estimated daily intakes, chronic risk characterisation showed no risk for adults or ten-year-old children for the consumption of cow’s milk and dairy products. Full article
(This article belongs to the Special Issue Food Contaminants and Human Health)
Show Figures

Figure 1

15 pages, 1752 KB  
Review
Pesticides: Unintended Impact on the Hidden World of Gut Microbiota
by Asghar Ali and Khalid I. AlHussaini
Metabolites 2024, 14(3), 155; https://doi.org/10.3390/metabo14030155 - 7 Mar 2024
Cited by 23 | Viewed by 7725
Abstract
A vast range of pesticides have been routinely employed for plant protection throughout the last few decades. Pesticides can enter non-target organisms in various ways, posing health hazards. Exposure to different environmental pollutants, including pesticides, can affect the human gut flora. Metabolites generated [...] Read more.
A vast range of pesticides have been routinely employed for plant protection throughout the last few decades. Pesticides can enter non-target organisms in various ways, posing health hazards. Exposure to different environmental pollutants, including pesticides, can affect the human gut flora. Metabolites generated from the gut microbiota play an essential role in the host’s health by regulating metabolic homeostasis. A disruption in this equilibrium can lead to the emergence of numerous illnesses and their etiology. Pesticides have been shown in a few recent studies to harm the host’s gut microbiome. As a result, there is an urgent need to investigate the impact of pesticides on gut microbiota-mediated immunity. Metabolic alterations in the host may give a better understanding of pesticide-induced harm. This review highlights the potential consequences of pesticide exposure on gut microbiota composition and function, mainly focusing on how it might alter the production of secondary metabolites with potential downstream implications for host health. Full article
(This article belongs to the Section Environmental Metabolomics)
Show Figures

Figure 1

19 pages, 318 KB  
Article
Distribution of Pesticides and Polychlorinated Biphenyls in Food of Animal Origin in Croatia
by Maja Đokić, Tamara Nekić, Ivana Varenina, Ines Varga, Božica Solomun Kolanović, Marija Sedak, Bruno Čalopek, Ivana Kmetič, Teuta Murati, Darija Vratarić and Nina Bilandžić
Foods 2024, 13(4), 528; https://doi.org/10.3390/foods13040528 - 8 Feb 2024
Cited by 11 | Viewed by 3128
Abstract
Pesticides and polychlorinated biphenyls (PCBs) are persistent environmental pollutants. When entering the food chain, they can represent a public health problem due to their negative effects on health. In this study, concentrations of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), pyrethroids, carbamates, and PCBs—a [...] Read more.
Pesticides and polychlorinated biphenyls (PCBs) are persistent environmental pollutants. When entering the food chain, they can represent a public health problem due to their negative effects on health. In this study, concentrations of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), pyrethroids, carbamates, and PCBs—a total 73 compounds—were determined in a total of 2268 samples of fat tissues (beef, pork, sheep, goat, poultry, game, horse, rabbit) and processed fat, meat, and processed meat products collected in Croatia during an 8-year period. In fatty tissues, 787 results exceeded the limits of quantification (LOQ): 16 OCPs, eight OPPs, six pyrethroids, one carbamate, and seven PCBs. The most positive results in fat samples were found for OCPs, with a frequency of quantification in the range of 57.5–87.5%. Hexachlorobenzene (HCB) and dichlorodiphenyldichloroethylene (DDE) were quantified in the highest percentages, in the ranges of 5.5–66.7% and 5.4–55.8%. Concentrations above the MRL values were determined for chlorpyrifos in pork fat and for resmethrin in six fat samples and one pâté. In 984 samples of meat and meat products, only 62 results exceeded the LOQ values. The highest frequency of quantification was determined for OCPs (25 samples), of which 40% were DDT isomers (60% DDE). Frequency quantifications of PCBs in fat samples were between 7.23 and 36.7%. An evaluation of the health risk assessment showed that the consumption of fat, meat, and meat products does not pose a threat to consumer health, since all EDI values were well below the respective toxicological reference values. Full article
(This article belongs to the Special Issue Food Risk Assessment and Control of Food Hazards)
Show Figures

Graphical abstract

12 pages, 492 KB  
Article
Investigation of the Relationship between Spontaneous Abortion, Serum Pesticides, and Polychlorinated Biphenyl Levels
by Jale Akgöl and Mine Kanat Pektaş
Toxics 2023, 11(11), 884; https://doi.org/10.3390/toxics11110884 - 27 Oct 2023
Cited by 2 | Viewed by 2531
Abstract
Occupational and environmental chemical exposure have been associated with adverse reproductive consequences. This study investigates the relationship between spontaneous abortion and blood pesticide and polychlorinated biphenyl (PCB) levels. A survey was conducted, and blood samples were collected from 200 patients, consisting of 100 [...] Read more.
Occupational and environmental chemical exposure have been associated with adverse reproductive consequences. This study investigates the relationship between spontaneous abortion and blood pesticide and polychlorinated biphenyl (PCB) levels. A survey was conducted, and blood samples were collected from 200 patients, consisting of 100 cases with spontaneous abortion and 100 cases with normal deliveries. A total of 150 different pesticides, including organophosphates, organochlorines, carbamates, and pyrethroids, were screened in the collected blood samples and analyzed quantitatively using Tandem mass spectrometry—specifically in combination with liquid chromatography and gas chromatography–tandem mass spectrometry methods. Eight types of PCBs were analyzed with the gas chromatography-tandem mass spectrometry method. The groups were compared based on these analyses. The mean age of the participants was 28.09 ± 4.94 years. In 59% of the spontaneous abortion group, 5.05 ± 1.97 chemicals were detected in different amounts. (p < 0.05). Analysis of the samples identified the presence of β-Hexachlorocyclohexane (β-HCH), delta-hexachlorocyclohexane (δ HCH), Hexachlorobenzene (HCB), Pentachlorobiphenyl-28 (PCB-28), Pentachlorobiphenyl-52 (PCB-52), o,p′-Dichlorodiphenyldichloroethylene (o,p′-DDE), p,p′-Dichlorodiphenyldichloroethylene (p,p’DDE), o,p′-Dichlorodiphenyldichloroethane (o,p′-DDD), p,p′-Dichlorodiphenyldichloroethane (p,p′-DDD), Pentachlorobiphenyl-118 (PCB-118), Pentachlorobiphenyl-101 (PCB-101), Pentachlorobiphenyl-153 (PCB-153), Pentachlorobiphenyl-138 (PCB-138), Pentachlorobiphenyl-202 (PCB-202), Pentachlorobiphenyl-180 (PCB-180) as well as Fibronil, Buprimate, Acetoclor, Acemiprid, Pentimanthalin, and Triflokystrobin. The spontaneous abortion group had significantly higher exposure to PCB-101, PCB-52, PCB-138, and δ-HCH (p < 0.05). Women included in the study had high pesticide and PCB exposure rates. Many of the blood samples contained multiple pesticides with endocrine-disrupting effects. Higher exposure to organochlorine compounds in the serum was identified in the group with spontaneous abortions. Full article
(This article belongs to the Special Issue Environmental Exposure and Reproductive Health)
Show Figures

Graphical abstract

25 pages, 1896 KB  
Article
Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium
by Marcela E. Varona-Uribe, Sonia M. Díaz, Ruth-Marien Palma, Leonardo Briceño-Ayala, Carlos Trillos-Peña, Eliana M. Téllez-Avila, Lyda Espitia-Pérez, Karina Pastor-Sierra, Pedro Juan Espitia-Pérez and Alvaro J. Idrovo
Toxics 2023, 11(10), 821; https://doi.org/10.3390/toxics11100821 - 29 Sep 2023
Cited by 6 | Viewed by 2388
Abstract
The contexts where there are mining and agriculture activities are potential sources of risk to human health due to contamination by chemical mixtures. These contexts are frequent in several Colombian regions. This study explored the potential association between the frequency of micronuclei and [...] Read more.
The contexts where there are mining and agriculture activities are potential sources of risk to human health due to contamination by chemical mixtures. These contexts are frequent in several Colombian regions. This study explored the potential association between the frequency of micronuclei and pesticides and elements in regions with ferronickel (Montelibano, Córdoba) and gold (Nechí, Antioquia) mining, and a closed native mercury mine (Aranzazu, Caldas), with an emphasis in the potential effect of selenium as a potential chelator. A cross-sectional study was carried out with 247 individuals. Sociodemographic, occupational, and toxicological variables were ascertained. Blood and urine samples were taken for pesticide analysis (5 organophosphates, 4 organochlorines, and 3 carbamates), 68 elements were quantified in hair, and micronuclei were quantified in lymphocytes. The mixtures of elements were grouped through principal component analysis. Prevalence ratios were estimated with robust variance Poisson regressions to explore associations. Interactions of selenium with toxic elements were explored. The highest concentrations of elements were in the active mines. The potentially most toxic chemical mixture was observed in the ferronickel mine. Pesticides were detected in a low proportion of participants (<2.5%), except paraoxon-methyl in blood (27.55%) in Montelibano and paraoxon-ethyl in blood (18.81%) in Aranzazu. The frequency of micronuclei was similar in the three mining contexts, with means between 4 to 7 (p = 0.1298). There was great heterogeneity in the exposure to pesticides and elements. The “hormetic effect” of selenium was described, in which, at low doses, it acts as a chelator in Montelibano and Aranzazu, and at high doses, it can enhance the toxic effects of other elements, maybe as in Nechí. Selenium can serve as a protective agent, but it requires adaptation to the available concentrations in each region to avoid its toxic effects. Full article
Show Figures

Figure 1

18 pages, 3343 KB  
Review
Advances in Microfluidics Techniques for Rapid Detection of Pesticide Residues in Food
by Zhuoao Jiang, Yu Zhuang, Shentian Guo, A. S. M. Muhtasim Fuad Sohan and Binfeng Yin
Foods 2023, 12(15), 2868; https://doi.org/10.3390/foods12152868 - 28 Jul 2023
Cited by 27 | Viewed by 5221
Abstract
Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are transferred [...] Read more.
Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are transferred through the food chain to human consumption. Foods contaminated with pesticide residues pose a serious risk to human health, including carcinogenicity, neurotoxicity, and endocrine disruption. Although traditional methods, including gas chromatography, high-performance liquid chromatography, chromatography, and mass spectrometry, can be used to achieve a quantitative analysis of pesticide residues, the disadvantages of these techniques, such as being time-consuming and costly and requiring specialist staff, limit their application. Therefore, there is a need to develop rapid, effective, and sensitive equipment for the quantitative analysis of pesticide residues in food. Microfluidics is rapidly emerging in a number of fields due to its outstanding strengths. This paper summarizes the application of microfluidic techniques to pyrethroid, carbamate, organochlorine, and organophosphate pesticides, as well as to commercial products. Meanwhile, the study also outlines the development of microfluidics in combination with 3D printing technology and nanomaterials for detecting pesticide residues in food. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 2092 KB  
Review
Pesticides in Foods: Towards Bioremediation Biocatalysts?
by Giorgia Perpetuini, Pilar Anais Nzobouh Fossi, Seyi Kwak, Oscar Namessi, Awanwee Petchkongkaew, Rosanna Tofalo and Yves Waché
Catalysts 2023, 13(7), 1055; https://doi.org/10.3390/catal13071055 - 29 Jun 2023
Cited by 11 | Viewed by 5799
Abstract
The presence of hazardous chemical compounds in foods is a growing concern in almost every country. Although some toxins come from microbial contamination, a major part comes from residues of pesticides used for plant health and food preservation. Despite plans to decrease their [...] Read more.
The presence of hazardous chemical compounds in foods is a growing concern in almost every country. Although some toxins come from microbial contamination, a major part comes from residues of pesticides used for plant health and food preservation. Despite plans to decrease their use, the concentration of hazardous residues encountered in food is growing. The societal solution to this issue is to find alternatives to chemicals and replace the most hazardous by biodegradable, fewer toxic compounds. However, as this greener transition takes some time, any transitory solution to decrease the risks of contamination is welcome. Among them, the stimulation of microbial pesticide degradation in food in a similar way to bioremediation in the environment would be very positive. In this review, we present the problem of food contamination, focusing on organophosphates and organochlorines, and the various possibilities of microbial decontamination. We discuss the possible use of microbial biocatalysts as a biopreservation tool. We conclude that, although this process is very promising, it lacks research taking into account the various degradation products and the elaboration of screening procedures able to choose some rare, efficient biopreservation strains. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Green Catalysts)
Show Figures

Graphical abstract

Back to TopTop