Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = organocatalytic synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5767 KiB  
Review
Recent Advances in Carbon-Based Catalysts for Heterogeneous Asymmetric Catalysis
by Yidan Zheng, Tianze Liu, Jingyou Tai and Ning Ma
Molecules 2025, 30(12), 2643; https://doi.org/10.3390/molecules30122643 - 18 Jun 2025
Viewed by 751
Abstract
Carbon materials, including graphene, carbon nanotubes, and fullerenes, serve as effective supports for catalysts and play a pivotal role in heterogeneous asymmetric catalysis due to their unique properties and ability to create defined environments for catalytic reactions. Recent research has focused on developing [...] Read more.
Carbon materials, including graphene, carbon nanotubes, and fullerenes, serve as effective supports for catalysts and play a pivotal role in heterogeneous asymmetric catalysis due to their unique properties and ability to create defined environments for catalytic reactions. Recent research has focused on developing novel carbon-based catalysts that combine the advantages of heterogeneous catalysis with enhanced stability and reusability. This review highlights the synthesis and catalytic applications of graphene, carbon nanotubes, and fullerenes as heterogeneous support materials in asymmetric organocatalytic and organometallic reactions, covering their mechanisms, efficiency, and potential for advancing sustainable chemical processes. Full article
(This article belongs to the Special Issue Novel Green Catalysts and Applications of Organocatalysis)
Show Figures

Figure 1

19 pages, 7332 KiB  
Article
Synthesis of Curcumin Derivatives via Knoevenagel Reaction Within a Continuously Driven Microfluidic Reactor Using Polymeric Networks Containing Piperidine as a Catalyst
by Naresh Killi, Katja Rumpke and Dirk Kuckling
Gels 2025, 11(4), 278; https://doi.org/10.3390/gels11040278 - 8 Apr 2025
Viewed by 1644
Abstract
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as [...] Read more.
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as catalysts. Piperidine methacrylate and piperidine acrylate were synthesized and subsequently copolymerized with complementary monomers (MMA or DMAA) and crosslinkers (EGDMA or MBAM) via photopolymerization, yielding different polymeric networks. Initially, batch reactions were optimized for the organo-catalytic Knoevenagel condensation between CUM and 4-nitrobenzaldehyde, under various conditions, in the presence of polymer networks. Conversion was assessed using offline 1H NMR spectroscopy, revealing an increase in conversion with enhanced swelling properties of the polymer networks, which facilitated greater accessibility of catalytic sites. In continuous-flow MFR experiments, optimized polymer gel dots exhibited superior catalytic performance, achieving a conversion of up to 72%, compared to other compositions. This improvement was attributed to the enhanced swelling in the reaction mixture (DMSO/methanol, 7:3 v/v) at 40 °C over 72 h. Furthermore, the MFR system enabled the efficient synthesis of a series of CUM derivatives, demonstrating significantly higher conversion rates than traditional batch reactions. Notably, while batch reactions required 90% catalyst loading in the gel, the MFR system achieved a comparable or superior performance with only 50% catalyst, resulting in a higher turnover number. These findings underscore the advantages of continuous-flow organo-catalysis in enhancing catalytic efficiency and sustainability in organic synthesis. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

9 pages, 2051 KiB  
Article
Beyond L-Proline: Investigation into the Catalytic Properties of Other Natural Amino Acids in an Organocatalytic Warfarin Synthesis
by Anna I. Wurz, Arhemy Franco-Gonzalez, Naomi R. Benson, Hope L. Jankowski, Sierra N. Carr, Ketan Chamakura, Lizbeth Chirinos, Sydney P. Coll, Kayla F. Ivory, Trinity J. Lamb, Shaya LeBauer, Grace L. McPherson, Thanh Nguyen, Jeimy Nolasco Guevara, Lily N. Parsad, Phuong Pham, Emma G. Piner, Kaci Richardson, Abdelhadi Bendjellal, Chelsea McRae and Robert M. Hughesadd Show full author list remove Hide full author list
Chemistry 2025, 7(2), 59; https://doi.org/10.3390/chemistry7020059 - 4 Apr 2025
Viewed by 882
Abstract
Proline is considered the model organocatalytic amino acid. However, other naturally occurring amino acids remain a potent and perhaps overlooked source of organocatalytic potential. In this work, we investigated the capacity of various natural amino acids to promote enantioselectivity in a synthesis of [...] Read more.
Proline is considered the model organocatalytic amino acid. However, other naturally occurring amino acids remain a potent and perhaps overlooked source of organocatalytic potential. In this work, we investigated the capacity of various natural amino acids to promote enantioselectivity in a synthesis of warfarin. We have identified L- and d-arginine as enantioselective catalysts for this reaction and have developed a recrystallization method to isolate the enantiomers of warfarin with high enantiopurity. In addition, we used methylated derivatives of arginine to provide insight into the reaction mechanism. Full article
Show Figures

Graphical abstract

14 pages, 2115 KiB  
Article
Organocatalytic Packed-Bed Reactors for the Enantioselective Flow Synthesis of Quaternary Isotetronic Acids by Direct Aldol Reactions of Pyruvates
by Lorenzo Poletti, Carmela De Risi, Daniele Ragno, Graziano Di Carmine, Riccardo Tassoni, Alessandro Massi and Paolo Dambruoso
Molecules 2025, 30(2), 296; https://doi.org/10.3390/molecules30020296 - 13 Jan 2025
Viewed by 868
Abstract
The utilization of the homogeneous (S)-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as [...] Read more.
The utilization of the homogeneous (S)-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix). Full article
(This article belongs to the Special Issue Catalytic Approaches in Flow Chemistry)
Show Figures

Graphical abstract

14 pages, 3827 KiB  
Article
Physicochemical Characterization and Asymmetric Catalytic Properties of New Biobased Organocatalytic Surfactants
by Elliot Calbrix, Pascale de Caro, Sophie Thiebaud-Roux, Christine Cecutti and Emeline Vedrenne
Molecules 2025, 30(2), 216; https://doi.org/10.3390/molecules30020216 - 7 Jan 2025
Viewed by 863
Abstract
In organic synthesis, the solvent is the chemical compound that represents the largest proportion of the process. However, conventional solvents are often toxic and dangerous for the environment, and an interesting alternative is to replace them by water. In this context, catalyst surfactants [...] Read more.
In organic synthesis, the solvent is the chemical compound that represents the largest proportion of the process. However, conventional solvents are often toxic and dangerous for the environment, and an interesting alternative is to replace them by water. In this context, catalyst surfactants allow both organic reagents in water to be solubilized and organic reactions to be catalyzed. This article describes the synthesis of new biobased organocatalytic surfactants soluble in water, composed of a hydrocarbon chain grafted onto an imidazolidinone moiety. The imidazolidinone moiety acts as catalyst, but also as the polar head of the surfactant, while the fatty chain constitutes the hydrophobic tail. The five steps of the synthesis were optimized, respecting the principles of green chemistry, and two organocatalytic surfactants were obtained with a good selectivity. Surface properties in an aqueous medium were then evaluated with the use of tensiometric analysis. Their molecular organization in vesicles was characterized by Dynamic Light Scattering. The presence of vesicles allows reactions to be carried out in an organized aqueous medium. Model catalytic reactions performed in aqueous medium validated the feasibility of replacing conventional hazardous organic solvents. The newly synthesized biobased surfactants showed satisfactory catalytic activity and allowed the expected products to be obtained with good enantioselectivity. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

33 pages, 24572 KiB  
Review
Recent Advances in the Synthesis of Chiral Tetrahydroisoquinolines via Asymmetric Reduction
by Yue Ji, Qiang Gao, Weiwei Han and Baizeng Fang
Catalysts 2024, 14(12), 884; https://doi.org/10.3390/catal14120884 - 3 Dec 2024
Cited by 2 | Viewed by 1845
Abstract
Enantiopure tetrahydroisoquinolines (THIQs), recognized as privileged skeletal structures in natural alkaloids, have attracted considerable attention from chemists due to their biological and pharmacological activities. Synthetic strategies for optically active THIQs have been rapidly and extensively developed in the past decades. In view of [...] Read more.
Enantiopure tetrahydroisoquinolines (THIQs), recognized as privileged skeletal structures in natural alkaloids, have attracted considerable attention from chemists due to their biological and pharmacological activities. Synthetic strategies for optically active THIQs have been rapidly and extensively developed in the past decades. In view of simplicity and atom economy, asymmetric reduction of N-heteroaromatics, imines, enamines, and iminium salts containing an isoquinoline (IQ) moiety should be the preferred approaches to obtain chiral THIQs. This review focuses on recent advances in the catalytic asymmetric synthesis of enantiopure THIQs via asymmetric reduction, including asymmetric hydrogenation, transfer hydrogenation, reductive amination, and deracemization. Highly enantioselective synthesis of THIQs was achieved via transition-metal-catalyzed asymmetric reduction and organocatalytic asymmetric reduction utilizing either catalyst activation or substrate activation strategy. Despite much progress in the enantioselective synthesis of THIQs, there still remain considerable opportunities and challenges for progress and developments in this field of research, particularly in the development of asymmetric catalytic systems for the direct reduction of IQs. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Figure 1

4 pages, 1536 KiB  
Proceeding Paper
Organocatalytic Cascade Reactions for the Synthesis and Diversification of Privileged Structures
by Alberto Medina Ortíz, David Cruz Cruz and Clarisa Villegas Gómez
Chem. Proc. 2024, 16(1), 72; https://doi.org/10.3390/ecsoc-28-20136 - 14 Nov 2024
Viewed by 479
Abstract
Herein, we present the development of new organocatalytic cascade reactions for the synthesis and diversification of privileged structures, using trienamine activation as a key step. An important feature of this process is that once it is completed, it is possible to generate new [...] Read more.
Herein, we present the development of new organocatalytic cascade reactions for the synthesis and diversification of privileged structures, using trienamine activation as a key step. An important feature of this process is that once it is completed, it is possible to generate new reactive species within the same molecule. In this sense, a series of consecutive reactions can be carried out, incorporating dienophiles with a nucleophilic addition functionality. As a result, complex and diverse compounds can be accessed through simple starting materials. Full article
Show Figures

Figure 1

19 pages, 2549 KiB  
Article
Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate
by Abdul Sadiq, Muhammad Arif Khan, Rehman Zafar, Farhat Ullah, Sajjad Ahmad and Muhammad Ayaz
Pharmaceuticals 2024, 17(11), 1522; https://doi.org/10.3390/ph17111522 - 12 Nov 2024
Viewed by 1310
Abstract
Background/Objectives: Inflammation and analgesia are two prominent symptoms and often lead to chronic medical conditions. To control inflammation and analgesia, many marketed drugs are in practice but the majority of them have severe side effects. Methods: This study involved the synthesis [...] Read more.
Background/Objectives: Inflammation and analgesia are two prominent symptoms and often lead to chronic medical conditions. To control inflammation and analgesia, many marketed drugs are in practice but the majority of them have severe side effects. Methods: This study involved the synthesis of a pivalate-based Michael product and evaluated it for in vitro COX-1, COX-2, and 5-LOX inhibitory potentials using specific assays. Molecular docking studies were also assessed. Based on the in vitro results, the compound was also subjected to in vivo anti-inflammatory and antinociceptive studies. Results: The pivalate-based Michael product (MAK01) was synthesized by an organocatalytic asymmetric Michael addition of ethyl isobutyrate to N-phenylmaleimide with an isolated yield of 96%. The structure of the compound was confirmed through 1H and 13C NMR analyses. The observed IC50 values for COX-1, COX-2, and 5-LOX were 314, 130, and 105 μg/mL, respectively. The molecular docking studies on the synthesized compound showed binding interactions with the minimized pockets of the respective enzymes. In a carrageenan model, a percent reduction in edema when administered at 10 mg/kg (a reduction of 33.3 ± 0.77% at the second hour), 20 mg/kg (a reduction of 34.7 ± 0.74% at the second hour), and 30 mg/kg (a reduction of 40.58% ± 0.84% after the fifth hour) was observed. The compound showed a significant response at concentrations of 50, 100, and 150 mg/kg with latency times of 10.32 ± 0.82, 12.16 ± 0.51, and 12.93 ± 0.45 s, respectively. Conclusion: In this study, we synthesized a pivalate-based Michael product for the first time. Moreover, based on its rationality and potency, it was found to be an effective future medicine for the management of analgesia and inflammation. Full article
Show Figures

Figure 1

13 pages, 2203 KiB  
Article
Synthesis, Material Properties, and Organocatalytic Performance of Hypervalent Iodine(III)-Oxidants in Core–Shell-Structured Magnetic Nanoparticles
by Julien Grand, Carole Alayrac, Simona Moldovan and Bernhard Witulski
Catalysts 2024, 14(10), 677; https://doi.org/10.3390/catal14100677 - 1 Oct 2024
Viewed by 972
Abstract
Magnetic nanoparticles (MNPs) based on magnetite (Fe3O4) are attractive catalyst supports due to their high surface area, easy preparation, and facile separation, but they lack stability in acidic reaction media. The search for MNPs stable in oxidative acidic reaction [...] Read more.
Magnetic nanoparticles (MNPs) based on magnetite (Fe3O4) are attractive catalyst supports due to their high surface area, easy preparation, and facile separation, but they lack stability in acidic reaction media. The search for MNPs stable in oxidative acidic reaction media is a necessity if one wants to combine the advantages of MNPs as catalyst supports with those of iodine(III) reagents being environmentally benign oxidizers. In this work, immobilized iodophenyl organocatalysts on magnetite support (IMNPs) were obtained by crossed-linking polymerization of 4-iodostyrene with 1,4-divinylbenzene in the presence of MNPs. The obtained IMNPs were characterized by TGA, IR, SEM, STEM, and HAADF to gain information on catalyst morphology, average particle size (80–100 nm), and their core–shell structure. IMNP-catalysts tested in (i) the α-tosyloxylation of propiophenone 1 with meta-chloroperbenzoic acid (m-CPBA) and (ii) in the oxidation of 9,10-dimethoxyanthracene 3 with Oxone® as the side-oxidant showed a similar performance as reactions using stoichiometric amounts of iodophenyl. The developed IMNPs withstand strong acidic conditions and serve as reusable organocatalysts. They are recyclable up to four times for repeated organocatalytic oxidations with rates of recovery of 80–92%. This is the first example of a—(4-iodophenyl)polystyrene shell—magnetite core-structured organocatalyst withstanding strong acidic reaction conditions. Full article
Show Figures

Figure 1

14 pages, 3156 KiB  
Article
Eco-Friendly Functionalization of Ynals with Thiols under Mild Conditions
by Kamil Hanek and Patrycja Żak
Int. J. Mol. Sci. 2024, 25(17), 9201; https://doi.org/10.3390/ijms25179201 - 24 Aug 2024
Viewed by 980
Abstract
A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the straightforward formation of a broad [...] Read more.
A new eco-friendly method for the synthesis of mono- and multifunctional organosulfur compounds, based on the process between ynals and thiols, catalyzed by bulky N-heterocyclic carbene (NHC), was designed and optimized. The proposed organocatalytic approach allows the straightforward formation of a broad range of thioesters and sulfenyl-substituted aldehydes in yields above 86%, in mild and metal-free conditions. In this study, thirty-six sulfur-based derivatives were obtained and characterized by spectroscopic methods. Full article
Show Figures

Figure 1

16 pages, 2309 KiB  
Article
Stereoselective [4+3]-Cycloaddition of 2-Amino-β-nitrostyrenes with Azaoxyallyl Cations to Access Functionalized 1,4-Benzodiazepin-3-ones
by Yoseop Kim and Sung-Gon Kim
Molecules 2024, 29(6), 1221; https://doi.org/10.3390/molecules29061221 - 8 Mar 2024
Cited by 2 | Viewed by 1413
Abstract
The 1,4-benzodiazepine structural framework is a fascinating element commonly found in biologically active and pharmaceutically relevant compounds. A highly efficient method for synthesizing 1,4-benzodiazepin-3-ones is described, involving a [4+3]-cycloaddition reaction between 2-amino-β-nitrostyrenes and α-bromohydroxamate, with Cs2CO3 used as a base. [...] Read more.
The 1,4-benzodiazepine structural framework is a fascinating element commonly found in biologically active and pharmaceutically relevant compounds. A highly efficient method for synthesizing 1,4-benzodiazepin-3-ones is described, involving a [4+3]-cycloaddition reaction between 2-amino-β-nitrostyrenes and α-bromohydroxamate, with Cs2CO3 used as a base. This process yielded the desired 1,4-benzodiazepines in good yields. Furthermore, an organocatalytic asymmetric [4+3]-cycloaddition was successfully accomplished using a bifunctional squaramide-based catalyst. This approach enabled the enantioselective synthesis of chiral 1,4-benzodiazepines with commendable yields and moderate enantioselectivities, reaching up to 80% yield and 72% ee. Full article
Show Figures

Graphical abstract

25 pages, 2345 KiB  
Article
Asymmetric Synthesis of Saturated and Unsaturated Hydroxy Fatty Acids (HFAs) and Study of Their Antiproliferative Activity
by Olga G. Mountanea, Christiana Mantzourani, Dimitrios Gkikas, Panagiotis K. Politis and George Kokotos
Biomolecules 2024, 14(1), 110; https://doi.org/10.3390/biom14010110 - 15 Jan 2024
Viewed by 2194
Abstract
Hydroxy fatty acids (HFAs) constitute a class of lipids, distinguished by the presence of a hydroxyl on a long aliphatic chain. This study aims to expand our insights into HFA bioactivities, while also introducing new methods for asymmetrically synthesizing unsaturated and saturated HFAs. [...] Read more.
Hydroxy fatty acids (HFAs) constitute a class of lipids, distinguished by the presence of a hydroxyl on a long aliphatic chain. This study aims to expand our insights into HFA bioactivities, while also introducing new methods for asymmetrically synthesizing unsaturated and saturated HFAs. Simultaneously, a procedure previously established by us was adapted to generate new HFA regioisomers. An organocatalytic step was employed for the synthesis of chiral terminal epoxides, which either by alkynylation or by Grignard reagents resulted in unsaturated or saturated chiral secondary alcohols and, ultimately, HFAs. 7-(S)-Hydroxyoleic acid (7SHOA), 7-(S)-hydroxypalmitoleic acid (7SHPOA) and 7-(R)- and (S)-hydroxymargaric acids (7HMAs) were synthesized for the first time and, together with regioisomers of (R)- and (S)-hydroxypalmitic acids (HPAs) and hydroxystearic acids (HSAs), whose biological activity has not been tested so far, were studied for their antiproliferative activities. The unsaturation of the long chain, as well as an odd-numbered (C17) fatty acid chain, led to reduced activity, while the new 6-(S)-HPA regioisomer was identified as exhibiting potent antiproliferative activity in A549 cells. 6SHPA induced acetylation of histone 3 in A549 cells, without affecting acetylated α-tubulin levels, suggesting the selective inhibition of histone deacetylase (HDAC) class I enzymes, and was found to inhibit signal transducer and activator of transcription 3 (STAT3) expression. Full article
(This article belongs to the Collection Bioactive Lipids in Inflammation, Diabetes and Cancer)
Show Figures

Figure 1

5 pages, 2349 KiB  
Proceeding Paper
Organocatalytic Properties of 3,4-Dihydroxyprolines
by Ramón J. Estévez, Rosalino Balo, Andrés Fernández and Juan C. Estévez
Chem. Proc. 2023, 14(1), 107; https://doi.org/10.3390/ecsoc-27-16117 - 15 Nov 2023
Viewed by 827
Abstract
The synthesis and organocatalytic properties of (2S,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)pyrrolidine-2-carboxylic acid are reported. Using the aldol condensation of cyclohexanone with p-nitrobenzaldehyde as a model, a yield of 86%, an enantiomeric excess of 99% and a diastereomeric excess of 25:1 were achieved. Full article
Show Figures

Figure 1

4 pages, 1401 KiB  
Proceeding Paper
Synthesis and Diversification of Chiral Spirooxindoles via Organocatalytic Cascade Reactions
by Jessica Navarro Vega, David Cruz Cruz and Clarisa Villegas Gómez
Chem. Proc. 2023, 14(1), 37; https://doi.org/10.3390/ecsoc-27-16100 - 15 Nov 2023
Viewed by 961
Abstract
The synthesis of chiral spirooxindoles through different amino catalytic activation modes is described herein. Several alkenylisatins were obtained from the Knoevenagel reaction of isatin and activated methylene derivatives containing electron withdrawing groups such as ethyl cyanoacetate. A spirooxindole derivative was obtained from the [...] Read more.
The synthesis of chiral spirooxindoles through different amino catalytic activation modes is described herein. Several alkenylisatins were obtained from the Knoevenagel reaction of isatin and activated methylene derivatives containing electron withdrawing groups such as ethyl cyanoacetate. A spirooxindole derivative was obtained from the oxa-Michael-Michael reaction between one of the synthesized alkenylisatins and 2-hydroxycinnamaldehyde. Currently, new methodologies that allow access to spirooxindole scaffolds are being explored, mainly though Diels-Alder reactions between 2-methylenindolin-2-ones and aldehydes via the trienamine activation mode. The following cascade reactions will be explored in the future to obtain the proposed polycyclic spirooxindole derivatives. Full article
Show Figures

Figure 1

24 pages, 12197 KiB  
Review
Chiral Porous Organic Frameworks: Synthesis, Chiroptical Properties, and Asymmetric Organocatalytic Applications
by Miguel Sanchez-Fuente, José Lorenzo Alonso-Gómez, Laura M. Salonen, Ruben Mas-Ballesté and Alicia Moya
Catalysts 2023, 13(7), 1042; https://doi.org/10.3390/catal13071042 - 27 Jun 2023
Cited by 8 | Viewed by 3743
Abstract
Chiral porous organic frameworks have emerged in the last decade as candidates for heterogeneous asymmetric organocatalysis. This review aims to provide a summary of the synthetic strategies towards the design of chiral organic materials, the characterization techniques used to evaluate their chirality, and [...] Read more.
Chiral porous organic frameworks have emerged in the last decade as candidates for heterogeneous asymmetric organocatalysis. This review aims to provide a summary of the synthetic strategies towards the design of chiral organic materials, the characterization techniques used to evaluate their chirality, and their applications in asymmetric organocatalysis. We briefly describe the types of porous organic frameworks, including crystalline (covalent organic frameworks, COFs) and amorphous (conjugated microporous polymers, CMPs; covalent triazine frameworks, CTFs and porous aromatic frameworks, PAFs) materials. Furthermore, the strategies reported to incorporate chirality in porous organic materials are presented. We finally focus on the applications of chiral porous organic frameworks in asymmetric organocatalytic reactions, summarizing and categorizing all the available literature in the field. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

Back to TopTop