Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (217)

Search Parameters:
Keywords = organic solvent media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 643 KiB  
Article
Activated Lignin for Biodiesel Formation
by Amanda Tanner, Melanie Beazley and Michael Hampton
Energies 2025, 18(13), 3355; https://doi.org/10.3390/en18133355 - 26 Jun 2025
Viewed by 222
Abstract
Current biodiesel production is costly, in part due to the catalysts added during transesterification and later washed out. We have previously shown that intact rapeseed shells can be ball-milled with an alcohol to produce biodiesel without an added catalyst. Here, we report on [...] Read more.
Current biodiesel production is costly, in part due to the catalysts added during transesterification and later washed out. We have previously shown that intact rapeseed shells can be ball-milled with an alcohol to produce biodiesel without an added catalyst. Here, we report on the activation and identity of the complexing agent within the shells of rapeseeds and sunflower seeds. Lignin, present in the cell walls of plant matter, complexes with iron and manganese within metallic media, such as in a ball mill, and acts as a catalyst support in a transesterification reaction with oil and methanol. When ball-milled with methanol, rapeseed and sunflower seeds produce up to 90% biodiesel, similar to yields produced by industrial methods. However, this new method for producing biodiesel is a greener alternative, as it requires fewer organic solvents, may reduce the time and energy required for synthesis, and may reduce the effort required for product purification. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste: 3rd Edition)
Show Figures

Graphical abstract

24 pages, 2822 KiB  
Review
Green Pathways: Enhancing Amine Synthesis Using Deep Eutectic Solvents
by Andrés R. Alcántara and Gonzalo de Gonzalo
Catalysts 2025, 15(6), 586; https://doi.org/10.3390/catal15060586 - 12 Jun 2025
Viewed by 3021
Abstract
Deep eutectic solvents (DESs) have emerged as prominent, environmentally benign substitutes for traditional solvents and catalysts in organic synthesis, notably in the synthesis of amines, pivotal structures in many industrial sectors. Their distinctive physicochemical attributes—including negligible volatility, exceptional thermal stability, and adjustable polarity—render [...] Read more.
Deep eutectic solvents (DESs) have emerged as prominent, environmentally benign substitutes for traditional solvents and catalysts in organic synthesis, notably in the synthesis of amines, pivotal structures in many industrial sectors. Their distinctive physicochemical attributes—including negligible volatility, exceptional thermal stability, and adjustable polarity—render them particularly advantageous for facilitating a broad spectrum of amination reactions. DESs can serve dually as reaction media and as intrinsic catalytic systems, accelerating reaction kinetics without necessitating supplementary catalysts or severe reaction conditions. They are especially efficacious in processes such as reductive amination, transamination, and multicomponent transformations, often affording superior yields and streamlining product isolation. The extensive hydrogen-bonding network intrinsic to DESs is believed to mediate crucial mechanistic steps, frequently obviating the requirement for external additives. Moreover, DESs are recyclable and exhibit compatibility with a diverse array of substrates, encompassing bio-derived and pharmaceutical intermediates. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis for Pharmaceuticals)
Show Figures

Graphical abstract

19 pages, 1415 KiB  
Article
Green and Efficient Synthetic Protocol for 1,3,5-Triazine Derivatives with Anticancer Potential Against Colorectal Cancer
by Julia Chrzan, Anna Karolina Drabczyk, Izabela Siemińska, Monika Baj-Krzyworzeka, Katarzyna Ewa Greber, Jolanta Jaśkowska, Damian Kułaga and Krzesimir Ciura
Molecules 2025, 30(11), 2437; https://doi.org/10.3390/molecules30112437 - 2 Jun 2025
Viewed by 2249
Abstract
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized [...] Read more.
Colorectal cancer (CRC) remains a major global health challenge, necessitating the development of more effective and environmentally sustainable treatments. This study presents a novel green synthetic protocol for 1,3,5-triazine derivatives with anticancer potential, employing both microwave-assisted and ultrasound-assisted methods. The synthesis was optimized using 4-chloro-N-(2-chlorophenyl)-6-(morpholin-4-yl)-1,3,5-triazin-2-amine as the key intermediate, with sodium carbonate, TBAB, and DMF providing optimal yields under microwave conditions. To enhance sustainability, a modified sonochemical method was also developed, enabling efficient synthesis in aqueous media with a minimal use of organic solvents. A series of nine morpholine-functionalized derivatives were synthesized and evaluated for cytotoxic activity against SW480 and SW620 colorectal cancer cell lines. Compound 11 demonstrated superior antiproliferative activity (IC₅₀ = 5.85 µM) compared to the reference drug 5-fluorouracil, while compound 5 showed promising dual-line activity. In silico ADME analysis supported the drug likeness of the synthesized compounds, and biomimetic chromatography analysis confirmed favorable physicochemical properties, including lipophilicity and membrane affinity. These results underscore the potential of the developed protocol to produce bioactive triazine derivatives through an efficient, scalable, and environmentally friendly process, offering a valuable strategy for future anticancer drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

15 pages, 7187 KiB  
Article
Hexoses Biorefinery: Driving Glucose Dehydration over Sulfonic Polymer and Hybrid Acid Catalysts
by Kryslaine M. A. Santos, Simone J. Canhaci, Rafael F. Perez and Marco A. Fraga
Reactions 2025, 6(2), 26; https://doi.org/10.3390/reactions6020026 - 12 Apr 2025
Viewed by 591
Abstract
Glucose is the most abundant monosaccharide as it is the primary unit of cellulose and starch, which are the more relevant feedstocks for biorefineries. Dehydration of glucose can lead to anhydroglucoses, whose interest has been increasing due to its potential industrial use. Commercial [...] Read more.
Glucose is the most abundant monosaccharide as it is the primary unit of cellulose and starch, which are the more relevant feedstocks for biorefineries. Dehydration of glucose can lead to anhydroglucoses, whose interest has been increasing due to its potential industrial use. Commercial sulfonic polymer resins and a synthesized organic–inorganic mesoporous material were taken as Brønsted acid catalysts. High hexose conversion (up to 98%) and selectivity to anhydroglucoses (~80%) could be reached, turning this process into an alternative route to carbohydrate pyrolysis that presents an energy-intensive downstream. Hexose conversion to anhydroglucoses was related to the amount of acid sites, and the removal of one molecule of water from hexoses to produce anhydroglucoses was found as the preferential dehydration route over a bare Brønsted acid catalyst in anhydrous polar aprotic solvent (DMF) at mild conditions. Product distribution changed dramatically upon catalyst deactivation with HMF and fructose emerging as relevant products. It was suggested that an additional Lewis surface is produced during the deactivation process, probably arising from the formation of insoluble high molecular weight compounds in acidic media. Full article
Show Figures

Figure 1

27 pages, 5110 KiB  
Article
Characterization of the Differences in Dissolved Organic Matter (DOM) Adsorbed on Five Kinds of Microplastics Using Multiple Methods
by Xianshu Fu, Xiangliang Pan, Jun Chen, Mingzhou Zhang, Zihong Ye and Xiaoping Yu
Molecules 2025, 30(7), 1586; https://doi.org/10.3390/molecules30071586 - 2 Apr 2025
Viewed by 851
Abstract
Microplastics (MPs) are ubiquitous in aquatic environments, soils, and beach sediments, demonstrating a remarkable ability to adsorb dissolved organic matter (DOM). Although there are methods for extracting DOM from water, the approaches for directly extracting DOM from microplastics have not been thoroughly investigated, [...] Read more.
Microplastics (MPs) are ubiquitous in aquatic environments, soils, and beach sediments, demonstrating a remarkable ability to adsorb dissolved organic matter (DOM). Although there are methods for extracting DOM from water, the approaches for directly extracting DOM from microplastics have not been thoroughly investigated, and the characterization of DOM adsorbed on microplastics is also insufficient. In this study, five different types of microplastic samples were collected from each of five environmental media (water and sediment), and finally 25 samples were obtained. This paper comparatively assessed the extraction efficiency of DOM from MPs with various solvents by using total organic carbon (TOC), culminating in the development of a sodium pyrophosphate-NaOH solution extraction method optimized for DOM. The morphology, material and environmental medium of microplastics were the three primary factors affecting the adsorption of DOM on microplastics, with the highest enrichment ratio of 1.4–1.8 times for extruded polyethylene microplastics (EPE-MPs) characterized by their porous structure in the flowing water environment. The molecular weight of DOM adsorbed on microplastics showed a multi-modal distribution pattern with great dissimilarities among the different environmental media. Gel permeation chromatography (GPC) indicated that the weight-average molecular weight (Mw) of DOM was 2750–4552 Da for river MPs, 2760–5402 Da for Qiantang River MPs, 1233–5228 Da for East China Sea MPs, 440–7302 Da for soil sediment MPs and 438–6178 Da for beach sediment MPs, respectively. Excitation-emission matrix-parallel factor analysis (EEM-PARAFAC) identified that tyrosine-like substances with high excitation in region IV and low excitation in region I were predominantly adsorbed on MPs, followed by tryptophan-like substances with low excitation in region II and protein-like substances in region IV, while humic- and fulvic-like substances in regions V and III, respectively, exhibited the least adsorption affinity. The findings underscored the critical need to comprehensively consider the interactions between MPs and DOM and their environmental impacts in pollution control strategies. Full article
Show Figures

Figure 1

22 pages, 3391 KiB  
Article
Enantioselectivity Enhancement of a Geobacillus thermoleovorans CCR11 Lipase by Rational Design
by Aaron-Salvador Bustos-Baena, Rodolfo Quintana-Castro, María Guadalupe Sánchez-Otero, Graciela Espinosa-Luna, María Remedios Mendoza-López, Carolina Peña-Montes and Rosa María Oliart-Ros
Catalysts 2025, 15(2), 168; https://doi.org/10.3390/catal15020168 - 12 Feb 2025
Cited by 2 | Viewed by 945
Abstract
Lipases are enzymes that catalyze the hydrolysis of carboxylic esters at a lipid–water interface and are able to catalyze reactions such as alcoholysis, esterification, transesterification, and enantioselective synthesis in organic media. They are important biocatalysts for biotechnological and industrial applications—such as in the [...] Read more.
Lipases are enzymes that catalyze the hydrolysis of carboxylic esters at a lipid–water interface and are able to catalyze reactions such as alcoholysis, esterification, transesterification, and enantioselective synthesis in organic media. They are important biocatalysts for biotechnological and industrial applications—such as in the food and flavor industry—and in the production of biopharmaceuticals, biofuels, biopolymers, and detergents. A desirable property of lipases is stereoselectivity for the production of chemicals with high optical purity. In this work, we report the improvement of the enantioselective capabilities of the Geobacillus thermoleovorans CCR11 lipase. By means of a rational design and bioinformatic approaches, six amino acids of the catalytic cavity of the lipase LipTioCCR11 were substituted resulting in an increase in the optimum temperature of the enzyme and in the resistance to the presence of organic solvents in hydrolytic reactions, and in the promotion of the enantioselective recognition of R isomers of carboxylic acids with importance for the pharmaceutical and food industries. Full article
(This article belongs to the Special Issue New Trends in Industrial Biocatalysis, 2nd Edition)
Show Figures

Figure 1

16 pages, 2189 KiB  
Article
Enzymatic Synthesis of Bioactive Structured DHA Phospholipids via Stable Immobilized Phospholipase-Catalyzed Esterification in a Solvent-Free Medium
by Ernestina Garcia-Quinto, Jose M. Guisan and Gloria Fernandez-Lorente
Processes 2025, 13(2), 442; https://doi.org/10.3390/pr13020442 - 6 Feb 2025
Cited by 1 | Viewed by 1219
Abstract
The enzymatic esterification of docosahexaenoic acid (DHA) with glycerophosphocholine (GPC) was investigated to produce bioactive structured DHA phospholipids with DHA esterified at the sn-2 position, which may contribute to the prevention of neurodegenerative diseases such as Alzheimer’s. This reaction is complex due to [...] Read more.
The enzymatic esterification of docosahexaenoic acid (DHA) with glycerophosphocholine (GPC) was investigated to produce bioactive structured DHA phospholipids with DHA esterified at the sn-2 position, which may contribute to the prevention of neurodegenerative diseases such as Alzheimer’s. This reaction is complex due to the low solubility of GPC in anhydrous organic media and the limited stability of enzymes under such conditions. The immobilized phospholipase Quara® LowP (QlowP-C18) proved to be the most effective catalyst, achieving a 58% yield of di-substituted DHA phospholipids (Di-DHA-PC) in just 48 h under optimal conditions (solvent-free media at 60 °C) with 95% purity. Advanced immobilization and post-immobilization techniques significantly improved the stability of QlowP-C18, increasing its longevity threefold and enabling reuse for up to five reaction cycles at 40 °C. The total production reached 120.4 mg of highly pure DHA-di-substituted phospholipid. These findings highlight the effectiveness of stable immobilized enzymes in solvent-free systems and underscore their potential for the efficient and sustainable production of highly pure Di-DHA-PC, which could be used as a functional or nutraceutical ingredient for the prevention of neurodegenerative diseases. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

25 pages, 2474 KiB  
Article
Evaluation of the Pharmacological Activities of a Xylan from Corn Cobs
by Rayssa Lourenna Trigueiro Nobrega, Rony Lucas Silva Viana, Marianna Barros Silva, Luciana Duarte Martins Matta, Giulianna Paiva Viana Andrade Souza, Hugo Alexandre Oliveira Rocha and Raniere Fagundes Melo-Silveira
Polysaccharides 2025, 6(1), 9; https://doi.org/10.3390/polysaccharides6010009 - 1 Feb 2025
Cited by 1 | Viewed by 1102
Abstract
Xylans, polysaccharides abundantly derived from agricultural byproducts, have shown potential pharmacological properties, making them a subject of increasing research interest. This study aimed to expand the understanding of xylans’ pharmacological properties and relate them to their composition. A method combining ultrasound and alkaline [...] Read more.
Xylans, polysaccharides abundantly derived from agricultural byproducts, have shown potential pharmacological properties, making them a subject of increasing research interest. This study aimed to expand the understanding of xylans’ pharmacological properties and relate them to their composition. A method combining ultrasound and alkaline media for xylan extraction from corn cobs (ERX) was used, resulting in a significant increase in final yield compared to other methodologies. The physicochemical characterization of ERX was carried out, and its antioxidant, cytotoxic, anticoagulant, and immunomodulatory properties were evaluated. ERX demonstrated significant antioxidant activity with metal-chelating properties and induced apoptosis in HeLa tumor cells (p < 0.0001). It also reduced nitric oxide (NO) production by activated macrophages and extended the blood coagulation time, as assessed by the APTT assay (p < 0.0001). Further fractionation of ERX using various organic solvents resulted in multiple xylan subfractions. Among them, the ethanol-derived subfraction E1.4 exhibited remarkable pharmacological activities, including metal-chelation, cytotoxicity against HeLa cells via apoptosis, reduced NO production (p < 0.0001), and prolonged coagulation times (p < 0.0001). E1.4 is heteroxylan with a molecular weight of approximately 100 kDa. These findings suggest that corn cobs could be a promising source of pharmacologically significant molecules, particularly the heteroxylan E1.4. Future studies should focus on the structural characterization of this xylan to understand the relationship between structure and biological activity and explore the therapeutic potential of E1.4 in vivo models. Full article
Show Figures

Graphical abstract

24 pages, 3541 KiB  
Review
Electrochemical Corrosion Properties and Protective Performance of Coatings Electrodeposited from Deep Eutectic Solvent-Based Electrolytes: A Review
by Vyacheslav S. Protsenko
Materials 2025, 18(3), 558; https://doi.org/10.3390/ma18030558 - 26 Jan 2025
Viewed by 1250
Abstract
The application of deep eutectic solvents (DESs) as an innovative class of environmentally friendly liquid media represents a significant advancement in materials science, especially for the development and enhancement of structural materials. Among the promising applications, DESs are particularly attractive for the electrodeposition [...] Read more.
The application of deep eutectic solvents (DESs) as an innovative class of environmentally friendly liquid media represents a significant advancement in materials science, especially for the development and enhancement of structural materials. Among the promising applications, DESs are particularly attractive for the electrodeposition of corrosion-resistant coatings. It is established that corrosion-resistant and protective coatings, including those based on metals, alloys, and composite materials, can be synthesized using both traditional aqueous electrolytes and non-aqueous systems, such as organic solvents and ionic liquids. The integration of DESs in electroplating introduces a unique capacity for precise control over microstructure, chemical composition, and morphology, thereby improving the electrochemical corrosion resistance and protective performance of coatings. This review focuses on the electrodeposition of corrosion-resistant and protective coatings from DES-based electrolytes, emphasizing their environmental, technological, and economic benefits relative to traditional aqueous and organic solvent systems. Detailed descriptions are provided for the electrodeposition processes of coatings based on zinc, nickel, and chromium from DES-based baths. The corrosion–electrochemical behavior and protective characteristics of the resulting coatings are thoroughly analyzed, highlighting the potential and future directions for developing anti-corrosion and protective coatings using DES-assisted electroplating techniques. Full article
Show Figures

Graphical abstract

20 pages, 6946 KiB  
Article
Composite Sorbents Based on Polymeric Se-Derivative of Amidoximes and SiO2 for the Uranium Removal from Liquid Mineralized Media
by Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Daria D. Churakova, Vladimir V. Korochencev, Oleg Yu. Slabko, Evgenij A. Eliseenko and Eduard A. Tokar’
Gels 2025, 11(1), 14; https://doi.org/10.3390/gels11010014 - 27 Dec 2024
Viewed by 717
Abstract
A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N’-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO2 in an environment of organic solvents [...] Read more.
A new composite material with enhanced sorption-selective properties for uranium recovery from liquid media has been obtained. Sorbents were synthesized through a polycondensation reaction of a mixture of 4-amino-N’-hydroxy-1,2,5-oxadiazole-3-carboximidamide (hereinafter referred to as amidoxime) and SiO2 in an environment of organic solvents (acetic acid, dioxane) and highly porous SiO2. To establish optimal conditions for forming the polymer sorption-active part and the synthesis as a whole, a series of composite adsorbents were synthesized with varying amidoxime/matrix ratios (35/65, 50/50, 65/35). The samples were characterized with FT-IR, XRD, SEM, EDX, XRFES spectroscopy and TGA. Under static conditions of uranium sorption, the dependence of the efficiency of radionuclide recovery from mineralized solutions of various acidities on the ratio of the initial components was established. In the pH range from 4 to 8 (inclusive), the uranium removal efficiency exceeds 95%, while the values of the distribution coefficients (Kd) exceed 104 cm3g−1. It was demonstrated that an increase in the surface development of the sorbents enhances such kinetic parameters of uranium sorption as diffusion rate by 10–20 times compared to non-porous materials. The values of the maximum static capacity exceed 700 mg g−1. The enhanced availability of adsorption centers, achieved through the use of a porous SiO2 matrix, significantly improves the kinetic parameters of the adsorbents. A composite with optimal physicochemical and sorption properties (amidoxime/matrix ratio of 50/50) was examined under dynamic conditions of uranium sorption. It was found that the maximum dynamic sorption capacity of porous materials is four times greater compared to that of a non-porous adsorbent Se-init. The effective filter cycle exceeds 3200 column volumes—twice that of an adsorbent with a monolithic surface. These results indicate the promising potential of the developed materials for uranium sorption from liquid mineralized media under dynamic conditions across a wide pH range. Full article
(This article belongs to the Special Issue Eco-Friendly Gels for Adsorption)
Show Figures

Figure 1

22 pages, 4221 KiB  
Article
Pulsed Electric Field (PEF) Treatment Results in Growth Promotion, Main Flavonoids Extraction, and Phytochemical Profile Modulation of Scutellaria baicalensis Georgi Roots
by Kajetan Grzelka, Adam Matkowski, Grzegorz Chodaczek, Joanna Jaśpińska, Anna Pawlikowska-Bartosz, Wojciech Słupski, Dorota Lechniak, Małgorzata Szumacher-Strabel, Segun Olorunlowu, Karolina Szulc, Adam Cieślak and Sylwester Ślusarczyk
Int. J. Mol. Sci. 2025, 26(1), 100; https://doi.org/10.3390/ijms26010100 - 26 Dec 2024
Cited by 1 | Viewed by 1165
Abstract
This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Scutellaria baicalensis Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established [...] Read more.
This study aims to explore the effect of pulsed electric field (PEF) treatment as a method very likely to result in reversible electroporation of Scutellaria baicalensis Georgi underground organs, resulting in increased mass transfer and secondary metabolites leakage. PEF treatment with previously established empirically tailored parameters [E = 0.3 kV/cm (U = 3 kV, d = 10 cm), t = 50 µs, N = 33 f = 1 Hz] was applied 1–3 times to S. baicalensis roots submerged in four different Natural Deep Eutectic Solvents (NADES) media (1—choline chloride/xylose (1:2) + 30% water, 2—choline chloride/glucose (1:2) + 30% water, 3—choline chloride/ethylene glycol (1:2), and 4—tap water (EC = 0.7 mS/cm). Confocal microscopy was utilized to visualize the impact of PEF treatment on the root cells in situ. As a result of plant cell membrane permeabilization, an extract containing major active metabolites was successfully acquired in most media, achieving the best results using medium 1 and repeating the PEF treatment twice (baicalein <LOQ, baicalin 12.85 µg/mL, wogonin 2.15 µg/mL, and wogonoside 3.01 µg/mL). Wogonin concentration in NADES media was on par with the control (plants harvested on the day of the experiment, ultrasound-mediated methanolic extraction, Cwogonin = 2.15 µg/mL). After successful extraction, PEF treatment allowed the plants to continue growing, with the lowest survival rate across treated groups being 60%. Additionally, an enhancement in plant growth parameters (length and fresh mass of the roots) and significant changes in the S. baicalensis root phytochemical profile were also observed. Full article
(This article belongs to the Special Issue Plant Resilience: Insights into Abiotic and Biotic Stress Adaptations)
Show Figures

Figure 1

15 pages, 2995 KiB  
Article
Protein Precipitation by Metal Hydroxides as a Convenient and Alternative Sample Preparation Procedure for Bioanalysis
by Emanuele Salina and Luca Regazzoni
Molecules 2025, 30(1), 2; https://doi.org/10.3390/molecules30010002 - 24 Dec 2024
Cited by 2 | Viewed by 3334
Abstract
Protein precipitation is widely used for sample preparation ahead of liquid chromatography. This step is required to analyze small molecules without the interference of proteins contained in the matrix. Organic solvents and acidic chemicals are the two most popular reagents used for this [...] Read more.
Protein precipitation is widely used for sample preparation ahead of liquid chromatography. This step is required to analyze small molecules without the interference of proteins contained in the matrix. Organic solvents and acidic chemicals are the two most popular reagents used for this scope. Organic solvents are quite effective precipitating agents, but require a medium-to-large sample dilution. Moreover, a high concentration of organic solvents in sample media can affect reversed phase separations. Therefore, an evaporation step, followed by the resuspension of the analytes in appropriate media, is sometimes required. On the contrary, the addition of acidic compounds is more straightforward, since it keeps the supernatant aqueous and does not require evaporation, but the extreme pH can cause the degradation of analytes and the stationary phase. Herein, an alternative method for protein precipitation using the addition of zinc hydroxide was tested. The main advantages of this method over the other precipitating reagents are the minimal sample dilution required and the maintenance of aqueous media at nearly neutral pH which ensure analyte stability. The protocol ensured an effective protein removal before the analysis of small molecules in biological matrices, resulting in full compatibility with reversed phase chromatography coupled with both UV and mass spectrometric detectors. Full article
Show Figures

Figure 1

11 pages, 483 KiB  
Article
Reformulated Kinetics of Immobilized Enzymes in Non-Conventional Media: A Case of Lipase-Catalyzed Esterification
by Emmanuel M. Papamichael and Panagiota-Yiolanda Stergiou
Catalysts 2024, 14(11), 830; https://doi.org/10.3390/catal14110830 - 18 Nov 2024
Cited by 1 | Viewed by 1185
Abstract
Several approaches have been reported that aim to achieve simplified standardizations of the kinetic behavior of immobilized enzymes under specific experimental conditions. We have previously published simplified rate equations based on the kinetics of immobilized enzymes. Recently, new experimental results have become available [...] Read more.
Several approaches have been reported that aim to achieve simplified standardizations of the kinetic behavior of immobilized enzymes under specific experimental conditions. We have previously published simplified rate equations based on the kinetics of immobilized enzymes. Recently, new experimental results have become available on the kinetics and mechanisms of esterifications catalyzed by immobilized lipase in unconventional media, and consequently, a reformulation of their kinetics is necessary. In this work, we report the development of simplified rate equations relating the aforementioned reaction conditions on a new basis, considering our kinetic and mechanistic results. We provide experimental evidence that two different mechanisms describe the esterifications catalyzed by immobilized lipase, either in anhydrous organic solvent (n-hexane) or under non-solvent conditions. A ping-pong bi–bi mechanism with double dead-end substrate inhibition by both the fatty acid and the alcohol has been found to apply in the former case, while in the latter case the esterification proceeds via an ordered bi–bi mechanism with single dead-end substrate inhibition by ethanol. This study may be biotechnologically useful, as the increased use of immobilized enzymes, whether in academic research or in industry, requires sustainable development of new and environmentally friendly synthetic processes. Full article
(This article belongs to the Special Issue Biocatalysis in Non-conventional Media 2024)
Show Figures

Graphical abstract

13 pages, 4888 KiB  
Article
A Revisit to Effervescence-Assisted Microextraction of Non-Polar Organic Compounds Using Hydrophobic Magnetic Nanoparticles—Application to the Determination of UV Filters in Natural Waters
by Efthymia Toti, Vasiliki Gouma, Vasiliki I. Karagianni and Dimosthenis L. Giokas
Separations 2024, 11(11), 315; https://doi.org/10.3390/separations11110315 - 1 Nov 2024
Viewed by 1491
Abstract
In this work, we revisited the method of effervescence-assisted microextraction, aiming to assess the effects of the process of effervescence on the extraction efficiency of organic compounds. We used a magnetic nano-sorbent material composed of stearic acid-coated cobalt-ferrite magnetic nanoparticles as an adsorbent [...] Read more.
In this work, we revisited the method of effervescence-assisted microextraction, aiming to assess the effects of the process of effervescence on the extraction efficiency of organic compounds. We used a magnetic nano-sorbent material composed of stearic acid-coated cobalt-ferrite magnetic nanoparticles as an adsorbent and dispersed it in water using 12 combinations of acid and base mixtures at two different mass ratios. The solution pH, the ionic strength, and the duration of effervescence were calculated and correlated to the extraction efficiency of nonpolar UV filters from aqueous samples as model organic compounds. Our findings provide a general perspective into the influence of the process of effervescence on extraction efficiency. Based on these findings, we developed and optimized a new analytical method for extracting UV filters from water samples using HPLC-UV as a detector. Under the optimum experimental conditions (0.2 g fumaric acid/0.1 g Na2CO3, 50 mg of magnetic nanoparticles and methanol as an elution solvent assisted by vortex agitation for 5 min) the method was found to afford good linearity in the calibration curves expanding by two orders of magnitude, satisfactory reproducibility and repeatability (1.8–11.1%), and high recoveries (78.4–127.1%). This research provides a new perspective on the influence of the process of effervescence on the extraction efficiency of nonpolar organic compounds and introduces a new method for extracting UV filters from aqueous media. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Graphical abstract

18 pages, 3531 KiB  
Article
Comparison of Conjugates Obtained Using DMSO and DMF as Solvents in the Production of Polyclonal Antibodies and ELISA Development: A Case Study on Bisphenol A
by Anna N. Berlina, Nadezhda S. Komova, Kseniya V. Serebrennikova, Anatoly V. Zherdev and Boris B. Dzantiev
Antibodies 2024, 13(4), 89; https://doi.org/10.3390/antib13040089 - 29 Oct 2024
Cited by 1 | Viewed by 2170
Abstract
When developing immunochemical test systems, it is necessary to obtain specific antibodies. Their quality depends, among other things, on the immunogen used. When preparing hapten–protein conjugates to obtain antibodies for low-molecular-weight compounds, the key factors are the structure of the hapten itself, the [...] Read more.
When developing immunochemical test systems, it is necessary to obtain specific antibodies. Their quality depends, among other things, on the immunogen used. When preparing hapten–protein conjugates to obtain antibodies for low-molecular-weight compounds, the key factors are the structure of the hapten itself, the presence of a spacer, the size of the carrier protein and the degree of its modification by hapten molecules. This work shows that one additional factor—the conditions for obtaining the hapten–protein conjugate—is overlooked. In this work, we have synthesized conjugates of bisphenol A derivative 4,4-bis(hydroxyphenyl)valeric acid (BVA), the protein carrier soybean trypsin inhibitor (STI), and bovine serum albumin (BSA) in reaction media combining water with two organic solvents: dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). Namely, BSADMF–BVA, STIDMF–BVA, BSADMSO–BVA and STIDMSO–BVA conjugates were obtained. Rabbit polyclonal antibodies against the BSADMF–BVA conjugate demonstrated basically different interactions in the developed ELISA systems using either STIDMF–BVA or STIDMSO–BVA conjugates. The use of the STIDMF–BVA conjugate demonstrated the absence of competition in combination with antisera obtained from BSADMF–BVA in an ELISA. A competitive interaction was observed only with the use of the STIDMSO–BVA conjugate. Under the selected conditions, the detection limit of bisphenol A was 8.3 ng/mL, and the working range of determined concentrations was 18.5–290.3 ng/mL. The obtained data demonstrate the possibility of achieving sensitive immunoassays by simply varying the reaction media for the hapten–protein conjugation, which could provide an additional tool in the development of immunoassays for other low-molecular-weight compounds. Full article
(This article belongs to the Section Antibody-Based Diagnostics)
Show Figures

Graphical abstract

Back to TopTop