Characterization of the Differences in Dissolved Organic Matter (DOM) Adsorbed on Five Kinds of Microplastics Using Multiple Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microplastic Samples
2.2. Reagents and Equipment
2.3. Extraction Methods of DOM Adsorbed on Microplastics in Different Environmental Media
2.4. Scanning Electron Microscopy (SEM)
2.5. Detection of TOC Content in DOM
2.6. Molecular Weight Distribution of DOM
2.7. Analysis of DOM Fluorescence Characteristics
3. Experimental Results and Discussion
3.1. Extraction Procedure of DOM Adsorbed on Microplastics
3.1.1. Extraction Approach of DOM Adsorbed on Microplastics from River
3.1.2. Extraction Methods of DOM from Soil and Beach Sediments
3.1.3. Extraction Methods of DOM from Microplastics in Soil and Beach Sediments
3.2. DOM Content in Microplastics with Different Environmental Media
3.3. Morphology Characterization of Microplastics Before and After Extraction
3.4. Molecular Weight Distribution of DOM in Microplastics with Different Environmental Media
3.5. Fluorescence Characteristics of DOM in Microplastics with Different Environmental Media
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ory, N.C.; Gallardo, C.; Lenz, M.; Thiel, M. Capture, swallowing, and egestion of microplastics by a planktivorous juvenile fish. Environ. Pollut. 2018, 240, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John AW, G.; McGonigle, D.; Russell, A.E. Lost at sea: Where is all the plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shi, H.; Tu, C.; Zhou, Q.; Ji, R.; Pan, X.; Xu, X.; Wu, C.; An, L.; Sun, X. Progress and Prospects in the Study of Microplastics in the Environment. Chin. Sci. Bull. 2021, 66, 1544–1562. [Google Scholar] [CrossRef]
- Li, D. Marine microplastic pollution status and suggestions for countermeasures. Res. Environ. Sci. 2019, 32, 197–202. [Google Scholar]
- Li, D.J.; Zhu, L.X.; Chang, S.Y.; Zhang, F.; Wang, L. Research Progress and Existing Problems of Marine Microplastic Pollution. J. East China Norm. Univ. 2019, 2019, 174–185. [Google Scholar]
- Besseling, E.; Redondo-Hasselerharm, P.; Foekema, E.M.; Koelmans, A.A. Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Rev. Environ. Sci. Technol. 2019, 49, 32–80. [Google Scholar] [CrossRef]
- GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean; Group of Experts on the Scientific Aspects of Marine Environmental Protection: London, UK, 2019. [Google Scholar]
- Mai, L.; Sun, X.; Xia, L.; Bao, L.; Liu, L.; Zeng, E.Y. Global riverine plastic outflows. Environ. Sci. Technol. 2020, 54, 10049–10056. [Google Scholar] [CrossRef]
- Browne, M.A. Sources and pathways of microplastics to habitats. In Marine Anthropogenic Litter; Springer: Cham, Switzerland, 2015; pp. 229–244. [Google Scholar]
- Browne, M.; Dissanayake, A.; Galloway, T.S.; Lowe, D.; Thompson, R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 2008, 42, 5026–5031. [Google Scholar] [CrossRef]
- Lebreton, L.C.M.; van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef]
- Tungittiplakorn, W.; Lion, L.W.; Cohen, C.; Kim, J.Y. Engineered polymeric nanoparticles for soil remediation. Environ. Sci. Technol. 2004, 38, 1605–1610. [Google Scholar] [CrossRef]
- Corradini, F.; Casado, F.; Leiva, V.; Huerta-Lwanga, E.; Geissen, V. Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci. Total Environ. 2021, 752, 141917. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Huang, X.P.; Xiang, L.; Wang, Y.Z.; Li, Y.W.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2021, 137, 105263. [Google Scholar] [CrossRef]
- Virsek, M.K.; Lovsin, M.N.; Koren, S.; Kržan, A.; Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 2017, 125, 301–309. [Google Scholar] [PubMed]
- Huang, Y.; Ding, J.; Zhang, G.; Liu, S.; Zou, H.; Wang, Z.; Zhu, W.; Geng, J. Interactive effects of microplastics and selected pharmaceuticals on red tilapia: Role of microplastic aging. Sci. Total Environ. 2021, 752, 142256. [Google Scholar] [PubMed]
- Yu, F.; Yang, C.; Zhu, Z.; Bai, X.; Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 2019, 694, 133643. [Google Scholar] [PubMed]
- Zhou, R.; Lu, G.; Yan, Z.; Jiang, R.; Bao, X.; Lu, P. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. Sci. Total Environ. 2020, 732, 139222. [Google Scholar]
- WOR. Living with the Oceans. A Report on the State of the World’s Oceans. 2010. Available online: https://worldoceanreview.com/en/wor-1/pollution/organic-pollutants/ (accessed on 19 April 2010).
- Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our plastic age. Philos. Trans. R. Soc. Lond. B 2009, 364, 1973–1976. [Google Scholar] [CrossRef]
- Xia, B.; Chen, B.; Sun, X.; Qu, K.; Ma, F.; Du, M. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Sci. Total Environ. 2015, 508, 525–533. [Google Scholar] [PubMed]
- Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, I.M.; Van den Eede, G. Review of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. Part A 2019, 36, 639–673. [Google Scholar] [CrossRef]
- Naik, R.K.; Naik, M.M.; D’Costa, P.M.; Shaikh, F. Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health. Mar. Pollut. Bull. 2019, 149, 110525. [Google Scholar] [CrossRef]
- Ilekis, J.V.; Tsilou, E.; Fisher, S.; Abrahams, V.M.; Soares, M.J.; Cross, J.C.; Zamudio, S.; Illsley, N.P.; Myatt, L.; Colvis, C.; et al. Placental origins of adverse pregnancy outcomes: Potential molecular target: An executive workshop summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol. 2016, 215, S1–S46. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ji, J.; Tao, J.; Yang, Y.; Wu, D.; Han, L.; Li, S.; Wang, J. Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. TrAC Trends Anal. Chem. 2023, 158, 116882. [Google Scholar] [CrossRef]
- Abdurahman, A.; Cui, K.; Wu, J.; Li, S.; Gao, R.; Dai, J.; Liang, W.; Zeng, F. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm, and site energy distribution analysis. Ecotoxicol. Environ. Saf. 2020, 198, 110658. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.; He, H.; Bao, L.L. Plastics Are an Insignificant Carrier of Riverine Organic Pollutants to the Coastal Oceans. Environ. Sci. Technol. 2020, 54, 15852–15860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xiong, X.; Hu, H.; Wu, C.; Bi, Y.; Zhou, B.; Lam, P.; Liu, J. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environ. Sci. Technol. 2017, 51, 3794–3801. [Google Scholar] [CrossRef]
- Li, D.Y.; Yang, X.F.; Zhou, Z.B.; Jiang, B.; Tawfik, A.; Zhao, S.S.; Meng, F.G. Molecular traits of phenolic moieties in dissolved organic matter: Linkages with membrane fouling development. Environ. Int. 2019, 133, 8. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Geng, J.; Li, S.; Yu, Q.; Xu, K.; Ren, H. Distribution and removal of fluorescent dissolved organic matter in 15 municipal wastewater treatment plants in China. Chemosphere 2020, 251, 126375. [Google Scholar] [CrossRef] [PubMed]
- Korak, J.A.; Rosario-Ortiz, F.L.; Summers, R.S. Evaluation of optical surrogates for the characterization of DOM removal by coagulation. Environ. Sci. Water Res. Technol. 2015, 1, 493–506. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Waite, T.D.; Ruiz, G.M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 2008, 108, 40–58. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, L.Q.; Li, Y.P.; Zhou, L.; Zhou, Y.Q.; Zhang, Y.L.; Huang, C.C.; Li, H.P.; Zhu, G.W. Influence of land use and rainfall on the optical properties of dissolved organic matter in a key drinking water reservoir in China. Sci. Total Environ. 2020, 699, 10. [Google Scholar] [CrossRef]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.; Kelly, F. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [PubMed]
- Schwaferts, C.; Niessner, R.; Elsner, M.; Ivleva, N.P. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends Anal. Chem. 2019, 112, 52–65. [Google Scholar]
- Aiken, G.R.; McKnight, D.M.; Wershaw, R.L.; Maccarthy, P. Humic Substances in Soil, Sediment, and Water; John Wiley: New York, NY, USA, 1985. [Google Scholar]
- Wilkinson, K.J.; Balnois, E.; Leppard, G.G.; Buffle, J. Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 155, 287–310. [Google Scholar]
- Liu, J.; Legros, S.; Von der Kammer, F.; Hofmann, T. Natural Organic Matter Concentration and Hydrochemistry Influence Aggregation Kinetics of Functionalized Engineered Nanoparticles. Environ. Sci. Technol. 2013, 47, 4113–4120. [Google Scholar] [CrossRef]
- SY/T 5118-2021; Determination of Extractive Content in Rock. The Standardization Administration of the People’s Republic of China: Beijing, China, 2021.
- SY/T 5119-2016; Analytical Method of Soluble Organic Matters in Rocks and Crude Oil Group Composition Column Chromatography. The Standardization Administration of the People’s Republic of China: Beijing, China, 2016.
- Wei, Q.; Tang, Y. 13C-NMR study on structure evolution characteristics of high-organic-sulfur coals from typical Chinese areas. Minerals 2018, 8, 49. [Google Scholar] [CrossRef]
- González-Vila, F.J.; Del Río, J.; Almendros, G.; Martin, F. Structural relationship between humic fractions from peat and lignites from the Miocene Granada basin. Fuel 1994, 73, 215–221. [Google Scholar]
- Li, Y.; Zi, C.; Chang, L.; Zhao, W. Determination of Oxygen-Containing Functional Groups in Low-Rank Coal. Coal Technol. 2018, 37, 366–369. [Google Scholar]
- Chukov, S.N.; Ejarque, E.; Abakumov, E.V. Characterization of humic acids from tundra soils of northern western Siberia by electron paramagnetic resonance spectroscopy. Eurasian Soil. Sci. 2017, 50, 30–33. [Google Scholar] [CrossRef]
- Dehaut, A.; Cassone, A.L.; Frère, L.; Hermabessiere, L.; Himber, C.; Rinnert, E.; Rivière, G.; Lambert, C.; Soudant, P.; Huvet, A.; et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 2016, 215, 223–233. [Google Scholar]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar]
- Cao, W.B. The Development and Application of Microwave Heating; BoD Publishing: Norderstedt, Germany, 2012. [Google Scholar]
- HJ 501-2009; Water Quality—Determination of Total Organic Carbon—Combustion Oxidation Nondispersive Infrared Absorption Method. Ministry of Environmental Protection: Beijing, China, 2009.
- Chen, C.S.; Anaya, J.M.; Chen, E.Y.; Farr, E.; Chin, W.C. Ocean warming-acidification synergism undermines dissolved organic matter assembly. PLoS ONE 2015, 10, e0118300. [Google Scholar] [CrossRef] [PubMed]
- Worobiczuk, M.; Naumowicz, M. Current state of knowledge about plastics’ ability to sorption. Civ. Environ. Eng. Rep. 2024, 34, 150–165. [Google Scholar] [CrossRef]
- Zhang, H.; Fei, Y.; Wang, H.; Chen, Y.; Luo, Y. Interaction of Microplastics and Organic Pollutants: Quantification, Environmental Fates, and Ecological Consequences. Microplast. Terr. Environ. 2020, 95, 161–184. [Google Scholar]
- Yang, H.; Dong, H.; Huang, Y.; Chen, G.; Wang, J. Interactions of microplastics and main pollutants and environmental behavior in soils. Sci. Total Environ. 2022, 821, 153511. [Google Scholar]
- Agboola, O.D.; Benson, N.U. Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: A review. Front. Environ. Sci. 2021, 9, 678574. [Google Scholar] [CrossRef]
- Graf, M.; Greenfield, L.M.; Reay, M.K.; Bargiela, R.; Williams, G.B.; Onyije, C.; Lloyd Charlotte, E.M.; BullRichard, L.D.; Evershed, R.P.; Golyshin, P.N.; et al. Increasing concentration of pure micro- and macro-ldpe and pp plastic negatively affect crop biomass, nutrient cycling, and microbial biomass. J. Hazard. Mater. 2023, 458, 131932.1–131932.15. [Google Scholar] [CrossRef]
- Wu, M. The Invention Relates to a Rapid and Efficient Extraction Device and Method for Microplastics in Soil. CN202011236183.9, 19 March 2021. [Google Scholar]
- Soran, M.L.; Bocșa, M.; Pintea, S.; Stegarescu, A.; Lung, L.; Opriş, O. Commercially Biochar Applied for Tartrazine Removal from Aqueous Solutions. Appl. Sci. 2023, 14, 53. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, H.P. Study on mechanism of selective adsorption of sodium pyrophosphate on the sillimanite and microcline surface. J. Chin. Ceram. Soc. 1999, 27, 115–118. [Google Scholar]
- Egbers, P.H. Development of Novel Titanium Dioxide Based Solid Phase Extraction for the Selective Isolation and Identification of Siderophores. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2022. [Google Scholar]
- Ji, Y.H.; Zhang, Q.F.; Zhou, J.C.; You, Z.T.; Xu, P.C.; Lin, W.S.; Chen, Y.M.; Yang, Y.S. Spectral characteristics and quantities of dissolved organic matter released from leaves with competitive and stress-tolerant ecological strategies in a subtropical region. Acta Ecol. Sin. 2018, 38, 3998–4007. [Google Scholar]
- Chen, Y.L.; Sun, K.; Gao, B. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review. Environ. Chem. 2021, 40, 2271–2287. [Google Scholar]
- Aoki, H.; Torimura, M.; Habe, H. Spectroscopic Investigation of Increased Fluorescent Intensity of Fluorescent Dyes When Adsorbed onto Polystyrene Microparticles. Anal. Sci. 2021, 37, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, H.X.; Han, L.H.; Zou, G.Y.; Chen, Y.H.; Liu, D.S.; Xue, Y.H.; Lu, A.X. Research progress on the adsorption and desorption of typical pollutants on microplastics. Chin. J. Eco-Agric. 2021, 29, 961–969. [Google Scholar]
Medium | GPS Positioning (Latitude, Longitude) | Types of MPs | Medium | GPS Positioning (Latitude, Longitude) | Types of MPs |
---|---|---|---|---|---|
River-1 a | 30.33040°, 120.39633° | EPE | ECS-4 c | 30.33818°, 120.80121° | RPUF |
River-2 a | 30.33037°, 120.39063° | EPS | ECS-5 c | 30.35401°, 120.77329° | LDPE |
River-3 a | 30.32942°, 120.40831° | FPUF | SS-1 d | 30.32634°, 120.46731° | EPE |
River-4 a | 30.32659°, 120.40932° | RPUF | SS-2 d | 30.32999°, 120.46791° | EPS |
River-5 a | 30.32161°, 120.40679° | LDPE | SS-3 d | 30.25458°, 120.29443° | FPUF |
QTR-1 b | 30.39931°, 120.43359° | EPE | SS-4 d | 30.32635°, 120.47169° | RPUF |
QTR-2 b | 30.38755°, 120.43431° | EPS | SS-5 d | 30.33388°, 120.47373° | LDPE |
QTR-3 b | 30.39329°, 120.43452° | FPUF | BS-1 e | 30.71412°, 121.35589° | EPE |
QTR-4 b | 30.39502°, 120.43779° | RPUF | BS-2 e | 30.71301°, 121.35204° | EPS |
QTR-5 b | 30.38496°, 120.43001° | LDPE | BS-3 e | 30.71267°, 121.34392° | FPUF |
ECS-1 c | 30.38878°, 120.86526° | EPE | BS-4 e | 30.73846°, 121.38266° | RPUF |
ECS-2 c | 30.32326°, 120.84919° | EPS | BS-5 e | 30.72296°, 121.36535° | LDPE |
ECS-3 c | 30.34964°, 120.81228° | FPUF | / | / | / |
Group | Mean of TOC (mg/L) | TC (mg/L) | Mean of IC (mg/L) | Source |
---|---|---|---|---|
Control | 2.75 ± 0.10 B | 19.07 | 16.32 ± 0.10 B | River-1 water |
2.39 ± 0.10 C | 19.84 | 17.45 ± 0.16 A | River-1 water | |
2.73 ± 0.14 B | 16.70 | 13.97 ± 0.11 C | River-1 water | |
3.07 ± 0.11 A | 17.21 | 14.14 ± 0.85 C | River-1 water | |
2.42 ± 0.09 C | 16.96 | 14.54 ± 0.12 C | River-1 water | |
Pyrophosphate | 4.37 ± 0.10 A,a | 27.40 | 23.03 ± 0.1 A,a | EPE-MPs |
4.09 ± 0.16 AB,a | 24.41 | 20.32 ± 0.13 B,a | EPS-MPs | |
3.85 ± 0.10 B,a | 22.62 | 18.77 ± 0.12 C,a | FPUF-MPs | |
2.46 ± 0.17 C,a | 20.35 | 17.89 ± 0.13 D,a | RPUF-MPs | |
2.07 ± 0.07 D,a | 8.50 | 7.43 ± 0.09 E,a | LDPE-MPs | |
UPW | 1.73 ± 0.06 A,c | 14.09 | 12.36 ± 0.09 B,b | EPE-MPs |
1.45 ± 0.10 B,c | 14.18 | 12.73 ± 0.17 A,b | EPS-MPs | |
1.40 ± 0.06 B,c | 11.66 | 10.26 ± 0.11 C,b | FPUF-MPs | |
1.08 ± 0.12 C,c | 9.87 | 8.79 ± 0.12 D,b | RPUF-MPs | |
1.00 ± 0.07 C,b | 6.33 | 5.33 ± 0.13 E,b | LDPE-MPs | |
UPW then Pyrophosphate | 2.85 ± 0.11 A,b | 15.58 | 12.73 ± 0.15 A,c | EPE-MPs |
2.74 ± 0.05 A,b | 13.11 | 10.37 ± 0.12 B,c | EPS-MPs | |
2.52 ± 0.19 A,b | 12.29 | 9.77 ± 0.12 B,c | FPUF-MPs | |
1.84 ± 0.14 B,b | 11.92 | 10.08 ± 0.12 B,c | RPUF-MPs | |
1.04 ± 0.11 C,b | 3.36 | 2.32 ± 0.10 C,c | LDPE-MPs |
Serial | Mean of TOC (mg/L) | TC (mg/L) | Mean of IC (mg/L) | Sample Type | Source |
---|---|---|---|---|---|
Pyrophosphate Group | 500.37 ± 1.27 C,a | 775.1 | 274.73 ± 1.14 C,a | Soil sediments | SS-1 |
547.29 ± 1.10 A,a | 847.61 | 300.32 ± 0.96 A,a | Soil sediments | SS-2 | |
479.87 ± 1.37 E,a | 768.52 | 288.65 ± 1.09 B,a | Soil sediments | SS-3 | |
512.93 ± 1.27 B,a | 706.45 | 193.52 ± 0.86 E,a | Soil sediments | SS-4 | |
487.26 ± 1.58 D,a | 742.05 | 254.79 ± 0.95 D,a | Soil sediments | SS-5 | |
UPW Group | 145.72 ± 1.26 D,c | 196.05 | 50.33 ± 1.04 B,c | Soil sediments | SS-1 |
138.51 ± 1.19 E,c | 194.08 | 55.57 ± 1.07 A,c | Soil sediments | SS-2 | |
166.79 ± 1.20 B,c | 216.61 | 49.82 ± 1.05 B,c | Soil sediments | SS-3 | |
174.32 ± 1.21 A,c | 221.58 | 47.26 ± 1.15 B,c | Soil sediments | SS-4 | |
153.49 ± 1.30 C,c | 202.84 | 49.35 ± 1.16 B,c | Soil sediments | SS-5 | |
UPW then Pyrophosphate Group | 360.45 ± 1.34 B,b | 594.12 | 233.67 ± 1.09 C,b | Soil sediments | SS-1 |
393.79 ± 1.44 A,b | 641.37 | 247.58 ± 1.15 A,b | Soil sediments | SS-2 | |
337.45 ± 1.42 E,b | 576.17 | 238.72 ± 1.21 B,b | Soil sediments | SS-3 | |
352.37 ± 1.16 C,b | 518.86 | 166.49 ± 1.19 E,b | Soil sediments | SS-4 | |
348.13 ± 1.40 D,b | 537.89 | 189.76 ± 1.41 D,b | Soil sediments | SS-5 | |
Pyrophosphate Group | 73.75 ± 1.19 A,a | 223.71 | 149.96 ± 1.22 A,a | Beach sediments | BS-1 |
70.29 ± 1.04 A,a | 210.62 | 140.33 ± 1.04 C,a | Beach sediments | BS-2 | |
77.45 ± 1.24 A,a | 222.96 | 145.51 ± 1.14 B,a | Beach sediments | BS-3 | |
72.59 ± 1.07 A,a | 206.36 | 133.77 ± 1.09 D,a | Beach sediments | BS-4 | |
76.63 ± 1.16 A,a | 215.48 | 138.85 ± 1.05 C,a | Beach sediments | BS-5 | |
UPW Group | 40.75 ± 1.22 A,b | 88.04 | 47.29 ± 1.08 B,b | Beach sediments | BS-1 |
38.84 ± 1.34 A,b | 85.37 | 46.53 ± 1.12 B,b | Beach sediments | BS-2 | |
39.37 ± 1.12 A,b | 80.15 | 40.78 ± 1.08 C,b | Beach sediments | BS-3 | |
40.43 ± 1.11 A,b | 90.89 | 50.46 ± 1.17 A,b | Beach sediments | BS-4 | |
37.75 ± 1.35 A,b | 83.07 | 45.32 ± 1.08 B,b | Beach sediments | BS-5 | |
UPW then Pyrophosphate Group | 23.34 ± 1.34 B,c | 123.79 | 100.45 ± 1.06 A,b | Beach sediments | BS-1 |
33.73 ± 1.12 A,c | 132.40 | 98.67 ± 1.12 A,b | Beach sediments | BS-2 | |
37.14 ± 1.08 A,b | 138.76 | 101.62 ± 1.21 A,b | Beach sediments | BS-3 | |
34.54 ± 1.12 A,c | 122.12 | 87.58 ± 1.15 B,b | Beach sediments | BS-4 | |
40.19 ± 1.03 A,b | 135.82 | 95.63 ± 1.11 A,b | Beach sediments | BS-5 |
Pretreatment Method | Mean of TOC (mg/L) | TC (mg/L) | Mean of IC (mg/L) | Microplastics | Sample Source |
---|---|---|---|---|---|
Pyrophosphate Group | 252.34 ± 0.82 A,a | 402.13 | 149.79 ± 1.01 A,a | EPE | SS-1 |
249.71 ± 0.79 A,a | 388.29 | 138.58 ± 0.85 B,a | EPS | SS-2 | |
251.35 ± 0.89 A,a | 361.90 | 110.55 ± 0.88 C,a | FPUF | SS-3 | |
180.64 ± 1.01 B,a | 251.36 | 70.72 ± 0.82 D,a | RPUF | SS-4 | |
80.27 ± 0.86 C,a | 61.11 | 40.84 ± 0.83 E,a | LDPE | SS-5 | |
UPW Group | 151.00 ± 0.88 A,b | 197.34 | 46.34 ± 0.85 A,b | EPE | SS-1 |
158.70 ± 1.03 B,b | 217.51 | 58.81 ± 1.23 B,b | EPS | SS-2 | |
141.95 ± 1.24 C,b | 194.69 | 52.74 ± 1.36 C,b | FPUF | SS-3 | |
102.30 ± 1.05 D,b | 142.03 | 39.73 ± 0.86 D,b | RPUF | SS-4 | |
72.90 ± 1.36 E,b | 100.03 | 27.13 ± 0.85 E,b | LDPE | SS-5 | |
UPW then Pyrophosphate Group | 100.56 ± 1.44 A,c | 203.23 | 102.67 ± 0.90 A,c | EPE | SS-1 |
98.34 ± 0.98 A,c | 185.69 | 87.35 ± 0.90 B,c | EPS | SS-2 | |
103.52 ± 0.86 B,c | 163.84 | 60.63 ± 0.85 C,c | FPUF | SS-3 | |
81.17 ± 0.83 C,c | 114.63 | 33.46 ± 0.82 D,c | RPUF | SS-4 | |
13.63 ± 0.88 D,c | 29.05 | 15.42 ± 0.91 E,c | LDPE | SS-5 | |
Pyrophosphate Group | 65.30 ± 0.84 A,a | 217.30 | 152.00 ± 0.88 A,a | EPE | BS-1 |
67.65 ± 0.87 B,a | 208.95 | 141.30 ± 0.89 B,a | EPS | BS-2 | |
70.85 ± 0.84 C,a | 216.90 | 146.05 ± 0.97 C,a | FPUF | BS-3 | |
39.55 ± 0.70 D,a | 141.30 | 101.75 ± 0.82 D,a | RPUF | BS-4 | |
19.20 ± 0.89 E,a | 73.45 | 54.25 ± 1.13 E,a | LDPE | BS-5 | |
UPW Group | 37.80 ± 1.86 A,b | 85.68 | 47.88 ± 0.95 A,b | EPE | BS-1 |
35.90 ± 0.91 A,b | 87.94 | 52.04 ± 1.31 B,b | EPS | BS-2 | |
43.85 ± 0.94 B,b | 98.76 | 54.91 ± 0.88 C,b | FPUF | BS-3 | |
26.80 ± 1.13 C,b | 68.75 | 41.95 ± 0.89 D,b | RPUF | BS-4 | |
12.65 ± 1.31 D,b | 32.40 | 19.75 ± 0.90 E,b | LDPE | BS-5 | |
UPW then Pyrophosphate Group | 30.13 ± 0.90 A,c | 137.48 | 107.35 ± 0.82 B,c | EPE | BS-1 |
31.98 ± 0.59 A,c | 128.21 | 96.23 ± 0.89 A,c | EPS | BS-2 | |
28.39 ± 0.57 A,c | 123.12 | 94.73 ± 0.82 A,c | FPUF | BS-3 | |
14.46 ± 0.75 B,c | 76.04 | 61.58 ± 0.88 C,c | RPUF | BS-4 | |
8.15 ± 0.71 C,c | 45.02 | 36.87 ± 0.86 D,c | LDPE | BS-5 |
Environmental Medium | Sample Source | Mean of TOC (mg/L) | TC (mg/L) | Mean of IC (mg/L) | Microplastics |
---|---|---|---|---|---|
MPs in river water | River-1 | 4.28 ± 0.16 A,a | 27.25 | 22.97 ± 0.10 A,a | EPE-MPs |
River-2 | 4.14 ± 0.16 A,a | 24.71 | 20.57 ± 0.10 B,a | EPS-MPs | |
River-3 | 3.93 ± 0.10 A,a | 22.57 | 18.64 ± 0.19 C,a | FPUF-MPs | |
River-4 | 2.17 ± 0.16 B,a | 18.81 | 16.64 ± 0.18 D,a | RPUF-MPs | |
River-5 | 1.12 ± 0.16 C,a | 8.63 | 7.51 ± 0.19 E,a | LDPE-MPs | |
MPs in Qiantang river | QTR-1 | 3.88 ± 0.07 A,a | 26.84 | 22.96 ± 0.18 A,a | EPE-MPs |
QTR-2 | 3.73 ± 0.11 A,b | 24.57 | 21.84 ± 0.19 B,b | EPS-MPs | |
QTR-3 | 3.65 ± 0.10 A,a | 25.03 | 21.38 ± 0.18 C,b | FPUF-MPs | |
QTR-4 | 1.34 ± 0.09 B,b | 14.74 | 13.40 ± 0.11 D,b | RPUF-MPs | |
QTR-5 | 1.06 ± 0.08 C,a | 7.34 | 6.28 ± 0.16 E,b | LDPE-MPs | |
MPs in seawater | ECS-1 | 4.12 ± 0.09 A,a | 19.29 | 15.17 ± 0.12 A,b | EPE-MPs |
ECS-2 | 4.03 ± 0.08 A,a | 18.71 | 14.68 ± 0.12 B,c | EPS-MPs | |
ECS-3 | 3.91 ± 0.10 A,a | 17.48 | 13.57 ± 0.11 C,c | FPUF-MPs | |
ECS-4 | 2.19 ± 0.10 B,a | 10.77 | 8.58 ± 0.19 D,c | RPUF-MPs | |
ECS-5 | 0.81 ± 0.09 C,a | 5.16 | 4.35 ± 0.20 E,c | LDPE-MPs | |
MPs in soil sediments | SS-1 | 248.73 ± 0.11 A,b | 396.05 | 147.32 ± 0.18 A,c | EPE-MPs |
SS-2 | 250.51 ± 0.08 B,c | 391.07 | 140.56 ± 0.30 B,d | EPS-MPs | |
SS-3 | 247.36 ± 0.18 C,b | 357.11 | 109.75 ± 0.32 C,d | FPUF-MPs | |
SS-4 | 182.49 ± 0.28 D,c | 241.02 | 68.53 ± 0.24 D,d | RPUF-MPs | |
SS-5 | 77.73 ± 0.57 E,b | 119.52 | 41.79 ± 0.21 E,d | LDPE-MPs | |
MPs in beach sediments | BS-1 | 61.46 ± 0.18 A,c | 211.25 | 149.79 ± 0.19 A,d | EPE-MPs |
BS-2 | 62.37 ± 0.11 B,d | 204.93 | 142.56 ± 0.18 B,e | EPS-MPs | |
BS-3 | 67.75 ± 0.10 C,c | 208.07 | 140.32 ± 0.20 C,e | FPUF-MPs | |
BS-4 | 38.99 ± 0.18 D,d | 138.86 | 99.87 ± 0.19 D,e | RPUF-MPs | |
BS-5 | 17.98 ± 0.18 E,c | 68.35 | 50.37 ± 0.22 E,e | LDPE-MPs |
Media | MPs | Peak 1 | Peak 2 | Peak 3 | Peak 4 | Peak 5 | Peak 6 | Peak 7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Retention Time (min) | Mw (Da) | Retention Time (min) | Mw (Da) | Retention Time (min) | Mw (Da) | Retention Time (min) | Mw (Da) | Retention Time (min) | Mw (Da) | Retention Time (min) | Mw (Da) | Retention Time (min) | Mw (Da) | ||
River | EPE | 8.556 | 5382 | 8.850 | 4552 | 9.268 | 3960 | 9.924 | 2774 | 10.756 | 1171 | 11.382 | 408 | / | / |
EPS | 8.562 | 5325 | 8.856 | 4536 | 9.270 | 3938 | 9.925 | 2756 | 10.753 | 1227 | 11.381 | 412 | / | / | |
FPUF | 8.553 | 5440 | 8.850 | 4538 | 9.270 | 3960 | 9.926 | 2750 | 10.750 | 1267 | 11.383 | 401 | / | / | |
RPUF | 8.525 | 5489 | 8.858 | 4522 | 9.262 | 3986 | 9.921 | 2788 | 10.754 | 1220 | 11.383 | 401 | / | / | |
LDPE | 8.583 | 5288 | 8.856 | 4527 | 9.275 | 3910 | 9.925 | 2757 | 10.755 | 1217 | 11.381 | 411 | / | / | |
QTR | EPE | 8.542 | 5327 | 8.864 | 4518 | 9.290 | 3905 | 10.007 | 2628 | 10.864 | 1091 | 11.738 | 215 | / | / |
EPS | 8.556 | 5402 | 8.852 | 4540 | 9.282 | 3890 | 9.940 | 2698 | 10.859 | 1108 | 11.380 | 377 | / | / | |
FPUF | 8.542 | 5360 | 8.848 | 4557 | 9.274 | 3970 | 9.924 | 2760 | 11.098 | 1162 | 11.375 | 495 | / | / | |
RPUF | 8.546 | 5350 | 8.850 | 4530 | 9.281 | 3867 | 9.948 | 2630 | 10.749 | 1371 | 11.105 | 840 | / | / | |
LDPE | 8.550 | 5370 | 8.851 | 4528 | 9.275 | 3972 | 9.938 | 2706 | 10.801 | 1312 | 11.100 | 805 | / | / | |
ECS | EPE | 8.589 | 5215 | 8.888 | 4497 | 9.303 | 3914 | 10.090 | 2517 | 10.940 | 1123 | / | / | / | / |
EPS | 8.618 | 5228 | 8.880 | 4498 | 9.301 | 3910 | 10.091 | 2514 | 10.875 | 1138 | / | / | / | / | |
FPUF | 8.600 | 5210 | 8.823 | 4501 | 9.310 | 3902 | 10.106 | 2498 | 10.939 | 1165 | / | / | / | / | |
RPUF | 8.601 | 5216 | 8.913 | 4465 | 9.302 | 3908 | 10.092 | 2512 | 10.827 | 1160 | / | / | / | / | |
LDPE | 8.594 | 5203 | 8.766 | 4540 | 9.320 | 3888 | 10.080 | 2530 | 10.868 | 1140 | / | / | / | / | |
SS | EPE | 8.362 | 6190 | 8.672 | 4780 | 9.101 | 4148 | 9.749 | 3051 | 11.182 | 683 | 11.450 | 435 | / | / |
EPS | 8.045 | 7302 | 8.244 | 5360 | 8.545 | 4933 | 8.974 | 4305 | 9.603 | 3342 | 11.483 | 408 | / | / | |
FPUF | 8.535 | 5215 | 9.015 | 4313 | 9.642 | 3299 | 10.698 | 1731 | 11.441 | 440 | 11.548 | 368 | / | / | |
RPUF | 8.557 | 5179 | 8.856 | 4520 | 9.273 | 3940 | 9.974 | 2756 | 10.870 | 1146 | 11.550 | 362 | / | / | |
LDPE | 8.534 | 5225 | 8.943 | 4466 | 9.728 | 3215 | 10.662 | 1701 | 10.672 | 1671 | 11.280 | 620 | / | / | |
BS | EPE | 8.368 | 6178 | 8.671 | 4790 | 9.099 | 4153 | 9.750 | 3047 | 11.185 | 676 | / | / | / | / |
EPS | 8.546 | 5450 | 8.860 | 4548 | 9.280 | 3970 | 9.944 | 2750 | 11.101 | 1028 | 11.393 | 481 | / | / | |
FPUF | 8.510 | 5445 | 9.005 | 4358 | 9.638 | 3325 | 10.690 | 1750 | 11.442 | 438 | / | / | / | / | |
RPUF | 8.553 | 5512 | 8.860 | 4510 | 9.274 | 3989 | 9.970 | 2757 | 10.862 | 1163 | 11.551 | 360 | / | / | |
LDPE | 8.531 | 5234 | 8.941 | 4481 | 9.723 | 3364 | 10.665 | 1697 | 11.283 | 618 | 11.501 | 356 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, X.; Pan, X.; Chen, J.; Zhang, M.; Ye, Z.; Yu, X. Characterization of the Differences in Dissolved Organic Matter (DOM) Adsorbed on Five Kinds of Microplastics Using Multiple Methods. Molecules 2025, 30, 1586. https://doi.org/10.3390/molecules30071586
Fu X, Pan X, Chen J, Zhang M, Ye Z, Yu X. Characterization of the Differences in Dissolved Organic Matter (DOM) Adsorbed on Five Kinds of Microplastics Using Multiple Methods. Molecules. 2025; 30(7):1586. https://doi.org/10.3390/molecules30071586
Chicago/Turabian StyleFu, Xianshu, Xiangliang Pan, Jun Chen, Mingzhou Zhang, Zihong Ye, and Xiaoping Yu. 2025. "Characterization of the Differences in Dissolved Organic Matter (DOM) Adsorbed on Five Kinds of Microplastics Using Multiple Methods" Molecules 30, no. 7: 1586. https://doi.org/10.3390/molecules30071586
APA StyleFu, X., Pan, X., Chen, J., Zhang, M., Ye, Z., & Yu, X. (2025). Characterization of the Differences in Dissolved Organic Matter (DOM) Adsorbed on Five Kinds of Microplastics Using Multiple Methods. Molecules, 30(7), 1586. https://doi.org/10.3390/molecules30071586