Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = organic nitrogen fertilizer substitution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2718 KiB  
Article
Effects of Replacing Nitrogen Fertilizer with Organic Fertilizer on Soil Physicochemical Properties and Maize Yield in Yunnan’s Red Soil
by Zhao Liu, Wen Ao, Shenghang Wu, Qiheng Deng, Hao Ren, Qiang Li, Hao Li and Peng Zhang
Sustainability 2025, 17(14), 6634; https://doi.org/10.3390/su17146634 - 21 Jul 2025
Viewed by 378
Abstract
Red soil regions commonly experience land degradation and low nutrient availability. Excessive fertilizer use in recent years has intensified these challenges, necessitating scientifically informed fertilization strategies to ensure agricultural sustainability. To identify optimal fertilization strategies for maize cultivation in Yunnan’s red soil regions, [...] Read more.
Red soil regions commonly experience land degradation and low nutrient availability. Excessive fertilizer use in recent years has intensified these challenges, necessitating scientifically informed fertilization strategies to ensure agricultural sustainability. To identify optimal fertilization strategies for maize cultivation in Yunnan’s red soil regions, this study conducted field experiments involving partial substitution of nitrogen fertilizer with organic manure to determine whether this approach improves soil health and boosts maize yield. Four treatments were compared in a randomized complete block design over one growing season: no fertilization (NF), soil testing and formula fertilization (STF), 15% organic fertilizer (swine manure) replacing nitrogen fertilizer (OF15), and 30% organic fertilizer replacing nitrogen fertilizer (OF30). The results indicated that substituting organic fertilizer for nitrogen fertilizer reduced soil acidification while increasing total phosphorus (TP) and available phosphorus (AP), thereby enhancing soil physicochemical properties. Maize grown under OF30 exhibited improved agronomic traits including plant height, stem diameter, ear height, and ear length. Additionally, the partial replacement of synthetic fertilizer with organic fertilizer notably increased maize yield and the weight of 100 grains, but there was no significant difference (p < 0.05) between OF15 and OF30. Moreover, the OF30 treatment generated the highest economic return of 25,981.73 CNY·ha−1. Correlation and principal component analyses revealed that substituting organic fertilizer for nitrogen fertilizer notably influenced total nitrogen (TN), total phosphorus (TP), available phosphorus (AP), and yield, with maize yield positively correlated with TP and AP content. This study presents evidence that replacing 30% of nitrogen fertilizer with organic fertilizer is a viable strategy to enhance soil health, maize productivity, and profitability in Yunnan’s red soil regions, providing a crucial scientific foundation to support sustainable agricultural development in the region. Full article
Show Figures

Figure 1

20 pages, 2217 KiB  
Article
Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems
by Yanan Liu, Xiaoqing Zhao, Yuchen Cheng, Rui Xie, Tiantian Meng, Liyu Chen, Yongfeng Ren, Chunlei Xue, Kun Zhao, Shuli Wei, Jing Fang, Xiangqian Zhang, Fengcheng Sun and Zhanyuan Lu
Agronomy 2025, 15(7), 1703; https://doi.org/10.3390/agronomy15071703 - 15 Jul 2025
Viewed by 352
Abstract
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG [...] Read more.
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG mitigation potential of organic substitution strategies, this study analyzed GHG fluxes, soil organic carbon (SOC) dynamics, indirect GHG emissions, and Net Primary Productivity (NPP) based on a long-term field positioning experiment initiated in 2016. Six fertilizer regimes were systematically compared: no fertilizer control (CK); only phosphorus and potassium fertilizer (PK); total chemical fertilizer (NPK); 1/3 chemical N substituted with sheep manure (OF1); dual substitution protocol with 1/6 chemical N substituted by sheep manure and 1/6 substituted by straw-derived N (OF2); complete chemical N substitution with sheep manure (OF3). The results showed that OF1 and OF2 maintained crop yields similar to those under NPK, whereas OF3 reduced yield by over 10%; relative to NPK, OF1, OF2, and OF3 significantly increased SOC sequestration rates by 50.70–149.20%, reduced CH4 uptake by 7.9–70.63%, increased CO2 emissions by 1.4–23.9%, decreased N2O fluxes by 3.6–56.2%, and mitigated indirect GHG emissions from farm inputs by 24.02–63.95%. The NGHGB was highest under OF1, 9.44–23.99% greater than under NPK. These findings demonstrate that partial organic substitution increased carbon sequestration, maintained crop yields, whereas high substitution rates increase the risk of carbon emissions. The study results indicate that substituting 1/3 of chemical nitrogen with sheep manure in maize cropping systems represents an effective fertilizer management approach to simultaneously balance productivity and ecological sustainability. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

14 pages, 1278 KiB  
Article
High Ratio of Manure Substitution Enhanced Soil Organic Carbon Storage via Increasing Particulate Organic Carbon and Nutrient Availability
by Xiaoyu Hao, Xingzhu Ma, Lei Sun, Shuangquan Liu, Jinghong Ji, Baoku Zhou, Yue Zhao, Yu Zheng, Enjun Kuang, Yitian Liu and Shicheng Zhao
Plants 2025, 14(13), 2045; https://doi.org/10.3390/plants14132045 - 3 Jul 2025
Viewed by 430
Abstract
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios [...] Read more.
Replacing partial chemical fertilizers with organic fertilizer can increase organic carbon input, change soil nutrient stoichiometry and microbial metabolism, and then affect soil organic carbon (SOC) storage. A 6-year field experiment was used to explore the mechanism of SOC storage under different ratios of manure substitution in northeast China, with treatments including chemical fertilizer application alone (nitrogen, phosphorus, and potassium, NPK) and replacing 1/4 (1/4M), 2/4 (2/4M), 3/4 (3/4M), and 4/4 (4/4M) of chemical fertilizer N with manure N. Soil nutrients, enzymatic activity, and SOC fractions were analyzed to evaluate the effect of different manure substitution ratios on SOC storage. A high ratio of manure substitution (>1/4) significantly increased soil total N, total P, total K, and available nutrients (NO3-N, available P, and available K), and the 4/4M greatly decreased the C/N ratio compared to the NPK. Manure incorporation increased microbial biomass carbon (MBC) by 18.3–53.0%. Treatments with 50%, 75%, and 100% manure substitution (2/4M, 3/4M, and 4/4M) enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total microbial necromass carbon (MNC) by 31.9–63.5%, 25.5–107.1%, and 27.4–94.2%, respectively, compared to the NPK treatment. Notably, the increase in FNC was greater than that of BNC as the manure substitution ratio increased. The increasing manure substitution significantly enhanced particulate organic C (POC) and total SOC but did not affect mineral-associated organic C (MAOC). High soil N and P supplies decreased leucine aminopeptidases (LAPs) and alkaline phosphatase activities but increased the activity ratio of β-glucosidase (BG)/(N-acetyl-glucosaminidase (NAG) + LAP). Treatments with 25% manure substitution (1/4M) maintained maize and soybean yield, but with increasing manure rate, the maize yield decreased gradually. Overall, the high ratio of manure substitution enhanced SOC storage via increasing POC and MNC, and decreasing the decomposition potential of manure C and soil C resulting from low N- and P-requiring enzyme activities under high nutrient supplies. This study provides empirical evidence that the rational substitution of chemical fertilizers with manure is an effective measure to improve the availability of nutrients, and its effect on increasing crop yields still needs to be continuously observed, which is still a beneficial choice for enhancing black soil fertility. Full article
Show Figures

Graphical abstract

18 pages, 2337 KiB  
Article
Effects of Partial Organic Fertilizer Substitution on Grain Yield, Nitrogen Use Efficiency, and Physiological Traits of Rice in Northeastern China
by Shimeng Guo, Yimeng Li, Zhouzhou Wu, Jiaxin Liu, Chao Liang, Yue Wang, Shu Wang, Chanchan Zhou, Junfeng Liu and Jingyi Mu
Agronomy 2025, 15(7), 1576; https://doi.org/10.3390/agronomy15071576 - 27 Jun 2025
Viewed by 286
Abstract
In China, agriculture is currently highly dependent on chemical nitrogen. This leads to low nitrogen use efficiency and high nitrogen losses. Considering the issues caused by excessive chemical fertilizer, integrated nutrient management using organic and chemical fertilizer sources is important. To clarify how [...] Read more.
In China, agriculture is currently highly dependent on chemical nitrogen. This leads to low nitrogen use efficiency and high nitrogen losses. Considering the issues caused by excessive chemical fertilizer, integrated nutrient management using organic and chemical fertilizer sources is important. To clarify how partial substitution of chemical fertilizer by organic fertilizer affects rice yield, physiological traits, and nitrogen use efficiency, we conducted a two-year field trial in 2021 and 2022, and used two rice cultivars, Shendao47 (SD47) and Shendao505 (SD505), which were grown in the field with five fertilization treatments: (1) CK (zero N application); (2) CF (100% chemical fertilizer); (3) OR10 (10% organic fertilizer + 90% chemical fertilizer); (4) OR20 (20% organic fertilizer + 80% chemical fertilizer); and (5) OR30 (30% organic fertilizer + 70% chemical fertilizer). The results show that the partial organic substitution (OR) treatments improved the yield by 1–10% for two cultivars by increasing effective panicles and grain filling. The increase in grain filling was related to the photosynthetic parameters, including LAI, chlorophyll content, and net photosynthetic rate during the grain-filling stage. The photosynthetic parameters of OR treatments were higher than those of CF treatment. Additionally, with the increase in organic fertilizer application rates, the grain yield, agronomic N use efficiency, partial factor productivity of applied N, and physiological N use efficiency increased at first and then decreased, peaking in OR20 treatment. Conclusively, the 20% organic fertilizer with 80% chemical fertilizer is a promising option for higher yield and improved N utilization for both cultivars. This study provides a sustainable nutrient management strategy to improve crop yield with high nutrient use efficiency. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

25 pages, 3166 KiB  
Article
Impact of Organic Fertilizer Substitution on Soil Microbial Communities and Cotton Yield in Xinjiang
by Abudukeyoumu Abudurezike, Fan Linxin, Zhang Yan and Halihashi Yibati
Agronomy 2025, 15(7), 1540; https://doi.org/10.3390/agronomy15071540 - 25 Jun 2025
Viewed by 319
Abstract
Organic fertilizer substitution for chemical fertilizers is an important strategy for sustainable agriculture. This study aimed to investigate the effects of different organic nitrogen substitution ratios for a chemical nitrogen fertilizer on the soil microbial community structure in cotton fields. A three-year field [...] Read more.
Organic fertilizer substitution for chemical fertilizers is an important strategy for sustainable agriculture. This study aimed to investigate the effects of different organic nitrogen substitution ratios for a chemical nitrogen fertilizer on the soil microbial community structure in cotton fields. A three-year field experiment was conducted in Changji, Xinjiang, China, with six treatments: no fertilization (CK), a single application of chemical fertilizer (CF), and organic nitrogen substituting for 25% (T1), 50% (T2), 75% (T3), and 100% (T4) of a chemical nitrogen fertilizer. High-throughput sequencing was used to analyze the bacterial and fungal community structures. Results showed that organic substitution treatments significantly increased the bacterial Simpson and Shannon diversity indices compared to CK. At the phylum level, organic substitution treatments increased the relative abundance of Proteobacteria (1.27–22.44%), Gemmatimonadota (3.50–9.33%), and Actinobacteriota (17.25–38.57%) compared to CK. For fungi, organic substitution treatments improved the Simpson and Shannon indices, with the T2, T3, and T4 treatments showing significant increases. Organic substitution treatments increased the relative abundance of Ascomycota (2.05–14.75%), Basidiomycota (0.41–178.44%), and Glomeromycota (6.15–502.88%) compared to CK, while Rozellomycota was exclusively present in organic substitution treatments. Cotton yield data showed that the T1 treatment produced the highest seed cotton yield over the three-year study period, with significant increases of 6.19% compared to the CF treatment in the third year. These findings suggest that organic fertilizer substitution can effectively improve the soil microbial community structure and diversity, with moderate to high substitution ratios showing the most beneficial effects for maintaining soil health in cotton fields. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 3803 KiB  
Article
Partial Substitution of Synthetic Nitrogen with Organic Nitrogen Enhances Soil Fertility, Photosynthesis, and Root Growth of Grapevine Seedlings
by Feng Han, Binxian Jiang, Wenyu Wang, Shuang Wu, Jinggui Wu, Yan Ma and Xiaochi Ma
Nitrogen 2025, 6(3), 49; https://doi.org/10.3390/nitrogen6030049 - 25 Jun 2025
Viewed by 449
Abstract
The overuse of synthetic nitrogen fertilizer in vineyards degrades soil quality and poses environmental risks. Partial substitution of synthetic nitrogen with organic alternatives may enhance grapevine performance and soil sustainability, depending on the substitution rate. This study evaluated the effects of replacing synthetic [...] Read more.
The overuse of synthetic nitrogen fertilizer in vineyards degrades soil quality and poses environmental risks. Partial substitution of synthetic nitrogen with organic alternatives may enhance grapevine performance and soil sustainability, depending on the substitution rate. This study evaluated the effects of replacing synthetic nitrogen with composted spent mushroom substrate at five different rates (0%, 25%, 50%, 75%, and 100%, denoted as NOS, OS-25, OS-50, OS-75, and OS-100, respectively) and a control with no nitrogen fertilization applied (CK), on soil fertility, root growth, and photosynthetic performance in grapevine seedlings. Compared to CK, nitrogen fertilization and organic substitution significantly increased soil electrical conductivity, organic matter, and macronutrient contents, but had no significant effect on soil pH. Organic substitution markedly improved leaf photosynthetic capacity in the summer, with the highest rates observed under OS-25, exceeding CK and NOS by 32.98–63.19% and 13.93–27.38%, respectively. Root growth was also significantly enhanced by organic substitution, with OS-25 exhibiting the best performance. Fine roots in the 0.0–0.5 mm diameter class were dominant, accounting for 56.88–63.06% of total root length and 96.22–97.31% of total root tip count. Increasing substitution rates beyond 25% yielded no further improvements in photosynthesis or root growth. Mantel test analysis indicated strong positive correlations between soil fertility parameters (e.g., alkali-hydrolyzable nitrogen, available phosphorous and potassium) and both photosynthetic efficiency and root growth. These findings suggest that an appropriate substitution rate (i.e., 25%) of organic nitrogen using spent mushroom substrate effectively improves soil fertility, simultaneously optimizing photosynthetic capacity and root growth of grapevine seedlings. Full article
Show Figures

Figure 1

20 pages, 2544 KiB  
Article
The Possibilities of Using Non-Traditional Raw Materials for Fertilizing Products
by Goda Gudinskaitė and Rasa Paleckienė
Sustainability 2025, 17(13), 5710; https://doi.org/10.3390/su17135710 - 20 Jun 2025
Viewed by 511
Abstract
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable [...] Read more.
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable agricultural practices. These practices include replacing synthetic fertilizers with more natural alternatives and substituting chemical plant protection products with biological solutions. A noteworthy prospect in this context is the growing insect farming industry, which opens up new possibilities for the food industry via waste processing. In Lithuania, insect farming is also expanding rapidly, with companies producing several hundred tons of frass (insect excrement and residues from growing media) every year. As insect farming is projected to increase rapidly over the next decade, the amount of frass produced will also increase. Therefore, it is necessary to find sustainable ways to use this byproduct. Frass is emerging as an important area of research and practical innovation with great potential for fertilizer production. Initial studies show that frass can contain up to 6% nitrogen, 2% phosphorus and 3% potassium, making it a valuable alternative to synthetic fertilizers. The chitin content (nearly 14%) in frass not only improves the soil but also improves plant resistance to disease. In addition, its organic composition improves soil structure and microbiological activity, contributing in the long term to increasing soil fertility. This paper analyses different samples of frass, assesses their physical and chemical properties and discusses the possible applications of these products in the context of sustainable agriculture. The studies show that frass can be a valuable raw material for fertilizer production, potentially reducing the need for synthetic fertilizers and contributing to the reduction in agricultural waste. By combining economic benefits with ecological sustainability, this research contributes to wider sustainable agricultural innovation. Full article
Show Figures

Figure 1

14 pages, 3381 KiB  
Article
Reducing Mineral Fertilizer Can Improve the Soil Quality and Increase the Wheat Yield and Nutrient Utilization Efficiency: The Fertilizing Effect of Organic–Inorganic Compound Fertilizers
by Ping Bo, Qingyang He, Yubin Lan, Jiankun Li, Haiteng Liu, Xinlong Li and Huizheng Wang
Agriculture 2025, 15(12), 1294; https://doi.org/10.3390/agriculture15121294 - 16 Jun 2025
Cited by 1 | Viewed by 595
Abstract
Replacing chemical fertilizers with organic alternatives represents a viable strategy for enhancing agricultural productivity. The optimized integration of both fertilizer types can reduce the chemical input while improving soil conditions. However, the specific impacts of combined organic and inorganic fertilization on soil quality [...] Read more.
Replacing chemical fertilizers with organic alternatives represents a viable strategy for enhancing agricultural productivity. The optimized integration of both fertilizer types can reduce the chemical input while improving soil conditions. However, the specific impacts of combined organic and inorganic fertilization on soil quality and crop performance require further investigation. To address this, a two-year field experiment was conducted to examine the effects of varying ratios of organic fertilizer substitution on wheat growth, grain yield, nutrient uptake, and soil quality. The results showed that the application of a 100% organic fertilizer combined with a 90% chemical fertilizer significantly increased the wheat biomass and grain yield. In terms of the nutrient uptake efficiency, the aboveground uptake of nitrogen (N), phosphorus (P), and potassium (K) increased significantly by 29.2%, 29.0%, and 56.5%, respectively. The nutrient use efficiency was also improved, with increases of 30.4% for N, 21.1% for P, and 47.7% for K. The partial factor productivity, total nutrient uptake, and the translocation efficiency of N, P, and K were all significantly enhanced. The soil quality was also markedly improved, with increases in both the soil organic matter and nutrient content. In conclusion, substituting chemical fertilizers with organic fertilizers improves the soil moisture and organic matter content, thereby enhancing the total uptake and translocation efficiency of nitrogen, phosphorus, and potassium. This leads to increased nutrient content in wheat grains, resulting in higher yields and improved grain quality. Moreover, this study provides practical guidance for wheat production and supports policy objectives related to sustainable agriculture, reduced chemical fertilizer use, and improved food security. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 6414 KiB  
Article
Vegetation Restoration Significantly Increased Soil Organic Nitrogen Mineralization and Nitrification Rates in Karst Regions of China
by Lin Yang, Hui Yang, Lijun Liu, Shuting Yang, Dongni Wen, Xuelan Li, Lei Meng, Zhong Deng, Jian Liang, Danmei Lu and Tongbin Zhu
Forests 2025, 16(6), 1006; https://doi.org/10.3390/f16061006 - 15 Jun 2025
Viewed by 612
Abstract
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is [...] Read more.
Understanding the processes of organic nitrogen (N) mineralization to ammonium (NH4+) and NH4+ oxidation to nitrate (NO3), which, together, supply soil inorganic N (the sum of NH4+ and NO3), is of great significance for guiding the restoration of degraded ecosystems. This study used space-for-time substitution to investigate the dynamic changes in the rates of organic N mineralization (MNorg) and nitrification (ONH4) in soil at different vegetation restoration stages. Soil samples were collected from grassland (3–5 years), shrub-grassland (7–8 years), early-stage shrubland (15–20 years), late-stage shrubland (30–35 years), early-stage woodland (45–50 years), and late-stage woodland (70–80 years) in the subtropical karst region of China during the dry (December) and rainy (July) seasons. The MNorg and ONH4 were determined using the 15N labeling technique. The soil microbial community was determined using the phospholipid fatty acid method. Soil organic carbon (SOC), total nitrogen (TN), NH4+, NO3, and inorganic N contents, as well as the soil moisture content (SMC) were also measured. Our results showed that SOC and TN contents, and the SMC, as well as microbial community abundances increased markedly from grassland to the late-stage shrubland. Especially in the late-stage shrubland, the abundance of the total microbial community, bacteria, fungi, actinomycetes, and AMF in soil was significantly higher than other restoration stages. These results indicate that vegetation restoration significantly increased soil nutrient content and microbial community abundance. From grassland to the late-stage shrubland, the soil NH4+, NO3, and inorganic N contents increased significantly, and the NH4+:NO3 ratios changed from greater than 1 to less than 1, indicating that vegetation restoration significantly influenced soil inorganic N content and composition. As restoration progressed, the MNorg and ONH4 increased significantly, from 0.04 to 3.01 mg N kg−1 d−1 and 0.35 to 2.48 mg N kg−1 d−1 in the dry season, and from 3.26 to 7.20 mg N kg−1 d−1 and 1.47 to 10.7 mg N kg−1 d−1 in the rainy season. At the same vegetation restoration stage, the MNorg and ONH4 in the rainy season were markedly higher than those in the dry season. These results indicate that vegetation restoration and seasonal variations could significantly influence MNorg and ONH4. Correlation analysis showed that the increase in MNorg during vegetation restoration was mainly attributed to the increase in SOC and TN contents, as well as the total microbial community, bacterial, fungal, actinomycetes, and AMF abundances, and that the increase in ONH4 was mainly attributed to the increase in MNorg and the decrease in the F: B ratio. Moreover, the MNorg and ONH4 showed a strong positive correlation with inorganic N content. This study clarifies that vegetation restoration in karst regions could significantly increase MNorg and ONH4 through enhancing soil carbon and N contents, as well as microbial community abundances, thereby increasing the available soil N supply, which could provide a theoretical basis for soil fertility regulation in future rocky desertification management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 2405 KiB  
Article
Research on the Synergistic Mechanism of Maize–Soybean Rotation and Bio-Organic Fertiliser in Cold Regions
by Zijian Wang, Hao Tian, Nan Sun, Haocheng Wang, Songyan Tang, Shengjie Chen, Xuebing Wang, Shiwei Ren, Xiangyuan Zuo and Xingbo Zhao
Agronomy 2025, 15(5), 1256; https://doi.org/10.3390/agronomy15051256 - 21 May 2025
Viewed by 718
Abstract
Aiming to address a series of problems caused by inefficient nitrogen fixation in soybean within the maize–soybean rotation system under cold-region conditions in Heilongjiang Province, China—such as reduced crop yields, declining soil fertility, and increased dependence on chemical fertilisers—this study investigated the partial [...] Read more.
Aiming to address a series of problems caused by inefficient nitrogen fixation in soybean within the maize–soybean rotation system under cold-region conditions in Heilongjiang Province, China—such as reduced crop yields, declining soil fertility, and increased dependence on chemical fertilisers—this study investigated the partial substitution of chemical nitrogen fertilisers with bio-organic fertilisers at replacement rates of 10%, 20%, and 30% during soybean cultivation. The treatments included bio-organic fertilisers (OB1, OB2, OB3), inactivated bio-organic fertilisers (O1, O2, O3), Bacillus subtilis (B1, B2, B3), and a control (CK) with the conventional application of chemical fertilisers. In the rotational maize cropping phase, a 50% nitrogen reduction was applied. The results showed that replacing 20% of soybean nitrogen fertiliser with bio-organic fertiliser (OB2 treatment) yielded the most significant increase in productivity and economic return. Compared with CK, the OB2 treatment increased soybean yield by 26.56%, maize yield by 26.69%, and nitrogen fertiliser use efficiency by 3–5%. According to the GRA-TOPSIS model, the OB2 treatment demonstrated the greatest capacity to improve quality and efficiency in the maize–soybean rotation system. At the soybean maturity stage, the OB2 treatment increased soil total organic carbon, available phosphorus, and soil protease activity by 25.36%, 22.20%, and 87.50%, respectively, compared with CK. At maize maturity, soil ammonium nitrogen and soil protease activity increased by 80.24% and 62.47%, respectively. Bio-organic fertilisers combine the benefits of organic fertiliser substrates with those of functional microorganisms. Correlation, cluster, and interaction analyses revealed that the synergistic mechanisms between maize–soybean rotation and bio-organic fertilisers in cold regions are primarily reflected in improved soil quality, enhanced nutrient cycling efficiency, increased nitrogen fixation in soybean root nodules, stimulated microbial activity, and greater resilience to environmental stress. Sustainable agricultural production in cold regions can be achieved through the integrated functioning of these system components. This study provides a theoretical basis for enhancing yield and efficiency in maize–soybean rotation systems under cold climatic conditions. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

21 pages, 5839 KiB  
Article
Organic–Inorganic Fertilization Sustains Crop Yields While Mitigating N2O and NO Emissions in Subtropical Wheat–Maize Systems
by Yan Liu, Lei Hu, Shihang Zhang, Zhisheng Yao, Minghua Zhou and Bo Zhu
Agriculture 2025, 15(10), 1108; https://doi.org/10.3390/agriculture15101108 - 21 May 2025
Viewed by 507
Abstract
Balancing food security with fertilizer-driven climate impacts remains critical in intensive agriculture. While organic–inorganic substitution enhances soil fertility, its effects on nitrous oxide (N2O) and nitric oxide (NO) emissions remain uncertain. This study evaluated N2O/NO emissions, crop yields, and [...] Read more.
Balancing food security with fertilizer-driven climate impacts remains critical in intensive agriculture. While organic–inorganic substitution enhances soil fertility, its effects on nitrous oxide (N2O) and nitric oxide (NO) emissions remain uncertain. This study evaluated N2O/NO emissions, crop yields, and agronomic parameters in a subtropical wheat–maize rotation under four fertilization regimes: inorganic-only (NPK), manure-only (OM), and partial substitution with crop residues (CRNPK, 15%) or manure (OMNPK, 30%), all applied at 280 kg N ha−1 yr−1. Emissions aligned with the dual Arrhenius–Michaelis–Menten kinetics and revised “hole-in-the-pipe” model. Annual direct emission factors (EFd) for N2O and NO were 1.01% and 0.11%, respectively, with combined emissions (1.12%) exponentially correlated to soil nitrogen surplus (p < 0.01). CRNPK and OMNPK reduced annual N2O+NO emissions by 15–154% and enhanced NUE by 10–45% compared with OM, though OMNPK emitted 1.7–2.0 times more N2O/NO than CRNPK. Sole OM underperformed in yield, while partial substitution—particularly with crop residues—optimized productivity while minimizing environmental risks. By integrating emission modeling and agronomic performance, this study establishes CRNPK as a novel strategy for subtropical cereal systems, reconciling high yields with low greenhouse gas emissions. Full article
Show Figures

Graphical abstract

24 pages, 8784 KiB  
Article
The Impact of Organic Fertilizer Substitution on Microbial Community Structure, Greenhouse Gas Emissions, and Enzyme Activity in Soils with Different Cultivation Durations
by Yanke Guo, Changsheng Zhao, Xuzhen Liu, Yanan Dong, Wei Liu, Qingfeng Chen, Shigang Ding, Jing Zhang, Beibei Guo and Xinguo Gao
Sustainability 2025, 17(10), 4541; https://doi.org/10.3390/su17104541 - 16 May 2025
Cited by 1 | Viewed by 908
Abstract
To address soil degradation risk caused by the long-term application of organic and nitrogen fertilizers in facility vegetable fields, this study selected soils with cumulative cultivation durations of 1, 3, 6, and 9 years to investigate the impact of organic and nitrogen fertilizer [...] Read more.
To address soil degradation risk caused by the long-term application of organic and nitrogen fertilizers in facility vegetable fields, this study selected soils with cumulative cultivation durations of 1, 3, 6, and 9 years to investigate the impact of organic and nitrogen fertilizer (OFN) application ratios on soil microbial community structure, greenhouse gas emissions, and enzyme activities. The results show that SOC content increases with soil cultivation duration and the proportion of organic fertilizer applied. Organic fertilizer stimulates urease and catalase activities; however, NH4+-N in the soil inhibits enzyme activities. Organic fertilizer increases the abundance of Proteobacteria and Bacteroidota, enhancing its potential carbon sequestration capacity and also resulting in higher CH4 and CO2 emissions. The microbial community structure is influenced by both fertilizer ratios and soil cultivation duration. As the taxonomic level becomes finer, the number of differential species at the phylum (3), class (3), order (6), family (8), and genus (8) levels increases. The highest Chao1 index in soils of 1, 3, 6, and 9 years was observed at 0%, 25%, 50%, and 75% organic fertilizer substitution ratios, respectively. The 25% organic fertilizer substitution ratio showed better microbial diversity and evenness in 3-, 6-, and 9-year-old soils. Full article
Show Figures

Figure 1

17 pages, 10116 KiB  
Article
Effects of Pig Slurry Coupled with Straw Mulching on Soil Nitrogen Dynamics and Maize Growth
by Yali Yang, Dengchao Lei, Yulan Zhang, Zhe Zhao, Hongtu Xie, Fangbo Deng, Xuelian Bao, Xudong Zhang and Hongbo He
Agronomy 2025, 15(5), 1062; https://doi.org/10.3390/agronomy15051062 - 27 Apr 2025
Viewed by 434
Abstract
The balanced application of organic and chemical fertilizers is essential for maintaining soil fertility and crop productivity. To optimize nitrogen (N) balance and maize yield through integrated pig slurry and straw mulching management, a split-plot field experiment was conducted in Northeast China. The [...] Read more.
The balanced application of organic and chemical fertilizers is essential for maintaining soil fertility and crop productivity. To optimize nitrogen (N) balance and maize yield through integrated pig slurry and straw mulching management, a split-plot field experiment was conducted in Northeast China. The study included two straw treatments (straw mulching, S; no straw, NS) and three substitution levels of pig slurry for chemical fertilizer (0%, 20%, and 40%; denoted as M0, M20, and M40). Parameters evaluated included N balance, maize biomass, soil available N, and the mineral N to TN ratio (mineral-N/TN), measured across 0–100 cm at key maize growth stages. Results showed that pig slurry substitution significantly increased soil DON, mineral N, and mineral-N/TN in the topsoil (0–20 cm) at the maize seeding stage and decreased mineral-N/TN at the maize milk (10–40 cm) and maturity (80–100 cm) stages. Meanwhile, straw mulching reduced NH4+-N accumulation in the 0–10 cm of topsoil at the seeding stage, decreased NO3-N in the 0–40 cm soil layer from the jointing to maturity stages, and lowered the mineral-N/TN ratio in the topsoil, thereby mitigating the risk of N leaching. Notably, the combination of pig slurry substitution and straw mulching slightly increased DON and NO3-N in the topsoil while significantly reducing the mineral-N/TN in the deep soil layer at the seeding and milk stages. Pig slurry substitution significantly improved maize yield, N uptake, and N use efficiency (NUE). The highest maize yield (14,628 kg ha1) was observed in the S-M20 treatment, representing a 19% increase compared to NS-M0. N balance analysis indicated that pig slurry substitution alone increased maize yield and N uptake but depleted soil N, whereas straw mulching maintained N surplus. The findings highlight that combining pig slurry with straw mulching optimizes soil N availability and improves sustainable N management and crop productivity in agroecosystems. Full article
Show Figures

Figure 1

17 pages, 7041 KiB  
Article
The Prolonged Application of Organic Fertilizers Increases the Quality and Yield of Tea Crops
by Cuiting Dai, Fen Xiang, Hongyan Liu, Lingyun Zhou and Wei Li
Plants 2025, 14(9), 1317; https://doi.org/10.3390/plants14091317 - 26 Apr 2025
Viewed by 715
Abstract
The substitution of chemical nitrogen (N) with organic fertilizers in tea plantations has been widely recognized as a strategy to maintain tea yield and improve soil quality, ensuring the sustainability of tea production systems. However, the effects of long-term organic-fertilizer substitution on tea [...] Read more.
The substitution of chemical nitrogen (N) with organic fertilizers in tea plantations has been widely recognized as a strategy to maintain tea yield and improve soil quality, ensuring the sustainability of tea production systems. However, the effects of long-term organic-fertilizer substitution on tea yield and quality, soil properties, and bacterial communities have yet to be fully investigated, and the underlying mechanisms affecting tea yield and quality remain unclear. We conducted a six-year-long field experiment in a tea plantation to investigate the relationships among soil properties, bacterial communities, and the yield and quality of tea. Four treatments were compared: no fertilizer (NF), conventional fertilization (CF), 50% chemical N fertilizer substituted with a microbial organic fertilizer (MF), and 50% chemical N fertilizer substituted with a special organic fertilizer for tea (OF). The results showed that the substitution of organic fertilizers increased the spring tea yield by 6.4%~8.5% and the amino acid content of tea by up to 7.8%, while reducing tea polyphenol levels by 1.2–4.4% compared to CF. The soil quality improved significantly, with total phosphorus rising by 20.0% (MF) and 22.9% (OF), and soil organic matter increasing notably in the MF treatment group. The soil quality index (SQI) improved by 38.6% in the OF treatment group compared to the CF treatment group. Organic treatments reshaped bacterial communities, with the OF boosting Acidobacteriota (36.4%) and Planctomycetota (444.4%), and the MF enriching Actinobacteria and Gemmatimonadetes. Bacterial diversity (Shannon and Chao1 indices) correlated positively with the soil organic matter, total nitrogen, and pH. Changes in microbial communities were driven by pH, soil organic matter, and nitrogen levels. The partial least squares path model analysis confirmed that fertilization indirectly influenced tea yield (67% variance explained) and quality (79% variance explained) via soil properties and bacterial communities. These findings highlight the potential of organic-fertilizer substitution to promote sustainable tea production. Full article
(This article belongs to the Special Issue Nutrient Management for Better Crop Production)
Show Figures

Figure 1

20 pages, 1346 KiB  
Review
Mechanistic Insights into Farmland Soil Carbon Sequestration: A Review of Substituting Green Manure for Nitrogen Fertilizer
by Pengfei Wang, Aizhong Yu, Feng Wang, Yongpan Shang, Yulong Wang, Bo Yin, Yalong Liu and Dongling Zhang
Agronomy 2025, 15(5), 1042; https://doi.org/10.3390/agronomy15051042 - 26 Apr 2025
Cited by 1 | Viewed by 744
Abstract
Sustainable agricultural intensification requires innovative approaches to simultaneously enhance productivity and mitigate environmental impacts—a challenge critical to global food security and climate change mitigation. The traditional fertilization system, with a single application of nitrogen fertilizer, while effective for crop yields, often leads to [...] Read more.
Sustainable agricultural intensification requires innovative approaches to simultaneously enhance productivity and mitigate environmental impacts—a challenge critical to global food security and climate change mitigation. The traditional fertilization system, with a single application of nitrogen fertilizer, while effective for crop yields, often leads to soil organic carbon (SOC) depletion, whereas green manure systems offer a dual benefit of nitrogen supply and SOC sequestration potential. However, the mechanisms by which green manure substitution enhances soil carbon sequestration (SCS) remain systematically underexplored in comparison to chemical fertilization. This review systematically examines (1) the mechanisms underlying SOC sequestration, (2) SOC losses associated with traditional fertilization practices, and (3) the theoretical foundation and practical applications of green manure as a nitrogen fertilizer substitute. We provide an in-depth analysis of the mechanisms through which green manure substitution drives SCS. Furthermore, we identify three critical areas for future investigation: (i) optimization of green manure management strategies to enhance SCS efficiency; (ii) comprehensive assessment of green manure’s ecological benefits through long-term, multi-scale studies; and (iii) evaluation of green manure’s climate change adaptation capacity and carbon sequestration potential across diverse climatic scenarios. These findings fundamentally advance our understanding of green manure’s role in sustainable agriculture by establishing its dual function as both a nitrogen source and carbon sequestration driver. In addition, these insights have immediate relevance for agricultural policy and practice, particularly in regions where soil health and carbon storage are prioritized alongside crop yield. Full article
Show Figures

Figure 1

Back to TopTop