Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (655)

Search Parameters:
Keywords = organic feedstocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1472 KiB  
Article
Effect of Hydrothermal Pretreatment Time on Biochemical Recovery and Hydrogen Production from Lignocellulosic Feedstocks
by Amer Rouabhia, Carlos José Álvarez-Gallego and Luis Alberto Fernández-Güelfo
Appl. Sci. 2025, 15(15), 8736; https://doi.org/10.3390/app15158736 - 7 Aug 2025
Abstract
This study examines the impact of hydrothermal pretreatment operation time (10, 20, and 30 min) on the following four lignocellulosic feedstocks with different lignin content: sugar beet pulp (SBP), brewers spent grain (BSG), orange peel (OP), and rice husk (RH). The objective of [...] Read more.
This study examines the impact of hydrothermal pretreatment operation time (10, 20, and 30 min) on the following four lignocellulosic feedstocks with different lignin content: sugar beet pulp (SBP), brewers spent grain (BSG), orange peel (OP), and rice husk (RH). The objective of pretreatment is twofold, as follows: (1) to enhance the organic matter solubilization and the release of value-added bioproducts, such as total reducing sugars (TRS), total proteins (PR), and volatile fatty acids (VFAs); and (2) to improve VFA and hydrogen production during a subsequent stage of acidogenic anaerobic digestion (Dark Fermentation, DF). In this context, OP reported the highest overall yields across all pretreatment durations. Specifically, at 30 min, it achieved a maximum solubilization of 57.3 gO2/L in terms of soluble chemical oxygen demand (sCOD), 19.1 gTRS/L and 20.6 gPR/L. Regarding VFA and hydrogen production via dark fermentation, the best results were obtained with SBP pretreated for 20 and 30 min, yielding 15.1 g H-Ac/L and 97.5 mL H2 (n.c.)/g (d.m.), respectively. BSG displayed an intermediate performance, whereas RH consistently showed the lowest yields across all evaluated parameters, primarily due to its high lignin content. These findings highlight the pivotal role of pretreatment duration in the valorization of lignocellulosic biomasses, primarily aimed at the recovery of high-value-added biochemicals and biofuels, such as hydrogen, thereby supporting the development of integrated biorefinery systems. Full article
Show Figures

Figure 1

21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

15 pages, 1273 KiB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 210
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

41 pages, 3292 KiB  
Review
Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review
by Muhammad Raheel Tariq, Shaojuan Liu, Fei Wang, Hui Wang, Qianyuan Mo, Zhikai Zhuang, Chaozhong Zheng, Yanwen Liang, Youming Liu, Kashif ur Rehman, Murat Helvaci, Jianguang Qin and Chengpeng Li
Insects 2025, 16(8), 750; https://doi.org/10.3390/insects16080750 - 22 Jul 2025
Viewed by 1130
Abstract
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological [...] Read more.
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological and genomic adaptations underpinning waste conversion efficiency, comparative performance of BSF bioconversion versus traditional treatments, nutritional and functional attributes, techno-economic, regulatory, and safety barriers to industrial scale-up. Peer-reviewed studies were screened for methodological rigor, and data on life cycle traits, conversion metrics, and product compositions were synthesized. BSF larvae achieve high waste reductions, feed-conversion efficiencies and redirect substrate carbon into biomass, yielding net CO2 emissions as low as 12–17 kg CO2 eq ton−1, an order of magnitude below composting or vermicomposting. Larval biomass offers protein, lipids (notably lauric acid), micronutrients, chitin, and antimicrobial peptides, with frass serving as a nutrient-rich fertilizer. Pathogen and antibiotic resistance gene loads decrease during bioconversion. Key constraints include substrate heterogeneity, heavy metal accumulation, fragmented regulatory landscapes, and high energy and capital demands. BSF systems demonstrate superior environmental and nutritional performance compared to conventional waste treatments. Harmonized safety standards, feedstock pretreatment, automation, and green extraction methods are critical to overcoming scale-up barriers. Interdisciplinary innovation and policy alignment will enable BSF platforms to realize their full potential within circular bio-economies. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

28 pages, 2736 KiB  
Article
Bioherbicidal Evaluation of Methanol Extract of Sorghum halepense L. Rhizome and Its Bioactive Components Against Selected Weed Species
by Jasmina Nestorović Živković, Milica Simonović, Danijela Mišić, Marija Nešić, Vladan Jovanović, Uroš Gašić, Ivana Bjedov and Slavica Dmitrović
Molecules 2025, 30(15), 3060; https://doi.org/10.3390/molecules30153060 - 22 Jul 2025
Viewed by 810
Abstract
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic [...] Read more.
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic technology and explores the effects of a methanol extract of S. halepense rhizomes (ShER) and its major bioactive compounds (p-hydroxybenzoic acid and chlorogenic acid) on three noxious weed species. The phytotoxic effects of ShER are reflected through the inhibition of seed germination and reduced seedling growth, which are accompanied by changes in the antioxidant system of seedlings. Phytotoxicity is species specific and concentration dependent, and it is more pronounced against Chenopodiastrum murale (L.) S. Fuentes, Uotila & Borsch and Datura stramonium L. than highly tolerant Amaranthus retroflexus L. Catalase (CAT) is most likely the major mediator in the removal of reactive oxygen species, which are generated during germination and early seedling growth of Ch. murale exposed to ShER. The results of the present study imply the high potential of ShER in the management of amaranthaceous and solanaceous weeds, such as Ch. murale and D. stramonium, respectively. The present study offers an environmentally friendly solution for the biological control of weeds belonging to the families Amaranthaceae and Solanaceae. Also, the results of this research highlight the possibility of effective management of S. halepense by using it as a feedstock for bioherbicide production. Full article
Show Figures

Figure 1

28 pages, 4382 KiB  
Article
Chlorella vulgaris-Derived Biochars for Metribuzin Removal: Influence of Thermal Processing Pathways on Sorption Properties
by Margita Ščasná, Alexandra Kucmanová, Maroš Sirotiak, Lenka Blinová, Maroš Soldán, Jan Hajzler, Libor Ďuriška and Marián Palcut
Materials 2025, 18(14), 3374; https://doi.org/10.3390/ma18143374 - 18 Jul 2025
Viewed by 336
Abstract
Carbonaceous sorbents were prepared from Chlorella vulgaris via hydrothermal carbonization (200 °C and 250 °C) and slow pyrolysis (300–500 °C) to assess their effectiveness in removing the herbicide metribuzin from water. The biomass was cultivated under controlled laboratory conditions, allowing for consistent feedstock [...] Read more.
Carbonaceous sorbents were prepared from Chlorella vulgaris via hydrothermal carbonization (200 °C and 250 °C) and slow pyrolysis (300–500 °C) to assess their effectiveness in removing the herbicide metribuzin from water. The biomass was cultivated under controlled laboratory conditions, allowing for consistent feedstock quality and traceability throughout processing. Using a single microalgal feedstock for both thermal methods enabled a direct comparison of hydrochar and pyrochar properties and performance, eliminating variability associated with different feedstocks and allowing for a clearer assessment of the influence of thermal conversion pathways. While previous studies have examined algae-derived biochars for heavy metal adsorption, comprehensive comparisons targeting organic micropollutants, such as metribuzin, remain scarce. Moreover, few works have combined kinetic and isotherm modeling to evaluate the underlying adsorption mechanisms of both hydrochars and pyrochars produced from the same algal biomass. Therefore, the materials investigated in the present work were characterized using a combination of standard physicochemical and structural techniques (FTIR, SEM, BET, pH, ash content, and TOC). The kinetics of sorption were also studied. The results show better agreement with the pseudo-second-order model, consistent with chemisorption, except for the hydrochar produced at 250 °C, where physisorption provided a more accurate fit. Freundlich isotherms better described the equilibrium data, indicating heterogeneous adsorption. The hydrochar obtained at 200 °C reached the highest adsorption capacity, attributed to its intact cell structure and abundance of surface functional groups. The pyrochar produced at 500 °C exhibited the highest surface area (44.3 m2/g) but a lower affinity for metribuzin due to the loss of polar functionalities during pyrolysis. This study presents a novel use of Chlorella vulgaris-derived carbon materials for metribuzin removal without chemical activation, which offers practical benefits, including simplified production, lower costs, and reduced chemical waste. The findings contribute to expanding the applicability of algae-based sorbents in water treatments, particularly where low-cost, energy-efficient materials are needed. This approach also supports the integration of carbon sequestration and wastewater remediation within a circular resource framework. Full article
Show Figures

Figure 1

33 pages, 1593 KiB  
Review
Bio-Coal Briquetting as a Potential Sustainable Valorization Strategy for Fine Coal: A South African Perspective in a Global Context
by Veshara Ramdas, Sesethu Gift Njokweni, Parsons Letsoalo, Solly Motaung and Santosh Omrajah Ramchuran
Energies 2025, 18(14), 3746; https://doi.org/10.3390/en18143746 - 15 Jul 2025
Viewed by 348
Abstract
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a [...] Read more.
The generation of fine coal particles during mining and processing presents significant environmental and logistical challenges, particularly in coal-dependent, developing countries like South Africa (SA). This review critically evaluates the technical viability of fine coal briquetting as a sustainable waste-to-energy solution within a SA context, while drawing from global best practices and comparative benchmarks. It examines abundant feedstocks that can be used for valorization strategies, including fine coal and agricultural biomass residues. Furthermore, binder types, manufacturing parameters, and quality optimization strategies that influence briquette performance are assessed. The co-densification of fine coal with biomass offers a means to enhance combustion efficiency, reduce dust emissions, and convert low-value waste into a high-calorific, manageable fuel. Attention is also given to briquette testing standards (i.e., South African Bureau of Standards, ASTM International, and International Organization of Standardization) and end-use applications across domestic, industrial, and off-grid settings. Moreover, the review explores socio-economic implications, including rural job creation, energy poverty alleviation, and the potential role of briquetting in SA’s ‘Just Energy Transition’ (JET). This paper uniquely integrates technical analysis with policy relevance, rural energy needs, and practical challenges specific to South Africa, while offering a structured framework for bio-coal briquetting adoption in developing countries. While technical and economic barriers remain, such as binder costs and feedstock variability, the integration of briquetting into circular economy frameworks represents a promising path toward cleaner, decentralized energy and coal waste valorization. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

22 pages, 1279 KiB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 394
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

19 pages, 1065 KiB  
Review
Recovery of Nutrients from the Aqueous Phase of Hydrothermal Liquefaction—A Review
by Barbara Camila Bogarin Cantero, Yalin Li, Prasanta Kalita, Yuanhui Zhang and Paul Davidson
Water 2025, 17(14), 2099; https://doi.org/10.3390/w17142099 - 14 Jul 2025
Viewed by 596
Abstract
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the [...] Read more.
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the process, which has high concentrations of nitrogen and carbon and cannot be disposed of in the environment without treatment. The HTL-AP is enriched with organic compounds, particularly light polar organics and nitrogenous compounds, which are inhibitory to microbial treatment in wastewater treatment plants. For this reason, the valorization of the HTL-AP is significant for the circular economy of HTL. This review synthesizes published findings on different types of treatment of the HTL-AP for the recovery of valuable nutrients and the removal of toxic compounds. This work outlines the trade-offs of the treatments to serve as a guide for future research to address these weaknesses and improve the valorization of the HTL-AP. Furthermore, this work uniquely focuses on HTL-AP treatment for recovering plant-available nitrogen, targeting its potential use as a fertilizer. The literature highlights the importance of increasing nitrogen bioavailability in HTL-AP through two-step treatments and by selecting HTL-AP derived from protein-rich feedstocks, which offer higher initial nitrogen content. According to the current state of research, further work is needed to optimize chemical and biological treatments for nutrient recovery from HTL-AP, particularly regarding treatment scale and duration. Additionally, economic analyses across different treatment types are currently lacking, but are essential to evaluate their feasibility and practicality. Full article
(This article belongs to the Special Issue Emerging Technologies for Nutrient Recovery and Wastewater Treatment)
Show Figures

Figure 1

16 pages, 1971 KiB  
Article
Slow Pyrolysis as a Method of Treating Household Biowaste for Biochar Production
by Agnieszka Bezuszko, Marcin Landrat, Krzysztof Pikoń, Ana F. Ferreira, Abel Rodrigues, Gabor Olejarz and Max Lewandowski
Appl. Sci. 2025, 15(14), 7858; https://doi.org/10.3390/app15147858 - 14 Jul 2025
Viewed by 339
Abstract
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such [...] Read more.
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such as nutrients, organic matter, and energy. The present work aims to determine the properties of the tested household biowaste and the possibility of using it as feedstock in slow pyrolysis to obtain biochar. The slow pyrolysis process of the biowaste was carried out in an electrically heated Horizontal Tube Furnace (HTF) at temperatures of 400 °C, 500 °C, and 600 °C in a nitrogen atmosphere. The analysis showed that depending on the type and composition of the biowaste, its properties are different. All the biowaste tested has a high moisture content (between 63.51% and 81.53%), which means that the biowaste needs to be dried before the slow pyrolysis process. The characteristics of kitchen biowaste are similar to those of food waste studied by other researchers in different regions of the world. In addition, the properties of kitchen biowaste are similar to those of the typical biomasses used to produce biochar via slow pyrolysis, such as wood, almond shells, and rice husks. Both kinds of garden biowaste tested may have been contaminated (soil, rocks) during collection, which affected the high ash content of spring (17.75%) and autumn (43.83%) biowaste. This, in turn, affected all the properties of the garden biowaste, which differed significantly from both the literature data of other garden wastes and from the properties of typical biomass feedstocks used to produce biochar in slow pyrolysis. For all biowaste tested, it was shown that as the pyrolysis temperature increases, the yield of biochar decreases. The maximum mass yield of biochar for kitchen, spring garden, and autumn garden biowaste was 36.64%, 66.53%, and 66.99%, respectively. Comparing the characteristics of biowaste before slow pyrolysis, biochar obtained from kitchen biowaste had a high carbon content, fixed carbon, and a higher HHV. In contrast, biochar obtained from garden biowaste had a lower carbon content and a lower HHV. Full article
Show Figures

Figure 1

25 pages, 1275 KiB  
Review
Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts
by Yanga Mgxaji, Charles S. Mutengwa, Patrick Mukumba and Admire R. Dzvene
Agronomy 2025, 15(7), 1683; https://doi.org/10.3390/agronomy15071683 - 11 Jul 2025
Viewed by 353
Abstract
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient [...] Read more.
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient availability. It focuses on the sources and properties of BGS, its application methods, and their effects on the soil nutrient dynamics and crop productivity. The findings indicate that BGS improves the soil health and crop yields, offering an eco-friendly alternative to synthetic fertilizers, especially in resource-limited settings. Despite these benefits, research gaps persist, including the need for long-term field trials, the optimization of application strategies for sandy soils, and comprehensive economic evaluations. Additionally, concerns such as nutrient imbalances, phosphorus accumulation, and slurry composition variability must be addressed. This review recommends standardizing BGS nutrient profiling and adopting site-specific management practices to maximize its agronomic benefits and environmental safety. Integrating BGS into sustainable soil fertility programs could contribute significantly to achieving agricultural resilience and circular economy goals. Full article
Show Figures

Figure 1

22 pages, 3729 KiB  
Article
Assessing the Impact of Residual Municipal Solid Waste Characteristics on Screw Press Performance in a Mechanical Biological Treatment Plant Optimized with Anaerobic Digestion
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Sustainability 2025, 17(14), 6365; https://doi.org/10.3390/su17146365 - 11 Jul 2025
Cited by 1 | Viewed by 372
Abstract
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a [...] Read more.
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a screw press. This study focused on evaluating the efficiency of each mechanical pretreatment step by investigating the composition of the residual waste, organic fraction recovery rate, and screw press performance in recovering organic material and biogas to press water. The results showed that 92% of the organic material from the residual waste was recovered into fine fractions after shredding and trommel screening. The pressing experiments produced high-quality press water with less than 3% inert material (0.063–4 mm size). Mass balance analysis revealed that 47% of the input fresh mass was separated into press water, corresponding to 24% of the volatile solids recovered. Biogas yield tests showed that the press water had a biogas potential of 416 m3/ton VS, recovering 38% of the total biogas potential. In simple terms, the screw press produced 32 m3 of biogas per ton of mechanically separated fine fractions and 20 m3 per ton of input residual waste. This low-pressure, single-step screw press efficiently and cost-effectively prepares anaerobic digestion feedstock, making it a promising optimization for both existing and new facilities. The operational configuration of the screw press remains an underexplored area in current research. Therefore, further studies are needed to systematically evaluate key parameters such as screw press pressure (bar), liquid-to-waste (L/ton), and feed rate (ton/h). Full article
Show Figures

Figure 1

28 pages, 1259 KiB  
Review
Perspective on Sustainable Solutions for Mitigating Off-Gassing of Volatile Organic Compounds in Asphalt Composites
by Masoumeh Mousavi, Vajiheh Akbarzadeh, Mohammadjavad Kazemi, Shuguang Deng and Elham H. Fini
J. Compos. Sci. 2025, 9(7), 353; https://doi.org/10.3390/jcs9070353 - 8 Jul 2025
Viewed by 449
Abstract
This perspective explores the use of biochar, a carbon-rich material derived from biomass, as a sustainable solution for mitigating volatile organic compounds (VOCs) emitted during asphalt production and use. VOCs from asphalt contribute to ozone formation and harmful secondary organic aerosols (SOAs), which [...] Read more.
This perspective explores the use of biochar, a carbon-rich material derived from biomass, as a sustainable solution for mitigating volatile organic compounds (VOCs) emitted during asphalt production and use. VOCs from asphalt contribute to ozone formation and harmful secondary organic aerosols (SOAs), which negatively impact air quality and public health. Biochar, with its high surface area and capacity to adsorb VOCs, provides an effective means of addressing these challenges. By tailoring biochar’s surface chemistry, it can efficiently capture VOCs, while also offering long-term carbon sequestration benefits. Additionally, biochar enhances the durability of asphalt, extending road lifespan and reducing maintenance needs, making it a promising material for sustainable infrastructure. Despite these promising benefits, several challenges remain. Variations in biochar properties, driven by differences in feedstock and production methods, can affect its performance in asphalt. Moreover, the integration of biochar into existing plant operations requires the further development of methods to streamline the process and ensure consistency in biochar’s quality and cost-effectiveness. Standardizing production methods and addressing logistical hurdles will be crucial for biochar’s widespread adoption. Research into improving its long-term stability in asphalt is also needed to ensure sustained efficacy over time. Overcoming these challenges will be essential for fully realizing biochar’s potential in sustainable infrastructure development Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

32 pages, 1834 KiB  
Review
Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin
by Justyna Ruchala, Alicja Najdecka, Dominik Wojdyla, Wen Liu and Andriy Sibirny
Int. J. Mol. Sci. 2025, 26(13), 6243; https://doi.org/10.3390/ijms26136243 - 28 Jun 2025
Viewed by 688
Abstract
Riboflavin (vitamin B2) is an essential micronutrient required for all living organisms. It is naturally synthesized by plants and most microorganisms, including the bacterium Bacillus subtilis, the filamentous fungus Ashbya gossypii, and the yeast Candida famata—all of which [...] Read more.
Riboflavin (vitamin B2) is an essential micronutrient required for all living organisms. It is naturally synthesized by plants and most microorganisms, including the bacterium Bacillus subtilis, the filamentous fungus Ashbya gossypii, and the yeast Candida famata—all of which are known to be riboflavin overproducers. The choice of production organism in industrial applications depends on factors such as yield, ease of cultivation, and the availability of genetic tools. As a result, several microorganisms are commonly used, and their relative prominence can shift over time with advances in metabolic engineering and process optimization. This review presents a comparative analysis of riboflavin biosynthesis across prokaryotic and eukaryotic systems, with a particular focus on regulatory mechanisms governing flavinogenesis. Special attention is given to recent advances in metabolic engineering strategies, including the application of CRISPR/Cas9 genome editing in Bacillus subtilis and Ashbya gossypii. In yeast systems, significant improvements in riboflavin production have been achieved primarily through the manipulation of transcriptional regulators (e.g., SEF1, SFU1, TUP1) and metabolic genes. The role of other important genes (PRS3, ADE4, ZWF1, GND1, RFE1, VMA1, etc.) in riboflavin overproduction in C. famata is described. The review also explores the use of alternative, low-cost feedstocks—including lignocellulosic hydrolysates and dairy by-products—to support more sustainable and economically viable riboflavin production. Although considerable progress has been achieved in genetic optimization and bioprocess development, further work is required to fine-tune metabolic flux and maximize riboflavin synthesis, particularly under industrial conditions. This review highlights key opportunities for future research aimed at refining metabolic interventions and expanding the use of renewable substrates for environmentally sustainable riboflavin production. Full article
(This article belongs to the Special Issue New Advances in Metabolic Engineering and Synthetic Biology of Yeasts)
Show Figures

Figure 1

20 pages, 4330 KiB  
Article
Extraction of Terpenoids from Pine Needle Biomass Using Dimethyl Ether
by Gary S. Groenewold, Christopher Orme, Caleb Stetson, Rebecca M. Brown, Lynn M. Wendt and Aaron D. Wilson
Separations 2025, 12(7), 169; https://doi.org/10.3390/separations12070169 - 26 Jun 2025
Viewed by 527
Abstract
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine [...] Read more.
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine biomass is an energy-intensive operation, typically requiring a significant input of thermal energy. An alternative separation approach with potential energy savings is extraction with a condensable gas, namely, dimethyl ether. Biomass materials are exposed to liquid dimethyl ether under pressure, which mobilizes the organics. The extract is then separated from the insoluble pine matter, and dimethyl ether is volatilized away from the separated organic species. A variety of terpene derivatives were extracted from pine needle biomass using this approach, including monoterpenes, sesquiterpenes, and related oxygenates, which were identified using two-dimensional gas chromatography/mass spectrometry. Additionally, the dimethyl ether-treated needles resemble needles subjected to low-temperature drying, whereas needles treated with a high-temperature drying method appear to have shrunken structures. The results suggest that dimethyl ether extraction has significant potential for separating valuable organics from complex matrices without the application of thermal energy during treatment. Full article
Show Figures

Figure 1

Back to TopTop