Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,268)

Search Parameters:
Keywords = organic contaminant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3363 KiB  
Article
Spatial Heterogeneity of Heavy Metals in Arid Oasis Soils and Its Irrigation Input–Soil Nutrient Coupling Mechanism
by Jiang Liu, Chongbo Li, Jing Wang, Liangliang Li, Junling He and Funian Zhao
Sustainability 2025, 17(15), 7156; https://doi.org/10.3390/su17157156 (registering DOI) - 7 Aug 2025
Abstract
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi [...] Read more.
Soil environmental quality in arid oases is crucial for regional ecological security but faces multi-source heavy metal (HM) contamination risks. This study aimed to (1) characterize the spatial distribution of soil HMs (As, Cd, Cr, Cu, Hg, and Zn) in the Ka Shi gar oasis, Xinjiang, (2) quantify the driving effect of irrigation water, and (3) elucidate interactions between HMs, soil properties, and land use types. Using 591 soil and 12 irrigation water samples, spatial patterns were mapped via inverse distance weighting interpolation, with drivers and interactions analyzed through correlation and land use comparisons. Results revealed significant spatial heterogeneity in HMs with no consistent regional trend: As peaked in arable land (5.27–40.20 μg/g) influenced by parent material and agriculture, Cd posed high ecological risk in gardens (max 0.29 μg/g), and Zn reached exceptional levels (412.00 μg/g) in gardens linked to industry/fertilizers. Irrigation water impacts were HM-specific: water contributed to soil As enrichment, whereas high water Cr did not elevate soil Cr (indicating industrial dominance), and Cd/Cu showed no significant link. Interactions with soil properties were regulated by land use: in arable land, As correlated positively with EC/TN and negatively with pH; in gardens, HMs generally decreased with pH, enhancing mobility risk; in forests, SOM adsorption immobilized HMs; in construction land, Hg correlated with SOM/TP, suggesting industrial-organic synergy. This study advances understanding by demonstrating that HM enrichment arises from natural and anthropogenic factors, with the spatial heterogeneity of irrigation water’s driving effect critically regulated by land use type, providing a spatially explicit basis for targeted pollution control and sustainable oasis management. Full article
Show Figures

Figure 1

18 pages, 1861 KiB  
Article
Clay Nanomaterials Sorbents for Cleaner Water: A Sustainable Application for the Mining Industry
by María Molina-Fernández, Albert Santos Silva, Rodrigo Prado Feitosa, Edson C. Silva-Filho, Josy A. Osajima, Santiago Medina-Carrasco and María del Mar Orta Cuevas
Nanomaterials 2025, 15(15), 1211; https://doi.org/10.3390/nano15151211 (registering DOI) - 7 Aug 2025
Abstract
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large [...] Read more.
The increasing shortage of drinking water, driven by reduced rainfall and the intensification of industrial and agricultural activities, has raised justified concerns about the quantity and quality of available water resources. These sectors not only demand high water consumption but also discharge large amounts of toxic substances such as organic matter, metal ions and inorganic anions, posing risks to both public health and the environment. This study evaluated the effectiveness of clay-based nanomaterials in the treatment of contaminated industrial wastewater from the mining sector. The materials tested included montmorillonite, high-loading expandable synthetic mica, and their organically functionalized forms (MMT, Mica-Na-4, C18-MMT, and C18-Mica-4). The experimental results show that these clays had minimal impact on the pH of the water, while a notable decrease in the chemical oxygen demand (COD) was observed. Ion chromatography indicated an increase in nitrogen and sulfur compounds with higher oxidation states. Inductively coupled plasma analysis revealed a significant reduction in the calcium concentration and an increase in the sodium concentration, likely due to cation exchange mechanisms. However, the removal of copper and iron was ineffective, possibly due to competitive interactions with other cations in the solution. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the structural modifications and interlayer spacing changes in the clay materials upon exposure to contaminated water. These findings demonstrate the potential of clay minerals as effective and low-cost materials for the remediation of industrial wastewater. Full article
(This article belongs to the Special Issue Eco-Friendly Nanomaterials: Innovations in Sustainable Applications)
Show Figures

Figure 1

35 pages, 1831 KiB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 - 7 Aug 2025
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Graphical abstract

15 pages, 2611 KiB  
Article
Transgenerational Effects of Cadmium and Copper Exposure on Development, Reproduction, and Midgut Integrity in Culex pipiens (Diptera: Culicidae): Implications for Vector Ecology Under Metal Pollution
by Ahmed I. Hasaballah, Ramy E. El-Ansary, Mahmoud M. Zidan, Areej A. Al-Khalaf and Abdelwahab Khalil
Biology 2025, 14(8), 1004; https://doi.org/10.3390/biology14081004 - 5 Aug 2025
Abstract
Heavy metal contamination in freshwater ecosystems poses persistent threats to aquatic organisms and public health. This study evaluates the transgenerational toxicity of cadmium chloride and copper sulfate on Culex pipiens, focusing on development, reproduction, and midgut histopathology over two successive generations. Larval [...] Read more.
Heavy metal contamination in freshwater ecosystems poses persistent threats to aquatic organisms and public health. This study evaluates the transgenerational toxicity of cadmium chloride and copper sulfate on Culex pipiens, focusing on development, reproduction, and midgut histopathology over two successive generations. Larval bioassays showed cadmium chloride to be more toxic than copper sulfate, with early instars exhibiting higher sensitivity (LC50 = 8.66 μg/L for Cd; 175.63 μg/L for Cu). Both metals significantly delayed larval and pupal development, reduced fecundity, and decreased egg hatchability in a dose-dependent manner. Histopathological examination revealed midgut epithelial degeneration, vacuolation, and brush border loss, with copper sulfate inducing more severe cytotoxicity. These findings confirm that sublethal, chronic metal exposure can impair physiological and reproductive traits across generations. Moreover, this study highlights the utility of mosquitoes as sensitive bioindicators of aquatic pollution, and underscores the long-term ecological implications of heavy metal contamination on vector dynamics and disease transmission. Full article
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Graphical abstract

21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 - 5 Aug 2025
Viewed by 43
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

18 pages, 903 KiB  
Article
Effect of Allyl-Isothiocyanate Release from Black Mustard (Brassica nigra) Seeds During Refrigerated Storage to Preserve Fresh Tench (Tinca tinca) Fillets
by María José Rodríguez Gómez, María Alejo Martínez, Raquel Manzano Durán, Daniel Martín-Vertedor and Patricia Calvo Magro
Fishes 2025, 10(8), 381; https://doi.org/10.3390/fishes10080381 - 5 Aug 2025
Viewed by 64
Abstract
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts [...] Read more.
The aim of this study was to prevent the development of microorganisms in the refrigerated storage of tench by releasing allyl isothiocyanate (AITC) produced by black mustard seeds. Tench reared in an aquaculture centre were sacrificed and the fillets were separated. Different amounts of defatted mustard seed (300, 400 and 500 mg) were added to hermetic polypropylene trays. Microbiological, sensory, and gas chromatography with MS detection analysis were done. AITC release increased progressively until the third day of storage, significantly delaying the development of microorganisms in samples with higher mustard seed content. The tasting panel detected positive aromas at the beginning of the study, but these decreased and negative aromas appeared. The mustard seed treatment resulted in a higher positive aroma at the end of the storage, reducing rotting and ammonia odours. A total of 31 volatile compounds were detected and grouped into hydrocarbon, alcohol, benzenoid, isothiocyanate, ketone, acetate, aldehyde, and others. Butylated hydroxytoluene, an indicator of bacterial contamination, was the major aromatic compound found during storage. The release of AITC resulted in fewer organic compounds with negative aromas appearing during storage. PCA analysis allowed us to classify the assays during storage according to their volatile profiles, confirming the differences observed between treatments. Thus, adding mustard seed to fish packaging could be a viable alternative to extending the product’s shelf life and ensuring food safety. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

19 pages, 1050 KiB  
Article
Fungal Communities in Soils Contaminated with Persistent Organic Pollutants: Adaptation and Potential for Mycoremediation
by Lazaro Alexis Pedroso Guzman, Lukáš Mach, Jiřina Marešová, Jan Wipler, Petr Doležal, Jiřina Száková and Pavel Tlustoš
Appl. Sci. 2025, 15(15), 8607; https://doi.org/10.3390/app15158607 - 4 Aug 2025
Viewed by 132
Abstract
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal [...] Read more.
The main objective of this study was to select indigenous fungal species suitable for the potential mycoremediation of the soils polluted by organic pollutants. As a sampling area, Litvínov City (North Bohemia, Czech Republic) was selected. The city is characterized by intensive coal mining, coal processing, and the chemical industry, predominantly petrochemistry. The elevated contents of persistent organic pollutants (POPs) such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were identified in urban soils due to the long-term industrial pollution. The results confirmed elevated contents of PAHs in all the analyzed soil samples with high variability ranging between 0.5 and 23.3 mg/kg regardless of the position of the sampling area on the city map. PCBs and PCDD/Fs exceeded the detection limits in the soil at the sampling points, and several hotspots were revealed at some locations. All the sampling points contained a diverse community of saprotrophic and mycorrhizal fungi, as determined according to abundant basidiomycetes. Fungal species with a confirmed ability to degrade organic pollutants were found, such as species representing the genera Agaricus from the Agaricaceae family, Coprinopsis from the Psathyrellaceae family, Hymenogaster from the Hymenogasteraceae family, and Pluteus from the Pluteaceae family. These species are accustomed to particular soil conditions as well as the elevated contents of the POPs in them. Therefore, these species could be taken into account when developing potential bioremediation measures to apply in the most polluted areas, and their biodegradation ability should be elucidated in further research. The results of this study contribute to the investigation of the potential use of fungal species for mycoremediation of the areas polluted by a wide spectrum of organic pollutants. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

22 pages, 3515 KiB  
Article
Biodegradation of Chloroquine by a Fungus from Amazonian Soil, Penicillium guaibinense CBMAI 2758
by Patrícia de Almeida Nóbrega, Samuel Q. Lopes, Lucas S. Sá, Ryan da Silva Ramos, Fabrício H. e Holanda, Inana F. de Araújo, André Luiz M. Porto, Willian G. Birolli and Irlon M. Ferreira
J. Fungi 2025, 11(8), 579; https://doi.org/10.3390/jof11080579 - 4 Aug 2025
Viewed by 248
Abstract
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of [...] Read more.
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of filamentous fungi isolated from iron mine soil in the Amazon region to biodegrade the drug chloroquine diphosphate. An initial screening assessed the growth of four fungal strains on solid media containing chloroquine diphosphate: Trichoderma pseudoasperelloides CBMAI 2752, Penicillium rolfsii CBMAI 2753, Talaromyces verruculosus CBMAI 2754, and Penicillium sp. cf. guaibinense CBMAI 2758. Among them, Penicillium sp. cf. guaibinense CBMAI 2758 was selected for further testing in liquid media. A Box–Behnken factorial design was applied with three variables, pH (5, 7, and 9), incubation time (5, 10, and 15 days), and chloroquine diphosphate concentration (50, 75, and 100 mg·L−1), totaling 15 experiments. The samples were analyzed by gas chromatography–mass spectrometry (GC-MS). The most effective conditions for chloroquine biodegradation were pH 7, 100 mg·L−1 concentration, and 10 days of incubation. Four metabolites were identified: one resulting from N-deethylation M1 (N4-(7-chloroquinolin-4-yl)-N1-ethylpentane-1,4-diamine), two from carbon–carbon bond cleavage M2 (7-chloro-N-ethylquinolin-4-amine) and M3 (N1,N1-diethylpentane-1,4-diamine), and one from aromatic deamination M4 (N1-ethylbutane-1,4-diamine) by enzymatic reactions. The toxicity analysis showed that the products obtained from the biodegradation of chloroquine were less toxic than the commercial formulation of this compound. These findings highlight the biotechnological potential of Amazonian fungi for drug biodegradation and decontamination. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

17 pages, 1783 KiB  
Article
Nature-Based Solutions in Sustainable Cities: Trace Metal Accumulation in Urban Forests of Vienna (Austria) and Krakow (Poland)
by Mateusz Jakubiak, Ewa Panek, Krzysztof Urbański, Sónia Silva Victória, Stanisław Lach, Kamil Maciuk and Marek Kopacz
Sustainability 2025, 17(15), 7042; https://doi.org/10.3390/su17157042 - 3 Aug 2025
Viewed by 239
Abstract
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective [...] Read more.
Forests are considered one of the most valuable natural areas in metropolitan region landscapes. Considering the sensitivity and ecosystem services provided by trees, the definition of urban forest ecosystems is nowadays based on a comprehensive understanding of the entire urban ecosystem. The effective capturing of particulate matter is one of the ecosystem services provided by urban forests. These ecosystems function as efficient biological filters. Plants accumulate pollutants passively via their leaves. Therefore, another ecosystem service provided by city forests could be the use of tree organs as bioindicators of pollution. This paper aims to estimate differences in trace metal pollution between the wooded urban areas of Vienna and Krakow using leaves of evergreen and deciduous trees as biomonitors. An additional objective of the research was to assess the ability of the applied tree species to act as biomonitors. Plant samples of five species—Norway spruce, Scots pine, European larch, common white birch, and common beech—were collected within both areas, in seven locations: four in the “Wienerwald” Vienna forest (Austria) and three in the “Las Wolski” forest in Krakow (Poland). Concentrations of Cr, Cu, Cd, Pb, and Zn in plant material were determined. Biomonitoring studies with deciduous and coniferous tree leaves showed statistically higher heavy metal contamination in the “Las Wolski” forest compared to the “Wienerwald” forest. Based on the conducted analyses and the literature study, it can be concluded that among the analyzed tree species, only two: European beech and common white birch can be considered potential indicators in environmental studies. These species appear to be suitable bioindicators, as both are widespread in urban woodlands of Central Europe and have shown the highest accumulation levels of trace metals. Full article
Show Figures

Figure 1

26 pages, 3020 KiB  
Review
Fabrication of Cellulose-Based Hydrogels Through Ionizing Radiation for Environmental and Agricultural Applications
by Muhammad Asim Raza
Gels 2025, 11(8), 604; https://doi.org/10.3390/gels11080604 - 2 Aug 2025
Viewed by 181
Abstract
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a [...] Read more.
Hydrogels exhibit remarkable physicochemical properties, including high water absorption and retention capacities, as well as controlled release behavior. Their inherent biodegradability, biocompatibility, and non-toxicity make them suitable for a wide range of applications. Cellulose, a biodegradable, renewable, and abundantly available polysaccharide, is a viable source for hydrogel preparation. Ionizing radiation, using electron-beam (EB) or gamma (γ) irradiation, provides a promising approach for synthesizing hydrogels. This study reviews recent advancements in cellulose-based hydrogels, focusing on cellulose and its derivatives, brief information regarding ionizing radiation, comparison between EB and γ-irradiation, synthesis and modification through ionizing radiation technology, and their environmental and agricultural applications. For environmental remediation, these hydrogels have demonstrated significant potential in water purification, particularly in the removal of heavy metals, dyes, and organic contaminants. In agricultural applications, cellulose-based hydrogels function as soil conditioners by enhancing water retention and serving as carriers for agrochemicals. Full article
Show Figures

Graphical abstract

18 pages, 4994 KiB  
Article
Plant Growth-Promoting Serratia and Erwinia Strains Enhance Tea Plant Tolerance and Rhizosphere Microbial Diversity Under Heavy Metal Stress
by Mengjiao Wang and Zhimin Xu
Agronomy 2025, 15(8), 1876; https://doi.org/10.3390/agronomy15081876 - 2 Aug 2025
Viewed by 255
Abstract
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates [...] Read more.
This study demonstrated that application of the particular plant growth-promoting rhizobacteria (PGPR) strains Erwinia sp. and Serratia sp. (named C15 and C20, respectively) significantly enhanced tea plant resilience in Zn (zinc)-, Pb (lead)-, and Zn + Pb-contaminated soils by the improving survival rates (over 60%) and chlorophyll content of tea plants, and by reducing the accumulation of these metals in tea plants’ tissues (by 19–37%). The PGPRs elevated key soil nutrients organic carbon (OC), total nitrogen (TH), hydrolysable nitrogen (HN), and available potassium (APO) and phosphorus (APH) contents. Compared to non-PGPR controls, both strains consistently increased microbial α-diversity (Chao1 index: +28–42% in Zn/Pb soils; Shannon index: +19–33%) across all contamination regimes. PCoA/UniFrac analyses confirmed distinct clustering of PGPR-treated communities, with strain-specific enrichment of metal-adapted taxa, including Pseudomonas (LDA = 6) and Bacillus (LDA = 4) under Zn stress; Rhodanobacter (LDA = 4) under Pb stress; and Lysobacter (LDA = 5) in Zn + Pb co-contamination. Fungal restructuring featured elevated Mortierella (LDA = 6) in Zn soils and stress-tolerant Ascomycota dominance in co-contaminated soils. Multivariate correlations revealed that the PGPR-produced auxin was positively correlated with soil carbon dynamics and Mortierellomycota abundance (r = 0.729), while the chlorophyll content in leaves was closely associated with Cyanobacteria and reduced by Pb accumulation. These findings highlighted that PGPR could mediate and improve in tea plant physiology, soil fertility, and stress-adapted microbiome recruitment under heavy metal contaminated soil and stress. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 2600 KiB  
Article
Bamboo Biochar and Sodium Silicate Alleviate Oxybenzone-Induced Phytotoxicity via Distinct Mechanisms for Sustainable Plant Protection
by Chuantong Cui, Wenhai Yang, Weiru Dang, Ruiya Chen, Pedro García-Caparrós, Guoqun Yang, Jianhua Huang and Li-Jun Huang
Plants 2025, 14(15), 2382; https://doi.org/10.3390/plants14152382 - 2 Aug 2025
Viewed by 312
Abstract
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based [...] Read more.
Oxybenzone (OBZ), an organic ultraviolet filter, is an emerging contaminant posing severe threats to ecosystem health. Using tobacco (Nicotiana tabacum) as a model plant, this study investigated the alleviation mechanisms of exogenous silicon (Na2SiO3, Si) and bamboo-based biochar (Bc) under OBZ stress. We systematically analyzed physiological and biochemical responses, including phenotypic parameters, reactive oxygen species metabolism, photosynthetic function, chlorophyll synthesis, and endogenous hormone levels. Results reveal that OBZ significantly inhibited tobacco growth and triggered a reactive oxygen species (ROS) burst. Additionally, OBZ disrupted antioxidant enzyme activities and hormonal balance. Exogenous Bc mitigated OBZ toxicity by adsorbing OBZ, directly scavenging ROS, and restoring the ascorbate-glutathione (AsA-GSH) cycle, thereby enhancing photosynthetic efficiency, while Si alleviated stress via cell wall silicification, preferential regulation of root development and hormonal signaling, and repair of chlorophyll biosynthesis precursor metabolism and PSII function. The mechanisms of the two stress mitigators were complementary, Bc primarily relied on physical adsorption and ROS scavenging, whereas Si emphasized metabolic regulation and structural reinforcement. These findings provide practical strategies for simultaneously mitigating organic UV filter pollution and enhancing plant resilience in contaminated soils. Full article
Show Figures

Figure 1

Back to TopTop