Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,089)

Search Parameters:
Keywords = organic alcohols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1771 KB  
Article
The Bog Bilberry Enigma: A Phytochemical and Ethnopharmacological Analysis of Vaccinium uliginosum L. Fruits in Regard to Their Alleged Toxicity
by Zuzana Vaneková, Martina Redl, Lorenz Fischer, Karin Ortmayr, Laura Jaakola and Judith M. Rollinger
Plants 2025, 14(17), 2645; https://doi.org/10.3390/plants14172645 (registering DOI) - 25 Aug 2025
Abstract
Vaccinium uliginosum (bog bilberry) is widely consumed in North America and Asia but has been historically avoided in many parts of Europe due to its alleged poisonous effects. We aimed to address this discrepancy in a systematic way with a combined phytochemical and [...] Read more.
Vaccinium uliginosum (bog bilberry) is widely consumed in North America and Asia but has been historically avoided in many parts of Europe due to its alleged poisonous effects. We aimed to address this discrepancy in a systematic way with a combined phytochemical and ethnopharmacological approach, using UHPLC and UHPSFC for the chemical analysis, model organisms Caenorhabditis elegans and human liver cells GFP-Huh-7 for the bioactivity and toxicity testing, as well as fermentation experiments. Phytochemical analysis revealed minimal differences in the metabolite pattern between European and North American samples, with no evidence of toxic alkaloids or harmful secondary metabolites. Extracts exhibited no strongly toxic effects in the tested concentrations, neither in vitro (cell viability) nor in vivo (C. elegans). Berries infected by Monilinia megalospora showed altered flavonoid and anthocyanin contents but no increased toxicity. Notably, bog bilberries demonstrated a fermentation potential superior to Vaccinium myrtillus, resulting in an alcohol content of 4.8–5.8% ABV in unsweetened juices, thus potentially explaining historical accounts of inebriation. In conclusion, direct toxicity derived from these fruits is unlikely, but the alcohol content due to fruit fermentation is a plausible explanation for the folklore names (“drunk, inebriating berry”). However, additional factors such as human error, individual intolerance, or endophytic activity need to be considered. Full article
(This article belongs to the Special Issue Ethnobotanical and Pharmacological Study of Medicinal Plants)
15 pages, 2891 KB  
Article
Spectroscopic Study of Volatile Organic Compounds for the Assessment of Coffee Authenticity
by Arianna Elefante, Marilena Giglio, Lavinia Mongelli, Adriana Bux, Andrea Zifarelli, Giansergio Menduni, Pietro Patimisco, Andrea Caratti, Cecilia Cagliero, Erica Liberto, Chiara Cordero, Luciano Navarini, Vincenzo Spagnolo and Angelo Sampaolo
Molecules 2025, 30(17), 3487; https://doi.org/10.3390/molecules30173487 (registering DOI) - 25 Aug 2025
Abstract
This study aimed at defining the infrared spectral signatures of volatile organic compounds (VOCs) of relevant interest for coffee bean authentication and quality control. Fourier Transform Infrared Spectroscopy was employed to acquire the mid-infrared absorption spectra of some representative coffee markers, namely Pyridine, [...] Read more.
This study aimed at defining the infrared spectral signatures of volatile organic compounds (VOCs) of relevant interest for coffee bean authentication and quality control. Fourier Transform Infrared Spectroscopy was employed to acquire the mid-infrared absorption spectra of some representative coffee markers, namely Pyridine, 2-Methylpyrazine, 2,5-Dimethylpyrazine, Furfural, 5-Methylfurfural and Furfuryl Alcohol, with high resolution of 0.1 cm−1. Mixtures of these VOCs simulating their amount in coffee seeds were analyzed using multilinear regression. The achieved results demonstrate the potentiality of coffee fingerprinting by VOC’s signature in the absorption spectra for discriminating coffee origin. Full article
Show Figures

Figure 1

16 pages, 3147 KB  
Article
Thermal Modulation of Musalais Wine Characteristics: Volatile Profiles and Chemical Composition at Different Brix Levels
by Buhailiqiemu Abudureheman, Minqiang Guo, Jianlin Zhang, Lin Chen, Qian Li, Tiantian Long, Zhuanzhuan Lv, Junli Huang, Dandan Fang, Luxi Jiang, Xingqian Ye and Haibo Pan
Foods 2025, 14(17), 2956; https://doi.org/10.3390/foods14172956 (registering DOI) - 25 Aug 2025
Abstract
This study investigated the effects of fermentation temperatures (22 °C, 25 °C, 28 °C) and concentrations of grape juice Brix (26 °, 29 °, 32 °) on the physicochemical and aroma profiles of Musalais wine, a traditional fermented alcoholic beverage from Xinjiang, China. [...] Read more.
This study investigated the effects of fermentation temperatures (22 °C, 25 °C, 28 °C) and concentrations of grape juice Brix (26 °, 29 °, 32 °) on the physicochemical and aroma profiles of Musalais wine, a traditional fermented alcoholic beverage from Xinjiang, China. The results indicated that higher fermentation temperatures (28 °C) increased total acidity (TA) and residual sugar content (RSC), whereas lower temperatures (22 °C) resulted in higher pH, phenolic content, and anthocyanin content. Ethanol content reached its peak at 25 °C, particularly in Musalais wines produced from 29 Brix of concentrated grape juice. GC-IMS analysis identified 50 volatile organic compounds (VOCs), with esters (30%), alcohols (22%), and ketones (12%) dominating the aroma profile. Wines fermented at 22 °C exhibited the most complex VOC profiles, characterized by fruity esters (ethyl propanoate) and caramel-like ketones (4-methyl-2-pentanone). In contrast, fermentation at 28 °C produced simpler alcohol-dominated aroma profiles. Multivariate analysis (PCA and PLS-DA) confirmed distinct clustering based on temperature, with 19 key markers (ethyl 2-methylpentanoate, 3-octanone) differentiating the Musalais wines. Correlation analysis revealed strong relationships between ethanol, TA, RSC, and specific VOCs. Hierarchical clustering grouped the wines into two categories: those fermented at 22 °C (fruity and rich in complexity) and those fermented at 25–28 °C (alcoholic and simpler profiles). These findings demonstrate that fermentation temperature significantly impacts Musalais wine quality, with 22 °C being optimal for aroma complexity, while 25 °C provided a balance between ethanol production and antioxidant retention. Brix levels of concentrated grape juice modulated acidity and sweetness. This study offers practical insights for optimizing Musalais wine production through controlled fermentation conditions. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

26 pages, 625 KB  
Article
Statistical Optimization in the Fermentation Stage for Organic Ethanol: A Sustainable Approach
by Eliani Sosa-Gómez, Irenia Gallardo Aguilar, Ana Celia de Armas Mártínez and Guillermo Sosa-Gómez
Processes 2025, 13(9), 2675; https://doi.org/10.3390/pr13092675 (registering DOI) - 22 Aug 2025
Viewed by 114
Abstract
The growing demand for organic products is having a transformative effect on the alcoholic beverage industry. This work investigates the possibility of producing organic ethanol only from sugarcane final molasses as a nutrient vector and Saccharomyces cerevisiae in the absence of inorganic nitrogen [...] Read more.
The growing demand for organic products is having a transformative effect on the alcoholic beverage industry. This work investigates the possibility of producing organic ethanol only from sugarcane final molasses as a nutrient vector and Saccharomyces cerevisiae in the absence of inorganic nitrogen or phosphorus compounds. The Plackett–Bürman design included the pseudo-factors (X4–X6) due to the experimental design requirements. These factors represent the possible influence of uncontrolled variables, such as pH or nutrient interactions. Subsequently, a predictive quadratic model using Box–Behnken design with the real variables (sugar concentration, yeast dose, and incubation time) was developed and validated (R2=0.977) with internal validation; given the lack of replications and the sample size, this value should be interpreted with caution and not as generalizable predictive evidence. Further experiments with replications and cross-validation will be required to confirm its predictive capacity. Through statistical optimization, the maximum cell proliferation of 432×106 cells/mL was achieved under optimal conditions of 8°Brix sugar concentration, 20 g/L dry yeast, and 3 h incubation time. The optimized fermentation process produced 7.8% v/v ethanol with a theoretical fermentation efficiency of 78.52%, an alcohol-to-substrate yield of 62.15%, and a productivity of 1.86 g/L·h, representing significant improvements of 21.9%, 24.6%, 31.0%, and 10.1%, respectively, compared with non-optimized conditions. The fermentation time was reduced from 48 to 42 h while maintaining superior performance. These results demonstrate the technical feasibility of producing organic ethanol using certified organic molasses and no chemical additives. Overall, these findings should be regarded as proof of concept. All experiments were single-run without biological or technical replicates; consequently, the optimization and models are preliminary and require confirmation with replicated experiments and external validation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 490 KB  
Review
A Scoping Review on Male-Mediated Developmental Toxicity
by Lidia Caporossi, Paola Castellano, Enrico Paci and Daniela Pigini
Toxics 2025, 13(9), 707; https://doi.org/10.3390/toxics13090707 - 22 Aug 2025
Viewed by 154
Abstract
Background: Developmental toxicity is defined as adverse effects induced either during pregnancy or as a result of parental exposure. While considerable attention has been devoted to maternal exposure to such chemicals, the role of paternal exposure has often been regarded as less significant. [...] Read more.
Background: Developmental toxicity is defined as adverse effects induced either during pregnancy or as a result of parental exposure. While considerable attention has been devoted to maternal exposure to such chemicals, the role of paternal exposure has often been regarded as less significant. Objective: This study aims to highlight the impact of male-mediated developmental toxicity. Methods: An online search was conducted using PubMed, Scopus, and Google Scholar to identify studies focusing on developmental toxicity in offspring associated with paternal exposure during the preconception period. Results: The scientific literature—ranging from studies on pharmaceutical use to substances of abuse (notably tobacco, alcohol, opioids, and cannabinoids), as well as occupational and environmental exposure to specific compounds (e.g., phthalates, certain organic solvents, pesticides)—indicates that paternal exposure to developmental toxicants can adversely affect offspring health through various biochemical mechanisms. Conclusions: There is substantial experimental evidence of male-mediated developmental toxicity for various chemicals, demonstrating a particular vulnerability of the male germ line to transmissible effects. Several mechanisms have been proposed to explain the biochemical pathways underlying this toxicity. Evidence in humans is more challenging to interpret; however, numerous findings—both concerning substances of abuse and occupational exposures—raise concerns regarding the potential developmental risks to offspring. Full article
Show Figures

Figure 1

22 pages, 2175 KB  
Article
Probiotic Yeast and How to Use Them—Combining Traditions and New Waves in Fermented Beverages
by Adam Staniszewski, Patrycja Staniszewska, Elwira Komoń-Janczara and Monika Kordowska-Wiater
Foods 2025, 14(16), 2921; https://doi.org/10.3390/foods14162921 - 21 Aug 2025
Viewed by 303
Abstract
Potentially probiotic yeasts isolated from foodstuffs can be used as components in functional fermented beverages. To date, there have been no reports on the use of Saccharomyces cerevisiae var. boulardii, Pichia kudriavzevii, Metschnikowia pulcherrima, or Hanseniaspora uvarum isolates in the [...] Read more.
Potentially probiotic yeasts isolated from foodstuffs can be used as components in functional fermented beverages. To date, there have been no reports on the use of Saccharomyces cerevisiae var. boulardii, Pichia kudriavzevii, Metschnikowia pulcherrima, or Hanseniaspora uvarum isolates in the production of a traditional Polish beverage called underbeer (podpiwek). The aim of the study was to determine the usefulness of six isolates of the above-mentioned species as starter cultures for the fermentation of underbeer. First, the important characteristics of the yeasts, like ethanol tolerance and H2S production, were examined. In the next stage, the wort was fermented by the tested yeasts, and cell viability, fermentation vigor, sugar assimilation, and production of metabolites, as well as properties of the beverage (pH, titratable acidity, color, and turbidity), were determined. Saccharomyces yeasts tolerated the addition of ethanol up to 16% (v/v), while Pichia, Metschnikowia, and Hanseniaspora tolerated up to 10% (v/v) ethanol, and all except H. uvarum produced H2S. The yeasts remained viable in the beverages for 1 month at the required level, utilized glucose, fructose and partially complex carbohydrates, and produced ethanol (S. cerevisiae, P. kudriavzevii, and M. pulcherrima) and organic acids such as tartaric, malic, and citric acid. The underbeers became sour and showed varying turbidity and a color corresponding to pale-amber beers. All tested strains produced fermented beverages that were low- or non-alcoholic with different properties. This experiment may be a starting point for research into regional products as probiotic or synbiotic foods; however, further research is required for selection of the best strains for underbeer fermentation. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

51 pages, 4873 KB  
Review
Type 2 Diabetes and the Multifaceted Gut-X Axes
by Hezixian Guo, Liyi Pan, Qiuyi Wu, Linhao Wang, Zongjian Huang, Jie Wang, Li Wang, Xiang Fang, Sashuang Dong, Yanhua Zhu and Zhenlin Liao
Nutrients 2025, 17(16), 2708; https://doi.org/10.3390/nu17162708 - 21 Aug 2025
Viewed by 523
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease characterized by chronic hyperglycemia due to insulin resistance and inadequate insulin secretion. Beyond the classically implicated organs, emerging evidence highlights the gut as a central player in T2D pathophysiology through its interactions with metabolic [...] Read more.
Type 2 diabetes (T2D) is a complex metabolic disease characterized by chronic hyperglycemia due to insulin resistance and inadequate insulin secretion. Beyond the classically implicated organs, emerging evidence highlights the gut as a central player in T2D pathophysiology through its interactions with metabolic organs. The gut hosts trillions of microbes and enteroendocrine cells that influence inflammation, energy homeostasis, and hormone regulation. Disruptions in gut homeostasis (dysbiosis and increased permeability) have been linked to obesity, insulin resistance, and β-cell dysfunction, suggesting multifaceted “Gut-X axes” contribute to T2D development. We aimed to comprehensively review the evidence for gut-mediated crosstalk with the pancreas, endocrine system, liver, and kidneys in T2D. Key molecular mechanisms (incretins, bile acids, short-chain fatty acids, endotoxins, etc.) were examined to construct an integrated model of how gut-derived signals modulate metabolic and inflammatory pathways across organs. We also discuss clinical implications of targeting Gut-X axes and identify knowledge gaps and future research directions. A literature search (2015–2025) was conducted in PubMed, Scopus, and Web of Science, following PRISMA guidelines (Preferred Reporting Items for Systematic Reviews). Over 150 high-impact publications (original research and review articles from Nature, Cell, Gut, Diabetologia, Lancet Diabetes & Endocrinology, etc.) were screened. Data on gut microbiota, enteroendocrine hormones, inflammatory mediators, and organ-specific outcomes in T2D were extracted. The GRADE framework was used informally to prioritize high-quality evidence (e.g., human trials and meta-analyses) in formulating conclusions. T2D involves perturbations in multiple Gut-X axes. This review first outlines gut homeostasis and T2D pathogenesis, then dissects each axis: (1) Gut–Pancreas Axis: how incretin hormones (GLP-1 and GIP) and microbial metabolites affect insulin/glucagon secretion and β-cell health; (2) Gut–Endocrine Axis: enteroendocrine signals (e.g., PYY and ghrelin) and neural pathways that link the gut with appetite regulation, adipose tissue, and systemic metabolism; (3) Gut–Liver Axis: the role of microbiota-modified bile acids (FXR/TGR5 pathways) and bacterial endotoxins in non-alcoholic fatty liver disease (NAFLD) and hepatic insulin resistance; (4) Gut–Kidney Axis: how gut-derived toxins and nutrient handling intersect with diabetic kidney disease and how incretin-based and SGLT2 inhibitor therapies leverage gut–kidney communication. Shared mechanisms (microbial SCFAs improving insulin sensitivity, LPS driving inflammation via TLR4, and aryl hydrocarbon receptor ligands modulating immunity) are synthesized into a unified model. An integrated understanding of Gut-X axes reveals new opportunities for treating and preventing T2D. Modulating the gut microbiome and its metabolites (through diet, pharmaceuticals, or microbiota therapies) can improve glycemic control and ameliorate complications by simultaneously influencing pancreatic islet function, hepatic metabolism, and systemic inflammation. However, translating these insights into clinical practice requires addressing gaps with robust human studies. This review provides a state-of-the-art synthesis for researchers and clinicians, underlining the gut as a nexus for multi-organ metabolic regulation in T2D and a fertile target for next-generation therapies. Full article
(This article belongs to the Special Issue Dietary Regulation of Glucose and Lipid Metabolism in Diabetes)
Show Figures

Figure 1

17 pages, 8767 KB  
Article
Investigation on Precursor Aromas and Volatile Compounds During the Fermentation of Blackened Pear Vinegar
by Shangjing Chen, Yuxiao Wang, Xin Sun, Zhizhen Han, Qiyong Jiang, Lin Gao and Rentang Zhang
Foods 2025, 14(16), 2905; https://doi.org/10.3390/foods14162905 - 21 Aug 2025
Viewed by 156
Abstract
The acetic acid fermentation stage is a key determinant of fruit vinegar’s aroma profile. Therefore, this study employed GC-MS, HPLC, E-nose and E-tongue techniques, in conjunction with multivariate statistical analysis, to investigate the dynamic changes of compounds during the acetic acid fermentation process [...] Read more.
The acetic acid fermentation stage is a key determinant of fruit vinegar’s aroma profile. Therefore, this study employed GC-MS, HPLC, E-nose and E-tongue techniques, in conjunction with multivariate statistical analysis, to investigate the dynamic changes of compounds during the acetic acid fermentation process of blackened pear vinegar (BPV), as well as the transformation of volatile and non-volatile aroma-active compounds. Results revealed accumulation of organic acids and esters alongside declines in alcohols, aldehydes, and ketones. Isoamyl acetate, benzaldehyde, and nonanal (OAV > 1) were identified as key aroma contributors (VIP > 1, p < 0.05). Total organic acids significantly increased from 4.82 ± 0.53 mg/mL to 10.29 ± 2.38 mg/mL. Correlation analysis revealed a negative relationship between amino acids and volatile compounds, and this negative correlation suggests a possible precursor–product relationship between them. These findings provide theoretical support for the enhancement of fruit vinegar flavor, as well as the application of blackened fruits. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

20 pages, 9076 KB  
Article
Effects of Sugar Impregnation Methods on Physicochemical Properties and Flavor Profiles of Prune Preserves Using GC-IMS and Electronic Tongue
by Qingping Du, Rui Yang, Wei Wang, Wei Li, Tongle Sun, Shihao Huang, Xinyao Han and Mingxun Ai
Foods 2025, 14(16), 2852; https://doi.org/10.3390/foods14162852 - 18 Aug 2025
Viewed by 327
Abstract
Thermal impregnation (TI) is a traditional method of sugar infusion, but it has disadvantages such as long processing time and uneven sugar distribution. Therefore, developing sugar impregnation methods to enhance product flavor, nutritional value, and processing efficiency is critical for addressing potential quality [...] Read more.
Thermal impregnation (TI) is a traditional method of sugar infusion, but it has disadvantages such as long processing time and uneven sugar distribution. Therefore, developing sugar impregnation methods to enhance product flavor, nutritional value, and processing efficiency is critical for addressing potential quality loss and efficiency bottlenecks in traditional preserve processing technologies. This study took the TI process widely adopted in Xinjiang over the long term as a reference and systematically compared the effects of vacuum impregnation (VI) and ultrasonic-assisted impregnation (UI) on the flavor characteristics and physicochemical properties of plum preserves. Volatile organic compounds (VOCs) were identified using gas chromatography–ion mobility spectrometry (GC-IMS) coupled with multivariate analysis, while taste attributes were quantified via electronic tongue (E-tongue). Physicochemical parameters, including titratable acidity (TA), browning index (BI), color parameters (L*, a*, b*), total polyphenol content (TPC), total flavonoid content (TFC), and texture profile analysis (TPA), were also evaluated. GC-IMS identified 60 VOCs, predominantly comprising aldehydes (20), alcohols (10), ketones (6), acids (4), esters (3), furans (3), ketols (2), and unidentified compounds (12). The VI-treated samples exhibited distinct aromatic profiles, retaining a higher proportion of key volatile compounds. E-tongue results showed that VI significantly enhanced sourness, umami, and aftertaste complexity compared with UI and TI (p < 0.05). Physicochemical analyses showed that VI maximally preserved bioactive compounds, with a TPC of 1.23 ± 0.07 mg GAE/g and TFC of 17.55 ± 0.81 mg RE/g. Additionally, VI minimized enzymatic browning (BI: 0.37 ± 0.03), maintained color brightness (L*: 31.85 ± 1.56), maintained favorable textural properties (hardness: 187.63 ± 4.04 N), and retained the highest TA content (0.77 ± 0.05%). In contrast, UI and TI led to significant quality degradation, characterized by pronounced browning and texture deterioration: the BI values were 0.61 ± 0.02 (UI) and 0.83 ± 0.03 (TI), and hardness values were 176.53 ± 5.81 N (UI) and 156.25 ± 4.55 N (TI). These findings provide critical references for sugar impregnation techniques and a scientific basis for flavor regulation in prune preserve production. Full article
Show Figures

Figure 1

23 pages, 6240 KB  
Review
Piancatelli–Margarita Oxidation and Its Recent Applications in Organic Synthesis
by Marco Bella
Catalysts 2025, 15(8), 780; https://doi.org/10.3390/catal15080780 - 15 Aug 2025
Viewed by 398
Abstract
Piancatelli–Margarita oxidation is a reaction where primary and secondary alcohols are converted to aldehydes and ketones, respectively. It utilizes TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl), a stable aminoxy radical, as the catalyst and BAIB (bis(acetoxy)iodobenzene), a hypervalent iodine compound, as the stoichiometric oxidant. The reaction proceeds [...] Read more.
Piancatelli–Margarita oxidation is a reaction where primary and secondary alcohols are converted to aldehydes and ketones, respectively. It utilizes TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl), a stable aminoxy radical, as the catalyst and BAIB (bis(acetoxy)iodobenzene), a hypervalent iodine compound, as the stoichiometric oxidant. The reaction proceeds at room temperature, without the need for strong acids, bases, or anhydrous conditions. Mild reaction conditions allow for the chemoselective oxidation of complex and sensitive substrates and the selective oxidation of primary alcohols in the presence of secondary alcohols. The reaction conditions can be controlled to favor the oxidation of primary alcohols to aldehydes or promote the overoxidation of aldehydes to carboxylic acids. This review highlights some recent applications (2020–2025), especially in total synthesis, with special emphasis on large-scale reactions. This review aims to honor the memory of Prof. Piancatelli (1936–2025) and Dr. Roberto Margarita (1970–2016), who developed this reaction. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

19 pages, 5512 KB  
Article
The Effects of Microencapsulation Technology on the Flavor Quality of Zanthoxylum Oil Based on E-Nose, GC–IMS, and GC–MS
by Liangyun Wang, Jia Chen, Xuemei Cai, Dandan Li, Xinxin Zhao, Yu Fu, Lei Huang, Yi Rao, Yuwen Yi, Mingfeng Qiao and Baohe Miao
Molecules 2025, 30(16), 3366; https://doi.org/10.3390/molecules30163366 - 13 Aug 2025
Viewed by 361
Abstract
To investigate the impact of microencapsulation on the volatile organic compounds (VOCs) in Zanthoxylum oil, this study compared unencapsulated Zanthoxylum oil (ZO) with microencapsulated Zanthoxylum oil (MZO) using physicochemical analysis, sensory evaluation, and molecular sensory analysis. Sensory evaluation revealed significant differences in aroma [...] Read more.
To investigate the impact of microencapsulation on the volatile organic compounds (VOCs) in Zanthoxylum oil, this study compared unencapsulated Zanthoxylum oil (ZO) with microencapsulated Zanthoxylum oil (MZO) using physicochemical analysis, sensory evaluation, and molecular sensory analysis. Sensory evaluation revealed significant differences in aroma attributes between ZO and MZO, whereas no notable differences were observed in numbing intensity or overall acceptability. Colorimetric analysis indicated significant distinctions between the two samples. Electronic nose (E-nose) analysis demonstrated a reduction in overall aroma intensity for MZO compared to ZO. Gas chromatography–mass spectrometry (GC–MS) identified 43 VOCs, including 22 compounds present in both samples, accounting for 46.8% of the total. Terpenes represented the predominant class in both ZO (69.7%) and MZO (68.2%). Comprehensive analysis based on odor activity value (OAV) and variable importance in projection (VIP) identified nine volatile compounds as key aroma contributors. Gas chromatography–ion mobility spectrometry (GC–IMS) detected 90 the volatile organic compounds (VOCs), with esters (30.38%) and heterocyclic compounds (10.42%) predominating in ZO, while esters (29.08%) and alcohols (26.12%) were predominant in MZO. Compared to ZO, MZO exhibited increased levels of alcohols (from 12.04% to 26.12%) and terpenes (from 1.39% to 3.53%), but decreased levels of acids (from 5.77% to 2.72%) and aldehydes (from 10.29% to 4.62%). This approach provides a comprehensive assessment of flavor quality before and after microencapsulation, offers a scientific basis for quality control, and facilitates the development and utilization of Zanthoxylum oil resources. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Figure 1

19 pages, 4634 KB  
Article
Optimizing Muscle Quality in Common Carp (Cyprinus carpio L.): Impacts of Body Size on Nutrient Composition, Texture, and Volatile Profile
by Zijie He, Junli Wang, Yun Wei, Xiao Yan, Yuanyou Li, Dizhi Xie and Guoxing Nie
Foods 2025, 14(16), 2794; https://doi.org/10.3390/foods14162794 - 11 Aug 2025
Viewed by 301
Abstract
To investigate the effect of body size on muscle quality of common carp (Cyprinus carpio L.), we systematically tracked the dynamic changes in nutrient content, texture, and volatile organic compounds (VOCs) among small-sized (~100 g), medium-sized (~250 g), and large-sized (~600 g) [...] Read more.
To investigate the effect of body size on muscle quality of common carp (Cyprinus carpio L.), we systematically tracked the dynamic changes in nutrient content, texture, and volatile organic compounds (VOCs) among small-sized (~100 g), medium-sized (~250 g), and large-sized (~600 g) fish (SYRC, MYRC, and HYRC, respectively) over a 30-week feeding trial. The results indicated that the HYRC showed significantly reduced moisture and lipid content, along with increased protein content, hydroxyproline, hardness, and chewiness compared to the SYRC (p < 0.05). The long-chain polyunsaturated fatty acids (LC-PUFAs) and fish lipid quality in the MYRC were significantly lower than those in both the SYRC and HYRC (p < 0.05). The HYRC demonstrated an elevated health-promoting index and a reduced atherogenicity value compared to the SYRC (p < 0.05). The contents of alcohol, ketones, and furans in the HYRC increased by 32.53%, 44.62%, and 144.29%, respectively, compared with those in the SYRC (p < 0.05), including key VOCs in aquatic products such as oct-1-en-3-ol and pent-1-en-3-ol. In conclusion, the SYRC have higher levels of LC-PUFAs and lower hardness; the MYRC have poor levels of LC-PUFAs; and the HYRC have an optimal synergy of nutrition, texture, and VOCs, but the overaccumulation of undesirable VOCs requires mitigation. This provides theoretical references and data support for fish quality optimization, processing, and consumption guidelines. Full article
(This article belongs to the Special Issue Seafood Components and Functional Characteristics)
Show Figures

Figure 1

12 pages, 415 KB  
Article
Changes in Physicochemical Properties and Antioxidant Activities of Persimmon Wine During Fermentation
by So-Won Jang, Hwan Hee Yu, Da-Sol Jung, Jong-Chan Kim, Jae Hoon Lee and Mi Jang
Foods 2025, 14(16), 2763; https://doi.org/10.3390/foods14162763 - 8 Aug 2025
Viewed by 278
Abstract
In this study, persimmons, which are rich in various nutrients and bioactive compounds, were used as the raw material for wine production. Persimmon wine was produced by inoculating with Saccharomyces cerevisiae and fermenting the mixture at 30 °C for seven days. During this [...] Read more.
In this study, persimmons, which are rich in various nutrients and bioactive compounds, were used as the raw material for wine production. Persimmon wine was produced by inoculating with Saccharomyces cerevisiae and fermenting the mixture at 30 °C for seven days. During this process, we analyzed changes in physicochemical properties, organic acids, free sugars, ethanol, methanol, free amino acids, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities. Over the seven-day fermentation period, soluble solids decreased from 16.27 °Brix to 5.57 °Brix, pH declined from 5.93 to 4.90, and total acidity increased from 0.12% to 0.41%. Succinic, lactic, and acetic acids were identified as major organic acids, while glucose and fructose were depleted after six days of fermentation. The ethanol concentration reached 7.93% on day seven, while methanol increased to 0.050%. The free amino acid content decreased as fermentation progressed. The TPC and TFC increased significantly. Antioxidant capacity increased, as observed from DPPH, ABTS, and FRAP assay results. These results suggest that alcohol fermentation of raw persimmons induces significant changes in key quality-related components and enhances antioxidant activity. Overall, the findings provide valuable foundational data supporting the industrial application of persimmon wine. Full article
Show Figures

Figure 1

27 pages, 830 KB  
Review
Influence of Exercise on Oxygen Consumption, Pulmonary Ventilation, and Blood Gas Analyses in Individuals with Chronic Diseases
by Mallikarjuna Korivi, Mohan Krishna Ghanta, Poojith Nuthalapati, Nagabhishek Sirpu Natesh, Jingwei Tang and LVKS Bhaskar
Life 2025, 15(8), 1255; https://doi.org/10.3390/life15081255 - 7 Aug 2025
Viewed by 1540
Abstract
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of [...] Read more.
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of vigorous-intensity physical activity, alongside muscle-strengthening and balance-training exercises at least twice a week. However, nearly one-third of the adult population (31%) is physically inactive, which increases the risk of developing obesity, type 2 diabetes, cardiovascular diseases, hypertension, and psychological issues. Physical activity in the form of aerobic exercise, resistance training, or a combination of both is effective in preventing and managing these metabolic diseases. In this review, we explored the effects of exercise training, especially on respiratory and pulmonary factors, including oxygen consumption, pulmonary ventilation, and blood gas analyses among adults. During exercise, oxygen consumption can increase up to 15-fold (from a resting rate of ~250 mL/min) to meet heightened metabolic demands, enhancing tidal volume and pulmonary efficiency. During exercise, the increased energy demand of skeletal muscle leads to increases in tidal volume and pulmonary function, while blood gases play a key role in maintaining the pH of the blood. In this review, we explored the influence of age, body composition (BMI and obesity), lifestyle factors (smoking and alcohol use), and comorbidities (diabetes, hypertension, neurodegenerative disorders) in the modulation of these physiological responses. We underscored exercise as a potent non-pharmacological intervention for improving cardiopulmonary health and mitigating the progression of metabolic diseases in aging populations. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

13 pages, 3810 KB  
Article
Solar-Driven Selective Benzyl Alcohol Oxidation in Pickering Emulsion Stabilized by CNTs/GCN Hybrids Photocatalyst
by Yunyi Han, Yuwei Hou, Xuezhong Gong, Yu Zhang, Meng Wang, Pekhyo Vasiliy Ivanovich, Meili Guan and Jianguo Tang
Catalysts 2025, 15(8), 753; https://doi.org/10.3390/catal15080753 - 7 Aug 2025
Viewed by 487
Abstract
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl [...] Read more.
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl alcohol oxidation within a Pickering emulsion system. The relationship between emulsion droplet size and solid emulsifier dosage was investigated and optimized. The enhanced photocatalytic function was supported by an improved photocurrent response and reduced charge-transfer resistance, attributed to superior charge separation efficiency. Consequently, the benzyl alcohol conversion efficiency achieved in the Pickering emulsion system (58.9%) was three-fold of that observed in a traditional oil–water non-emulsion system (19.0%). Key active species were identified as photoholes, and an interfacial reaction mechanism was proposed. This work provides a new approach for extending photocatalytic applications in aqueous environments to diverse organic conversion reactions through the construction of multifunctional photocatalysts. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

Back to TopTop