Changes in Physicochemical Properties and Antioxidant Activities of Persimmon Wine During Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Persimmon Wine
2.2. Physicochemical, Microbiological, and Physical Properties
2.3. Organic Acid, Free Sugar, and Ethanol Contents
2.4. Methanol Contents
2.5. Free Amino Acid Contents
2.6. TPC
2.7. TFC
2.8. Antioxidant Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes in Physicochemical Properties of Persimmon Wine During Fermentation
3.2. Changes in Organic Acids, Free Sugars, Ethanol, and Methanol Contents
3.3. Changes in Free Amino Acid Contents
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matheus, J.R.V.; Andrade, C.J.D.; Miyahira, R.F.; Fai, A.E.C. Persimmon (Diospyros kaki L.): Chemical properties, bioactive compounds and potential use in the development of new products—A review. Food Rev. Int. 2022, 38, 384–401. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Q.; An, X.; Chitrakar, B.; Li, J.; Zhao, Z.; Ao, C.; Sun, J. Optimization of mopan persimmon wine fermentation with pectinase and analysis of its mechanism of action. Foods 2023, 12, 1246. [Google Scholar] [CrossRef]
- Nathania, F.; Nurkhoeriyati, T. Drying technologies utilized to preserve persimmon fruits (Diospyros kaki L.): A review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Medan, Indonesia, 2025; Volume 1445, p. 012004. [Google Scholar] [CrossRef]
- Thakur, N.; Sharma, D.P.; Singh, G.; Kumar, P.; Sharma, N. Impact of plant bio-regulators and bio-stimulant application timing on fruit production and physiological characteristics of oriental persimmon (Diospyros kaki L.). J. Plant Nutr. 2025, 48, 2405–2413. [Google Scholar] [CrossRef]
- Daood, H.G.; Biacs, P.; Czinkotai, B.; Hoschke, Á. Chromatographic investigation of carotenoids, sugars and organic acids from Diospyros kaki fruits. Food Chem. 1992, 45, 151–155. [Google Scholar] [CrossRef]
- Yaqub, S.; Farooq, U.; Shafi, A.; Akram, K.; Murtaza, M.A.; Kausar, T.; Siddique, F. Chemistry and functionality of bioactive compounds present in persimmon. J. Chem. 2016, 2016, 3424025. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Kim, H.I.; Whang, K.; Lee, O.S.; Park, N.Y. Effects of pectinase treatment on alcohol fermentation of persimmon. J. Korean Soc. Food Sci. Nutr. 2002, 31, 578–582. [Google Scholar] [CrossRef]
- Lee, H.Y.; Cho, K.M.; Joo, O.S. Kiwi-persimmon wine produced using wild Saccharomyces cerevisiae strains with sugar, acid, and alcohol tolerance. Korean J. Food Preserv. 2023, 30, 52–64. [Google Scholar] [CrossRef]
- Shiferaw Terefe, N.; Augustin, M.A. Fermentation for tailoring the technological and health related functionality of food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 2887–2913. [Google Scholar] [CrossRef]
- Maicas, S. The role of yeasts in fermentation processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Woo, S.M.; Jang, S.Y.; Choi, I.W.; Lee, S.I.; Jeong, Y.J. Characteristics of alcohol fermentation in citrus hydrolysate by different kinds of sugar. Korean J. Food Preserv. 2011, 18, 773–778. [Google Scholar] [CrossRef]
- Yan, Y.; Zou, M.; Tang, C.; Ao, H.; He, L.; Qiu, S.; Li, C. The insights into sour flavor and organic acids in alcoholic beverages. Food Chem. 2024, 460, 140676. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Y.; Liu, Y.; Liu, S.; Yang, X.; Wang, X. Process optimization for production of persimmon wine with lower methanol. Foods 2024, 13, 748. [Google Scholar] [CrossRef]
- Pressman, P.; Clemens, R.; Sahu, S.; Hayes, A.W. A review of methanol poisoning: A crisis beyond ocular toxicology. Cutan. Ocul. Toxicol. 2020, 39, 173–179. [Google Scholar] [CrossRef]
- Miljić, U.; Puškaš, V.; Vučurović, V. Investigation of technological approaches for reduction of methanol formation in plum wines. J. Inst. Brew. 2016, 122, 635–643. [Google Scholar] [CrossRef]
- Shen, J.; Huang, W.; You, Y.; Zhan, J. Controlling strategies of methanol generation in fermented fruit wine: Pathways, advances, and applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70048. [Google Scholar] [CrossRef]
- Klein, H.; Leubolt, R. Ion-exchange high-performance liquid chromatography in the brewing industry. J. Chromatogr. A 1993, 640, 259–270. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, S.W.; Shim, Y.S.; Lee, H.S.; Lee, Y.H.; Kim, J.C.; Namgoong, B.; Kim, J.H.; Kim, J.Y.; Son, H.J.; et al. Development of Alcohol Analysis Method Using GC-FID and MSD. In Final Report for “Supporting SMEs Through Food Standards Development and Certification”; Registration No: TRKO201600001120; Korea Food Research Institute. Ministry of Science, ICT and Future Planning: Wanju-gun, Republic of Korea, 2016; p. 20. [Google Scholar]
- Dai, W.; Gu, S.; Xu, M.; Wang, W.; Yao, H.; Zhou, X.; Ding, Y. The effect of tea polyphenols on biogenic amines and free amino acids in bighead carp (Aristichthys nobilis) fillets during frozen storage. LWT 2021, 150, 111933. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J. Appl. Phycol. 2006, 18, 445–450. [Google Scholar] [CrossRef]
- Ochieng, B.O.; Anyango, J.O.; Nduko, J.M.; Cheseto, X.; Mudalungu, C.M.; Khamis, F.M.; Ghemoh, C.J.; Egonyu, P.J.; Subramanian, S.; Nakimbugwe, D.; et al. Dynamics in nutrients, sterols and total flavonoid content during processing of the edible long-horned grasshopper (Ruspolia differens Serville) for food. Food Chem. 2022, 383, 132397. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L. Automatic method for determination of total antioxidant capacity using 2, 2-diphenyl-1-picrylhydrazyl assay. Anal. Chim. Acta 2006, 558, 310–318. [Google Scholar] [CrossRef]
- Le Grandois, J.; Guffond, D.; Hamon, E.; Marchioni, E.; Werner, D. Combined microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals synergetic and antagonist effects of their lipophilic antioxidative components. Food Chem. 2017, 223, 62–71. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Kwon, S.J.; Choi, J.S.; Yeo, S.H.; Park, H.D. Fermentation characteristics of persimmon wine by the mixed culture of Pichia anomala JK04 and Saccharomyces cerevisiae Fermivin cells. Korean J. Food Preserv. 2015, 22, 768–777. [Google Scholar] [CrossRef]
- Walker, G.M.; Stewart, G.G. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Han, E.H.; Lee, T.S.; Noh, B.S.; Lee, D.S. Quality characteristics in mash of Takju prepared by using different Nuruk during fermentation. Korean J. Food Sci. Technol. 1997, 29, 555–562. [Google Scholar]
- Kim, Y.S.; Yong, J.E.; Kang, S.T. Quality characteristics of beer produced using Coix lacryma-jobi bran extract. J. East Asian Soc. Diet. Life 2023, 33, 1–9. [Google Scholar] [CrossRef]
- Park, J.S.; Kang, S.T. Quality characteristics of beer with pine bark extract. Food Eng. Prog. 2020, 24, 38–44. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.J.; Hong, K.W.; Kwon, Y.A.; Park, J.C.; Kim, W.J. Characterization of fermentation kinetics of beer made of Korean 6 row-barley. Food Eng. Prog. 2013, 17, 189–197. [Google Scholar] [CrossRef]
- Kovačević, I.; Orić, M.; Tolić, I.H.; Nyarko, E.K. Modelling the fermentation process in winemaking using temperature and specific gravity. In Proceedings of the 34th Central European Conference on Information and Intelligent Systems (CECIIS), Dubrovnik, Croatia, 20–22 September 2023; pp. 347–352. Available online: https://www.proquest.com/conference-papers-proceedings/modelling-fermentation-process-winemaking-using/docview/2876106595/se-2?accountid=29946 (accessed on 27 August 2024).
- Im, C.Y.; Jeong, S.T.; Choi, H.S.; Choi, J.H.; Yeo, S.H.; Kang, W.W. Characteristics of Gammakgeolli added with processed forms of persimmon. Korean J. Food Preserv. 2012, 19, 159–166. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.C. A comparative analysis for main components change during natural fermentation of persimmon vinegar. J. Korean Soc. Food Sci. Nutr. 2009, 38, 372–376. [Google Scholar] [CrossRef]
- D’Amore, T.; Russell, I.; Stewart, G.G. Sugar utilization by yeast during fermentation. J. Ind. Microbiol. 1989, 4, 315–323. [Google Scholar] [CrossRef]
- Bae, S.M.; Park, K.J.; Kim, J.M.; Shin, D.J.; Hwang, Y.I.; Lee, S.C. Preparation and characterization of sweet persimmon wine. Appl. Biol. Chem. 2002, 45, 66–70. [Google Scholar]
- Dorokhov, Y.L.; Shindyapina, A.V.; Sheshukova, E.V.; Komarova, T.V. Metabolic methanol: Molecular pathways and physiological roles. Physiol. Rev. 2015, 95, 603–644. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS). Korean Food Code; Ministry of Food and Drug Safety: Cheongju-si, Republic of Korea, 2024; Available online: https://www.foodsafetykorea.go.kr/foodcode/ (accessed on 14 November 2024).
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Dijon, France, 2021. [Google Scholar]
- Lee, S.W.; Lee, O.S.; Jang, S.Y.; Jeong, Y.J.; Kwon, J.H. Monitoring of alcohol fermentation condition for “Cheongdobansi” astringent persimmon (Diospyros kaki T.). Korean J. Food Preserv. 2006, 13, 490–494. [Google Scholar]
- Johnston, D.B.; Stoklosa, R.J. Amino acid uptake by Saccharomyces cerevisiae during ethanol production. Cereal Chem. 2024, 101, 64–72. [Google Scholar] [CrossRef]
- Thomas, K.C.; Ingledew, W.M. Fuel alcohol production: Effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes. Appl. Environ. Microbiol. 1990, 56, 2046–2050. [Google Scholar] [CrossRef]
- Joo, O.S.; Kang, S.T.; Jeong, C.H.; Lim, J.W.; Park, Y.G.; Cho, K.M. Manufacturing of the enhances antioxidative wine using a ripe daebong persimmon (Dispyros kaki L.). J. Appl. Biol. Chem. 2011, 54, 126–134. [Google Scholar] [CrossRef]
- Aparna, P.; Tiwari, A.K.; Srinivas, P.V.; Ali, A.Z.; Anuradha, V.; Rao, J.M. Dolichandroside A, a new alpha-glucosidase inhibitor and DPPH free-radical scavenger from Dolichandrone falcata seem. Phytother. Res. 2009, 23, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.H.; Chae, K.S.; Son, R.H.; Jung, J.H. Antioxidant activity and fermentation characteristics of blueberry wine using traditional yeast. J. Korean Soc. Food Sci. Nutr. 2015, 44, 840–846. [Google Scholar] [CrossRef]
- Bahari, E.A.; Zaaba, N.E.; Haron, N.; Dasiman, R.; Amom, Z. Antioxidant activity characterization, phytochemical screening, and proximate analysis of Cermela Hutan (Phyllanthus gomphocarpus Hook. F) roots and leaves. Med. Sci. Monit. Basic Res. 2014, 20, 170–175. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Xiang, J.; Wang, C.; Johnson, J.B.; Beta, T. Diverse polyphenol components contribute to antioxidant activity and hypoglycemic potential of mulberry varieties. LWT 2023, 173, 114308. [Google Scholar] [CrossRef]
- Zou, B.; Wu, J.; Yu, Y.; Xiao, G.; Xu, Y. Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Food Sci. Biotechnol. 2017, 26, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Ubeda, C.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT-Food Sci. Technol. 2011, 44, 1591–1596. [Google Scholar] [CrossRef]
Fermentation Time (Day) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
°Brix (%) | 16.27 ± 0.06 (1)a(2) | 14.90 ± 0.00 b | 8.80 ± 0.00 c | 6.77 ± 0.06 d | 6.10 ± 0.00 e | 5.73 ± 0.06 f | 5.70 ± 0.00 f | 5.57 ± 0.06 g |
pH | 5.93 ± 0.01 a | 5.70 ± 0.04 b | 4.98 ± 0.01 c | 4.94 ± 0.01 d | 4.86 ± 0.01 e | 4.92 ± 0.01 ef | 4.91 ± 0.00 f | 4.90 ± 0.00 g |
Total acidity (%) | 0.12 ± 0.01 c | 0.11 ± 0.00 c | 0.40 ± 0.01 a | 0.36 ± 0.01 b | 0.41 ± 0.01 a | 0.35 ± 0.01 b | 0.35 ± 0.03 b | 0.41 ± 0.03 a |
Yeast cell counts (log CFU/mL) | 6.63 ± 0.22 e | 7.43 ± 0.18 c | 8.14 ± 0.06 a | 7.75 ± 0.07 b | 7.39 ± 0.12 c | 7.13 ± 0.04 d | 7.13 ± 0.05 d | 7.12 ± 0.03 d |
Solid (%) | 16.68 ± 0.08 a | 13.56 ± 0.01 b | 5.66 ± 0.03 c | 3.13 ± 0.06 d | 2.24 ± 0.02 e | 1.84 ± 0.03 g | 1.91 ± 0.01 g | 2.05 ± 0.09 f |
Specific gravity | 1.118 ± 0.019 a | 1.053 ± 0.003 b | 1.018 ± 0.014 c | 0.988 ± 0.013 c | 0.997 ± 0.018 c | 1.008 ± 0.015 c | 0.992 ± 0.054 c | 1.005 ± 0.029 c |
Fermentation Time (Day) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ingredient (1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Organic acid (mg/mL) | OA | 0.03 ± 0.00 (2) | nd | nd | nd | nd | nd | nd | nd |
CA | 0.59 ± 0.00 | 0.54 ± 0.02 | nd | nd | nd | nd | nd | nd | |
SA | 1.05 ± 0.05 c(3) | 1.13 ± 0.03 bc | 0.99 ± 0.01 c | 1.55 ± 0.45 a | 1.28 ± 0.00 abc | 1.49 ± 0.21 a | 1.43 ± 0.01 ab | 1.29 ± 0.05 abc | |
LA | nd (4) | 1.07 ± 0.01 c | 2.40 ± 0.01 b | 2.70 ± 0.23 a | 2.60 ± 0.01 a | 2.61 ± 0.00 a | 2.60 ± 0.00 a | 2.75 ± 0.01 a | |
FA | 0.12 ± 0.00 a | 0.12 ± 0.00 a | 0.08 ± 0.00 b | 0.08 ± 0.00 c | 0.07 ± 0.00 d | 0.07 ± 0.00 e | 0.06 ± 0.00 fg | 0.06 ± 0.00 g | |
AcOH | nd | 0.53 ± 0.00 c | 1.05 ± 0.17 b | 1.24 ± 0.19 b | 1.17 ± 0.18 b | 1.09 ± 0.01 b | 1.10 ± 0.01 b | 1.58 ± 0.06 a | |
Total | 1.76 ± 0.05 a | 3.39 ± 0.05 b | 4.52 ± 0.18 c | 5.57 ± 0.77 d | 5.12 ± 0.19 d | 5.26 ± 0.21 d | 5.19 ± 0.02 d | 5.67 ± 0.06 d | |
Free sugar (mg/mL) | Glu | 66.06 ± 0.47 a | 58.93 ± 0.08 b | 15.64 ± 0.01 c | 6.24 ± 0.01 d | nd | nd | nd | nd |
Fru | 84.27 ± 0.36 a | 80.37 ± 0.05 b | 32.14 ± 0.06 c | 11.67 ± 0.00 d | 2.37 ± 0.10 e | 1.16 ± 0.01 f | nd | nd | |
Total | 150.33 ± 0.84 a | 139.24 ± 0.13 b | 47.78 ± 0.05 c | 17.91 ± 0.01 d | 2.37 ± 0.10 e | 1.16 ± 0.01 f | nd | nd | |
Ethanol (%, v/v) | nd | 0.65 ± 0.01 g | 5.81 ± 0.00 f | 7.20 ± 0.03 e | 8.16 ± 0.03 c | 8.26 ± 0.04 b | 8.35 ± 0.03 a | 7.93 ± 0.00 d | |
Methanol (%, v/v) | 0.046 ± 0.00 c | 0.039 ± 0.00 e | 0.049 ± d | 0.049 ± 0.00 bc | 0.042 ± 0.00 d | 0.051 ± 0.00 a | 0.051 ± 0.00 bc | 0.050 ± 0.00 bc |
Fermentation Time (Day) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ingredient (1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Free amino acid (μg/mL) | His | 33.82 ± 4.71 (2) | 12.85 ± 18.17 | nd | nd | nd | nd | nd | nd |
Arg | 142.34 ± 38.65 | 68.07 ± 2.88 | nd | nd | nd | nd | nd | nd | |
Thr | 94.71 ± 30.82 | 60.40 ± 1.39 | nd | nd | nd | nd | nd | nd | |
Pro | 254.76 ± 92.39 a(3) | 171.72 ± 84.23 b | 63.92 ± 32.97 b | 92.41 ± 1.68 b | 86.37 ± 17.23 b | 74.24 ± 12.62 c | 46.85 ± 19.90 c | 62.97 ± 46.85 c | |
Ile | 13.21 ± 7.97 | 3.33 ± 4.71 | nd | nd | nd | nd | nd | nd | |
Leu | 13.67 ± 3.83 | nd (4) | nd | nd | nd | nd | nd | nd | |
Phe | 10.93 ± 4.16 | 10.04 ± 0.58 | nd | nd | nd | nd | nd | nd | |
Total | 563.43 ± 182.53 a | 326.40 ± 60.44 b | 63.92 ± 32.97 c | 92.41 ± 1.68 c | 86.37 ± 17.23 c | 74.24 ± 12.62 c | 46.85 ± 19.90 c | 62.97 ± 46.85 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.-W.; Yu, H.H.; Jung, D.-S.; Kim, J.-C.; Lee, J.H.; Jang, M. Changes in Physicochemical Properties and Antioxidant Activities of Persimmon Wine During Fermentation. Foods 2025, 14, 2763. https://doi.org/10.3390/foods14162763
Jang S-W, Yu HH, Jung D-S, Kim J-C, Lee JH, Jang M. Changes in Physicochemical Properties and Antioxidant Activities of Persimmon Wine During Fermentation. Foods. 2025; 14(16):2763. https://doi.org/10.3390/foods14162763
Chicago/Turabian StyleJang, So-Won, Hwan Hee Yu, Da-Sol Jung, Jong-Chan Kim, Jae Hoon Lee, and Mi Jang. 2025. "Changes in Physicochemical Properties and Antioxidant Activities of Persimmon Wine During Fermentation" Foods 14, no. 16: 2763. https://doi.org/10.3390/foods14162763
APA StyleJang, S.-W., Yu, H. H., Jung, D.-S., Kim, J.-C., Lee, J. H., & Jang, M. (2025). Changes in Physicochemical Properties and Antioxidant Activities of Persimmon Wine During Fermentation. Foods, 14(16), 2763. https://doi.org/10.3390/foods14162763