Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Keywords = orbital maneuvering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2361 KiB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

17 pages, 3393 KiB  
Article
Research on Distributed Collaborative Task Planning and Countermeasure Strategies for Satellites Based on Game Theory Driven Approach
by Huayu Gao, Junqi Wang, Xusheng Xu, Qiufan Yuan, Pei Wang and Daming Zhou
Remote Sens. 2025, 17(15), 2640; https://doi.org/10.3390/rs17152640 - 30 Jul 2025
Viewed by 247
Abstract
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge [...] Read more.
With the rapid advancement of space technology, satellites are playing an increasingly vital role in fields such as Earth observation, communication and navigation, space exploration, and military applications. Efficiently deploying satellite missions under multi-objective, multi-constraint, and dynamic environments has become a critical challenge in the current aerospace domain. This paper integrates the concepts of game theory and proposes a distributed collaborative task model suitable for on-orbit satellite mission planning. A two-player impulsive maneuver game model is constructed using differential game theory. Based on the ideas of Nash equilibrium and distributed collaboration, multi-agent technology is applied to the distributed collaborative task planning, achieving collaborative allocation and countermeasure strategies for multi-objective and multi-satellite scenarios. Experimental results demonstrate that the method proposed in this paper exhibits good adaptability and robustness in multiple impulse scheduling, maneuver strategy iteration, and heterogeneous resource utilization, providing a feasible technical approach for mission planning and game confrontation in satellite clusters. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

22 pages, 3128 KiB  
Article
Initial Values Determination of Thrust Parameters for Continuously Low-Thrust Maneuvering Spacecraft
by Wen Guo, Xuefeng Tao, Min Hu and Wen Xue
Appl. Sci. 2025, 15(14), 8064; https://doi.org/10.3390/app15148064 - 20 Jul 2025
Viewed by 259
Abstract
Continuous low thrust is widely used in orbit transfer maneuvers. If the unknown maneuvers are not correctly compensated, the orbiting accuracy will be seriously affected. We propose a rapid method for pre-identifying thrust acceleration based on single-arc orbit determination in order to determine [...] Read more.
Continuous low thrust is widely used in orbit transfer maneuvers. If the unknown maneuvers are not correctly compensated, the orbiting accuracy will be seriously affected. We propose a rapid method for pre-identifying thrust acceleration based on single-arc orbit determination in order to determine the orbit of non-cooperative continuous low-thrust maneuvering spacecraft. The single-arc orbit determination results of two ground-based radar observations with a certain time interval are used to inversely determine the direction and magnitude of acceleration of the spacecraft under continuous thrust based on their relationship with satellite orbit parameters. The solution error is relatively small when using this method, even over a short period of time when data are sparse. The results can then be applied to the orbital adjustment of a satellite. The results show that when the satellite climbs with maximum tangential acceleration, the interval between the two radar observations is greater than 7 h, and the proposed method can rapidly pre-identify tangential thrust acceleration with a solution error of less than 5%. When the satellite adjusts the orbital plane with the maximum normal acceleration, the average relative measurement error of the normal acceleration is about 20% when the time interval between two observations is 24 h. The longer the observation interval and the greater the thrust acceleration, the smaller the relative error. The calculation results can be used as the initial value for precision orbit determination of continuous low-thrust maneuvering spacecraft. Full article
Show Figures

Figure 1

23 pages, 3056 KiB  
Article
Methodology for Evaluating Collision Avoidance Maneuvers Using Aerodynamic Control
by Desiree González Rodríguez, Pedro Orgeira-Crespo, Jose M. Nuñez-Ortuño and Fernando Aguado-Agelet
Remote Sens. 2025, 17(14), 2437; https://doi.org/10.3390/rs17142437 - 14 Jul 2025
Viewed by 202
Abstract
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and [...] Read more.
The increasing congestion of low Earth orbit (LEO) has raised the need for efficient collision avoidance strategies, especially for CubeSats without propulsion systems. This study proposes a methodology for evaluating passive collision avoidance maneuvers using aerodynamic control via a satellite’s Attitude Determination and Control System (ADCS). By adjusting orientation, the satellite modifies its exposed surface area, altering atmospheric drag and lift forces to shift its orbit. This new approach integrates atmospheric modeling (NRLMSISE-00), aerodynamic coefficient estimation using the ADBSat panel method, and orbital simulations in Systems Tool Kit (STK). The LUME-1 CubeSat mission is used as a reference case, with simulations at three altitudes (500, 460, and 420 km). Results show that attitude-induced drag modulation can generate significant orbital displacements—measured by Horizontal and Vertical Distance Differences (HDD and VDD)—sufficient to reduce collision risk. Compared to constant-drag models, the panel method offers more accurate, orientation-dependent predictions. While lift forces are minor, their inclusion enhances modeling fidelity. This methodology supports the development of low-resource, autonomous collision avoidance systems for future CubeSat missions, particularly in remote sensing applications where orbital precision is essential. Full article
(This article belongs to the Special Issue Advances in CubeSat Missions and Applications in Remote Sensing)
Show Figures

Figure 1

21 pages, 29238 KiB  
Article
Distributed Impulsive Multi-Spacecraft Approach Trajectory Optimization Based on Cooperative Game Negotiation
by Shuhui Fan, Xiang Zhang and Wenhe Liao
Aerospace 2025, 12(7), 628; https://doi.org/10.3390/aerospace12070628 - 12 Jul 2025
Viewed by 238
Abstract
A cooperative game negotiation strategy considering multiple constraints is proposed for distributed impulsive multi-spacecraft approach missions in the presence of defending spacecraft. It is a dual-stage decision-making method that includes offline trajectory planning and online distributed negotiation. In the trajectory planning stage, a [...] Read more.
A cooperative game negotiation strategy considering multiple constraints is proposed for distributed impulsive multi-spacecraft approach missions in the presence of defending spacecraft. It is a dual-stage decision-making method that includes offline trajectory planning and online distributed negotiation. In the trajectory planning stage, a relative orbital dynamics model is first established based on the Clohessy–Wiltshire (CW) equations, and the state transition equations for impulsive maneuvers are derived. Subsequently, a multi-objective optimization model is formulated based on the NSGA-II algorithm, utilizing a constraint dominance principle (CDP) to address various constraints and generate Pareto front solutions for each spacecraft. In the distributed negotiation stage, the negotiation strategy among spacecraft is modeled as a cooperative game. A potential function is constructed to further analyze the existence and global convergence of Nash equilibrium. Additionally, a simulated annealing negotiation strategy is developed to iteratively select the optimal comprehensive approach strategy from the Pareto fronts. Simulation results demonstrate that the proposed method effectively optimizes approach trajectories for multi-spacecraft under complex constraints. By leveraging inter-satellite iterative negotiation, the method converges to a Nash equilibrium. Additionally, the simulated annealing negotiation strategy enhances global search performance, avoiding entrapment in local optima. Finally, the effectiveness and robustness of the dual-stage decision-making method were further demonstrated through Monte Carlo simulations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

13 pages, 3096 KiB  
Article
Towards Accountability: A Primer on the Space Debris Problem and an Overview of the Legal Issues Surrounding It
by William Schonberg
Aerospace 2025, 12(7), 609; https://doi.org/10.3390/aerospace12070609 - 6 Jul 2025
Viewed by 511
Abstract
Since 1957, the near-Earth population of trackable space objects has grown in number to over 36,000. Of these 36,000+ trackable objects now in low Earth orbit, just a few thousand are working spacecraft. The rest are Earth-orbiting objects which are no longer operational [...] Read more.
Since 1957, the near-Earth population of trackable space objects has grown in number to over 36,000. Of these 36,000+ trackable objects now in low Earth orbit, just a few thousand are working spacecraft. The rest are Earth-orbiting objects which are no longer operational and are considered to be space junk. Because this junk can no longer receive maneuvering commands from its Earth-based owners, the survivability of other spacecraft traveling through or operating in Earth orbit can be jeopardized by the impacts of any number of pieces of this space junk, whose origins can usually be traced back to defunct satellites. As a result, a major design parameter for Earth-orbiting spacecraft is the possibility of such high-speed impacts and the damage they can cause. Furthermore, several private companies are now launching several thousand spacecraft into Earth orbit, many of which are satellites built for communication purposes. Other satellites have been launched to expand the reach of the World Wide Web and to provide better tools for disaster management. Two questions quickly become evident, namely, what is the beneficial purpose of these large satellite constellations, and what are some of the deleterious consequences of their proliferation? Numerous topics related to space debris will be discussed in this paper, including issues in space law that concern the growing problem of orbital debris. In the end, several areas of concern will be noted that are vital to the continuing presence of humans in near-Earth space and must be addressed as the near-Earth orbital environment becomes more congested and space traffic management becomes more difficult. Full article
(This article belongs to the Special Issue Development of Novel Orbital Debris Protection Systems)
Show Figures

Figure 1

28 pages, 3444 KiB  
Review
A Review on Liquid Pulsed Laser Propulsion
by Sai Li, Baosheng Du, Qianqian Cui, Jifei Ye, Haichao Cui, Heyan Gao, Ying Wang, Yongzan Zheng and Jianhui Han
Aerospace 2025, 12(7), 604; https://doi.org/10.3390/aerospace12070604 - 2 Jul 2025
Viewed by 517
Abstract
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and [...] Read more.
Laser propulsion is a new conceptual technology that drives spacecraft and possesses advantages such as high specific impulse, large payload ratio, and low launch cost. It has potential applications in diverse areas, such as space debris mitigation and removal, microsatellite attitude control, and orbital maneuvering. Liquid pulse laser propulsion has notable advantages among the various laser propulsion systems. We review the concept and the theory of liquid laser propulsion. Then, we categorize the current state of research based on three types of propellants—non-energetic liquids, energetic liquids, and liquid metals—and provide an analysis of the propulsion characteristics arising from the laser ablation of liquids such as water, glycidyl azide polymer (GAP), hydroxylammonium nitrate (HAN), and ammonium dinitramide (ADN). We also discuss future research directions and challenges of pulsed liquid laser propulsion. Although experiments have yielded encouraging outcomes due to the distinctive properties of liquid propellants, continued investigation is essential to ensure that this technology performs reliably in actual aerospace applications. Consistent results under both spatial and ground conditions remain a key research content for fully realizing its potential. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology (2nd Edition))
Show Figures

Figure 1

26 pages, 4569 KiB  
Article
Orbit Determination for Continuously Maneuvering Starlink Satellites Based on an Unscented Batch Filtering Method
by Anqi Lang and Yu Jiang
Sensors 2025, 25(13), 4079; https://doi.org/10.3390/s25134079 - 30 Jun 2025
Viewed by 436
Abstract
Orbit determination for non-cooperative low Earth orbit (LEO) objects undergoing continuous low-thrust maneuvers remains a significant challenge, particularly for large satellite constellations like Starlink. This paper presents a method that integrates the unscented transformation into a batch filtering framework with an optimized rho-minimum [...] Read more.
Orbit determination for non-cooperative low Earth orbit (LEO) objects undergoing continuous low-thrust maneuvers remains a significant challenge, particularly for large satellite constellations like Starlink. This paper presents a method that integrates the unscented transformation into a batch filtering framework with an optimized rho-minimum sigma points sampling strategy. The proposed approach uses a reduced dynamics model that considers Earth’s non-spherical gravity and models the combined effects of low-thrust and atmospheric drag as an equivalent along-track acceleration. Numerical simulations under different measurement noise levels, initial state uncertainties, and across multiple satellites confirm the method’s reliable convergence and favorable accuracy, even in the absence of prior knowledge of the along-track acceleration. The method consistently converges within 10 iterations and achieves 24 h position predictions with root mean square errors of less than 3 km under realistic noise conditions. Additional validation using a higher-fidelity model that explicitly accounts for atmospheric drag demonstrates improved accuracy and robustness. The proposed method can provide accurate orbit knowledge for space situational awareness associated with continuously maneuvering Starlink satellites. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

28 pages, 7488 KiB  
Article
Modeling and Analysis of Staged Constellation Deployment from a Single-Unit System
by Daniel Cumbo and Marc Anthony Azzopardi
Aerospace 2025, 12(7), 586; https://doi.org/10.3390/aerospace12070586 - 29 Jun 2025
Viewed by 239
Abstract
A novel satellite architecture and deployment method is proposed to reduce the logistical cost and complexity of launching and dispersing satellite constellations. The architecture consists of a primary satellite that separates into multiple smaller units, which are subsequently dispersed using differential drag. An [...] Read more.
A novel satellite architecture and deployment method is proposed to reduce the logistical cost and complexity of launching and dispersing satellite constellations. The architecture consists of a primary satellite that separates into multiple smaller units, which are subsequently dispersed using differential drag. An algorithm is developed to determine the required disengagement velocities and optimal timing for separation maneuvers. Two case studies with orbital simulations demonstrate the feasibility of this approach for constellation deployment and phasing. The results indicate that while mission-specific factors influence deployment dynamics, informed selection of the disengagement velocities is crucial for minimizing phase times and mitigating potential delays. The findings confirm the feasibility of the proposed architecture and dispersal method, offering a cost-effective alternative to traditional deployment strategies for future satellite constellations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 7065 KiB  
Article
Center of Mass Auto-Location in Space
by Lucas McLeland, Brian Erickson, Brendan Ruchlin, Eryn Daman, James Mejia, Benjamin Ho, Joshua Lewis, Bryan Mann, Connor Paw, James Ross, Christopher Reis, Scott Walter, Stefanie Coward, Thomas Post, Andrew Freeborn and Timothy Sands
Technologies 2025, 13(6), 246; https://doi.org/10.3390/technologies13060246 - 12 Jun 2025
Viewed by 402
Abstract
Maintaining a spacecraft’s center of mass at the origin of a body-fixed coordinate system is often key to precision trajectory tracking. Typically, the inertia matrix is estimated and verified with preliminary ground testing. This article presents groundbreaking preliminary results and significant findings from [...] Read more.
Maintaining a spacecraft’s center of mass at the origin of a body-fixed coordinate system is often key to precision trajectory tracking. Typically, the inertia matrix is estimated and verified with preliminary ground testing. This article presents groundbreaking preliminary results and significant findings from on-orbit space experiments validating recently proposed methods as part of a larger study over multiple years. Time-varying estimates of inertia moments and products are used to reveal time-varying estimates of the location of spacecraft center of mass using geosynchronous orbiting test satellites proposing a novel two-norm optimal projection learning method. Using the parallel axis theorem, the location of the mass center is parameterized using the cross products of inertia, and that information is extracted from spaceflight maneuver data validating modeling and simulation. Mass inertia properties are discerned, and the mass center is experimentally revealed to be over thirty centimeters away from the assumed locations in two of the three axes. Rotation about one axis is found to be very well balanced, with the center of gravity lying on that axis. Two-to-three orders of magnitude corrections to inertia identification are experimentally demonstrated. Combined-axis three-dimensional maneuvers are found to obscure identification compared with single-axis maneuvering as predicted by the sequel analytic study. Mass center location migrates 36–95% and subsequent validating experiments duplicate the results to within 0.1%. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

19 pages, 3216 KiB  
Article
Orbital Behavior Intention Recognition for Space Non-Cooperative Targets Under Multiple Constraints
by Yuwen Chen, Xiang Zhang, Wenhe Liao, Guoning Wei and Shuhui Fan
Aerospace 2025, 12(6), 520; https://doi.org/10.3390/aerospace12060520 - 9 Jun 2025
Viewed by 767
Abstract
To address the issue of misclassification and diminished accuracy that is prevalent in existing intent recognition models for non-cooperative spacecraft due to the omission of environmental influences, this paper presents a novel recognition framework leveraging a hybrid neural network subject to multiple constraints. [...] Read more.
To address the issue of misclassification and diminished accuracy that is prevalent in existing intent recognition models for non-cooperative spacecraft due to the omission of environmental influences, this paper presents a novel recognition framework leveraging a hybrid neural network subject to multiple constraints. The relative orbital motion of the targets is characterized and categorized through the use of Clohessy–Wiltshire equations, forming the foundation of a constrained intention dataset employed for training and evaluation. Furthermore, the method incorporates a composite architecture combining a convolutional neural network (CNN), long short-term memory (LSTM) unit, and self-attention (SA) mechanism to enhance recognition performance. The experimental results demonstrate that the integrated CNN-LSTM-SA model attains a recognition accuracy of 98.6%, significantly surpassing traditional methods and neural network models. Additionally, it demonstrates high efficiency, indicating significant promise for practical applications in avoiding spacecraft collisions and performing orbital maneuvers. Full article
(This article belongs to the Special Issue Asteroid Impact Avoidance)
Show Figures

Figure 1

28 pages, 33753 KiB  
Article
Framework for the Multi-Objective Design Optimization of Aerocapture Missions
by Segundo Urraza Atue and Paul Bruce
Aerospace 2025, 12(5), 387; https://doi.org/10.3390/aerospace12050387 - 29 Apr 2025
Viewed by 405
Abstract
Developing spacecraft for efficient aerocapture missions demands managing extreme aerothermal environments, precise controls, and atmospheric uncertainties. Successful designs must integrate vehicle airframe considerations with trajectory planning, adhering to launcher dimension constraints and ensuring robustness against atmospheric and insertion uncertainties. To advance robust multi-objective [...] Read more.
Developing spacecraft for efficient aerocapture missions demands managing extreme aerothermal environments, precise controls, and atmospheric uncertainties. Successful designs must integrate vehicle airframe considerations with trajectory planning, adhering to launcher dimension constraints and ensuring robustness against atmospheric and insertion uncertainties. To advance robust multi-objective optimization in this field, a new framework is presented, designed to rapidly analyze and optimize non-thrusting, fixed angle-of-attack aerocapture-capable spacecraft and their trajectories. The framework employs a three-degree-of-freedom atmospheric flight dynamics model incorporating planet-specific characteristics. Aerothermal effects are approximated using established Sutton–Graves, Tauber–Sutton, and Stefan–Boltzmann relations. The framework computes the resulting post-atmospheric pass orbit using an orbital element determination algorithm to estimate fuel requirements for orbital corrective maneuvers. A novel algorithm that consolidates multiple objective functions into a unified cost function is presented and demonstrated to achieve superior optima with computational efficiency compared to traditional multi-objective optimization approaches. Numerical examples demonstrate the methodology’s effectiveness and computational cost at optimizing terrestrial and Martian aerocapture maneuvers for minimum fuel, heat loads, peak heat transfers, and an overall optimal trajectory, including volumetric considerations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

19 pages, 4898 KiB  
Article
Near-Real-Time Global Thermospheric Density Variations Unveiled by Starlink Ephemeris
by Zhuoliang Ou, Jiahao Zhong, Yongqiang Hao, Ruoxi Li, Xin Wan, Kang Wang, Jiawen Chen, Hao Han, Xingyan Song, Wenyu Du and Yanyan Tang
Remote Sens. 2025, 17(9), 1549; https://doi.org/10.3390/rs17091549 - 27 Apr 2025
Viewed by 663
Abstract
Previous efforts to retrieve thermospheric density using satellite payloads have been limited to a small number of satellites equipped with GNSS (Global Navigation Satellite System) receivers and accelerometers. These satellites are confined to a few orbital planes, and analysis can only be conducted [...] Read more.
Previous efforts to retrieve thermospheric density using satellite payloads have been limited to a small number of satellites equipped with GNSS (Global Navigation Satellite System) receivers and accelerometers. These satellites are confined to a few orbital planes, and analysis can only be conducted after the data are processed and updated, resulting in sparse and delayed thermospheric density datasets. In recent years, the Starlink constellation, developed and deployed by SpaceX, has emerged as the world’s largest low Earth orbit (LEO) satellite constellation, with over 6000 satellites in operations as of October 2024. Through the strategic use of multiple orbital shells featuring various inclinations and altitudes, Starlink ensures continuous near-global coverage. Due to extensive coverage and frequent maneuvers, SpaceX has publicly released predicted ephemeris data for all Starlink satellites since May 2021, with updates approximately every 8 h. With the ephemeris data of Starlink satellites, we first apply a maneuver detection algorithm based on mean orbital elements to analyze their maneuvering behavior. The results indicate that Starlink satellites exhibit more frequent maneuvers during thermospheric disturbances. Then, we calculate the mechanical energy loss caused by non-conservative forces (primarily atmospheric drag) through precise dynamical models. The results demonstrate that, despite certain limitations in Starlink ephemeris data, the calculated mechanical energy loss still effectively captures thermospheric density variations during both quiet and disturbed geomagnetic periods. This finding is supported by comparisons with Swarm-B data, revealing that SpaceX incorporates the latest space environment conditions into its orbit extrapolation models during each ephemeris update. With a maximum lag of only 8 h, this approach enables near-real-time monitoring of thermospheric density variations using Starlink ephemeris. Full article
Show Figures

Graphical abstract

20 pages, 4089 KiB  
Article
Station Maintenance for Low-Orbit Large-Scale Constellations Based on Absolute and Relative Control Strategies
by Min Hu, Feifei Li, Wen Xue, Chenhu Liu, Wen Guo and Yongjing Ruan
Appl. Sci. 2025, 15(9), 4640; https://doi.org/10.3390/app15094640 - 22 Apr 2025
Viewed by 581
Abstract
With the development of commercial space technology and the proposal of concepts such as “Black Jack”, the Space Transport Layer (STL), and the commercial space-based Internet, large-scale low-orbit satellite constellations have become a research hotspot in the aerospace field. Large-scale low-orbit satellite constellations [...] Read more.
With the development of commercial space technology and the proposal of concepts such as “Black Jack”, the Space Transport Layer (STL), and the commercial space-based Internet, large-scale low-orbit satellite constellations have become a research hotspot in the aerospace field. Large-scale low-orbit satellite constellations consist of a huge number of satellites, which makes the networking control and operation management of the constellations more complicated. It also increases the difficulty of achieving the economical and efficient networking of the constellations as well as ensuring their safe and stable operation. In this study, aiming at the problem of large-scale constellation phase control in low orbit, strategies for constellation station holding were examined. First, aiming at the problem of station keeping of large-scale constellations in low orbit, the characteristics of satellite phase drift and phase keeping were analyzed, and absolute and relative station-keeping strategies were proposed. Second, a phase-holding loop control method combining semi-major axis overshoot control and passive control was proposed, and a relative phase-maintenance scheme based on a dynamic reference satellite was designed. Then, the absolute and relative station controls of different low-orbit constellations were simulated. The simulation results showed that in order for all satellites in the constellation to maintain a phase angle deviation within ±0.1° in a low-solar-activity year, about 13 days were required on average to adjust the semi-major axis of the satellites by about 71 m. The relative position control of small-scale constellations was simulated, and only four orbital maneuvers were needed to achieve the phase angle maintenance within the threshold of ±5° for all satellites in the constellation within 300 days. Finally, it was concluded that absolute control was suitable for large-scale constellation phase preservation, and relative control was more suitable for small-scale constellation phase preservation. This paper can provide a reference and suggestions for future large-scale constellation deployment and maintenance control strategies of low-orbit constellations. Full article
Show Figures

Figure 1

17 pages, 4957 KiB  
Article
A Novel Analytical Approach for Spacecraft Fly-Around Formation Design with a Low-Thrust Maneuver
by Xun Wang, Min Hu, Chaojun Xin and Shirui Zheng
Aerospace 2025, 12(5), 361; https://doi.org/10.3390/aerospace12050361 - 22 Apr 2025
Viewed by 389
Abstract
This paper investigates the fly-around formation between the servicer spacecraft and the target spacecraft. Inspired by the spacecraft orbital motion under the Earth’s gravity, an intuitive, analytical guidance law for spatial fly-around formation design with the low-thrust maneuver is proposed. Beginning with the [...] Read more.
This paper investigates the fly-around formation between the servicer spacecraft and the target spacecraft. Inspired by the spacecraft orbital motion under the Earth’s gravity, an intuitive, analytical guidance law for spatial fly-around formation design with the low-thrust maneuver is proposed. Beginning with the relative translational dynamics based on relative position and velocity, the control input of the guidance law is designed to contain two parts. The first part is the feed-forward term, which makes the relative dynamics a second-order integration model. The second part is the artificial gravity term, which has similar expressions to the Earth’s gravity, and includes the artificial gravitational coefficient and the vector of the artificial gravity center. The above two parameters can be designed to determine the size, shape, and period of the fly-around trajectory. Specifically, three kinds of fly-around trajectories are discussed in detail. The first two are the spatial ellipses with the target spacecraft locating at the focus and the center of the ellipses, respectively. The third is the spatial circle. The proposed method can be easily extended to the design of planar fly-around formation, which is very systematic and comprehensive, and the fuel consumption of the control input is specifically discussed. Numerical simulations are conducted to demonstrate the efficiency of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop