Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (880)

Search Parameters:
Keywords = optimal metric set

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3315 KiB  
Article
Searching for the Best Artificial Neural Network Architecture to Estimate Column and Beam Element Dimensions
by Ayla Ocak, Gebrail Bekdaş, Sinan Melih Nigdeli, Umit Işıkdağ and Zong Woo Geem
Information 2025, 16(8), 660; https://doi.org/10.3390/info16080660 (registering DOI) - 1 Aug 2025
Abstract
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in [...] Read more.
The cross-sectional dimensions of structural elements in a structure are design elements that need to be carefully designed and are related to the stiffness of the structure. Various optimization processes are applied to determine the optimum cross-sectional dimensions of beams or columns in structures. By repeating the optimization processes for multiple load scenarios, it is possible to create a data set that shows the optimum design section properties. However, this step means repeating the same processes to produce the optimum cross-sectional dimensions. Artificial intelligence technology offers a short-cut solution to this by providing the opportunity to train itself with previously generated optimum cross-sectional dimensions and infer new cross-sectional dimensions. By processing the data, the artificial neural network can generate models that predict the cross-section for a new structural element. In this study, an optimization process is applied to a simple tubular column and an I-section beam, and the results are compiled to create a data set that presents the optimum section dimensions as a class. The harmony search (HS) algorithm, which is a metaheuristic method, was used in optimization. An artificial neural network (ANN) was created to predict the cross-sectional dimensions of the sample structural elements. The neural architecture search (NAS) method, which incorporates many metaheuristic algorithms designed to search for the best artificial neural network architecture, was applied. In this method, the best values of various parameters of the neural network, such as activation function, number of layers, and neurons, are searched for in the model with a tool called HyperNetExplorer. Model metrics were calculated to evaluate the prediction success of the developed model. An effective neural network architecture for column and beam elements is obtained. Full article
(This article belongs to the Special Issue Optimization Algorithms and Their Applications)
Show Figures

Figure 1

28 pages, 10224 KiB  
Article
A Vulnerability Identification Method for Distribution Networks Integrating Fuzzy Local Dimension and Topological Structure
by Kangzheng Huang, Weichuan Zhang, Yongsheng Xu, Chenkai Wu and Weibo Li
Processes 2025, 13(8), 2438; https://doi.org/10.3390/pr13082438 - 1 Aug 2025
Abstract
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based [...] Read more.
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based on fuzzy local dimension and topology (FLDT). The algorithm distinguishes contributions from nodes at different radii and within the same radius to a central node using fuzzy sets, and then derives the final importance value of each node by combining the local dimension and topology. Experimental results on nine datasets demonstrate that the FLDT algorithm outperforms degree centrality (DC), closeness centrality (CC), local dimension (LD), fuzzy local dimension (FLD), local link similarity (LLS), and mixed degree decomposition (MDD) algorithms in three metrics: network efficiency (NE), largest connected component (LCC), and monotonicity. Furthermore, in a ship power grid experiment, when 40% of the most important nodes were removed, FLDT caused a network efficiency drop of 99.78% and reduced the LCC to 2.17%, significantly outperforming traditional methods. Additional experiments under topological perturbations—including edge addition, removal, and rewiring—also show that FLDT maintains superior performance, highlighting its robustness to structural changes. This indicates that the FLDT algorithm is more effective in identifying and evaluating vulnerable points and distinguishing nodes with varying levels of importance. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Delta Changes in [18F]FDG PET/CT Parameters Can Prognosticate Clinical Outcomes in Recurrent NSCLC Patients Who Have Undergone Reirradiation–Chemoimmunotherapy
by Brane Grambozov, Nazanin Zamani-Siahkali, Markus Stana, Mohsen Beheshti, Elvis Ruznic, Zarina Iskakova, Josef Karner, Barbara Zellinger, Sabine Gerum, Falk Roeder, Christian Pirich and Franz Zehentmayr
Biomedicines 2025, 13(8), 1866; https://doi.org/10.3390/biomedicines13081866 - 31 Jul 2025
Abstract
Background and Purpose: Stratification based on specific image biomarkers applicable in clinical settings could help optimize treatment outcomes for recurrent non-small cell lung cancer patients. For this purpose, we aimed to determine the clinical impact of positive delta changes (any difference above [...] Read more.
Background and Purpose: Stratification based on specific image biomarkers applicable in clinical settings could help optimize treatment outcomes for recurrent non-small cell lung cancer patients. For this purpose, we aimed to determine the clinical impact of positive delta changes (any difference above zero > 0) between baseline [18F]FDG PET/CT metrics before the first treatment course and reirradiation. Material/Methods: Forty-seven patients who underwent thoracic reirradiation with curative intent at our institute between 2013 and 2021 met the inclusion criteria. All patients had histologically verified NSCLC, ECOG (Eastern Cooperative Oncology Group) ≤ 2, and underwent [18F]FDG PET/CT for initial staging and re-staging before primary radiotherapy and reirradiation, respectively. The time interval between radiation treatments was at least nine months. Quantitative metabolic volume and intensity parameters were measured before first irradiation and before reirradiation, and the difference above zero (>0; delta change) between them was statistically correlated to locoregional control (LRC), progression-free survival (PFS), and overall survival (OS). Results: Patients were followed for a median time of 33 months after reirradiation. The median OS was 21.8 months (95%-CI: 16.3–27.3), the median PFS was 12 months (95%-CI: 6.7–17.3), and the median LRC was 13 months (95%-CI: 9.0–17.0). Multivariate analysis revealed that the delta changes in SULpeak, SUVmax, and SULmax of the lymph nodes significantly impacted OS (SULpeak p = 0.017; SUVmax p = 0.006; SULmax p = 0.006), PFS (SULpeak p = 0.010; SUVmax p = 0.009; SULmax p = 0.009), and LRC (SULpeak p < 0.001; SUVmax p = 0.003; SULmax p = 0.003). Conclusions: Delta changes in SULpeak, SUVmax, and SULmax of the metastatic lymph nodes significantly impacted all clinical endpoints (OS, PFS and LRC) in recurrent NSCLC patients treated with reirradiation. Hence, these imaging biomarkers could be helpful with regard to patient selection in this challenging clinical situation. Full article
Show Figures

Figure 1

40 pages, 6841 KiB  
Article
Distributionally Robust Multivariate Stochastic Cone Order Portfolio Optimization: Theory and Evidence from Borsa Istanbul
by Larissa Margerata Batrancea, Mehmet Ali Balcı, Ömer Akgüller and Lucian Gaban
Mathematics 2025, 13(15), 2473; https://doi.org/10.3390/math13152473 - 31 Jul 2025
Abstract
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO [...] Read more.
We introduce a novel portfolio optimization framework—Distributionally Robust Multivariate Stochastic Cone Order (DR-MSCO)—which integrates partial orders on random vectors with Wasserstein-metric ambiguity sets and adaptive cone structures to model multivariate investor preferences under distributional uncertainty. Grounded in measure theory and convex analysis, DR-MSCO employs data-driven cone selection calibrated to market regimes, along with coherent tail-risk operators that generalize Conditional Value-at-Risk to the multivariate setting. We derive a tractable second-order cone programming reformulation and demonstrate statistical consistency under empirical ambiguity sets. Empirically, we apply DR-MSCO to 23 Borsa Istanbul equities from 2021–2024, using a rolling estimation window and realistic transaction costs. Compared to classical mean–variance and standard distributionally robust benchmarks, DR-MSCO achieves higher overall and crisis-period Sharpe ratios (2.18 vs. 2.09 full sample; 0.95 vs. 0.69 during crises), reduces maximum drawdown by 10%, and yields endogenous diversification without exogenous constraints. Our results underscore the practical benefits of combining multivariate preference modeling with distributional robustness, offering institutional investors a tractable tool for resilient portfolio construction in volatile emerging markets. Full article
(This article belongs to the Special Issue Modern Trends in Mathematics, Probability and Statistics for Finance)
Show Figures

Figure 1

21 pages, 563 KiB  
Article
Optimized Interdisciplinary Research Team Formation Using a Genetic Algorithm and Publication Metadata Records
by Christian-Daniel Curiac, Mihai Micea, Traian-Radu Plosca, Daniel-Ioan Curiac and Alex Doboli
AI 2025, 6(8), 171; https://doi.org/10.3390/ai6080171 - 30 Jul 2025
Abstract
Forming interdisciplinary research teams is challenging, especially when the pool of candidates is large and/or the addressed research projects require multi-disciplinary expertise. Based on their previous research outputs, like published work, a data-driven team formation procedure selects the researchers that are likely to [...] Read more.
Forming interdisciplinary research teams is challenging, especially when the pool of candidates is large and/or the addressed research projects require multi-disciplinary expertise. Based on their previous research outputs, like published work, a data-driven team formation procedure selects the researchers that are likely to work well together while covering all areas and offering all skills required by the multi-disciplinary topic. The description of the research team formation problem proposed in this paper uses novel quantitative metrics about the team candidates computed from bibliographic metadata records. The proposed methodology first analyzes the metadata fields that provide useful information and then computes four synthetic indicators regarding candidates’ skills and their interpersonal traits. Interdisciplinary teams are formed by solving a complex combinatorial multi-objective weighted set cover optimization problem, defined as equations involving the synthetic indicators. Problem solving uses the NSGA-II genetic algorithm. The proposed methodology is validated and compared with other similar approaches using a dataset on researchers from Politehnica University of Timisoara extracted from the IEEE Xplore database. Experimental results show that the method can identify potential research teams in situations for which other related algorithms fail. Full article
Show Figures

Figure 1

19 pages, 7161 KiB  
Article
Dynamic Snake Convolution Neural Network for Enhanced Image Super-Resolution
by Weiqiang Xin, Ziang Wu, Qi Zhu, Tingting Bi, Bing Li and Chunwei Tian
Mathematics 2025, 13(15), 2457; https://doi.org/10.3390/math13152457 - 30 Jul 2025
Abstract
Image super-resolution (SR) is essential for enhancing image quality in critical applications, such as medical imaging and satellite remote sensing. However, existing methods were often limited in their ability to effectively process and integrate multi-scales information from fine textures to global structures. To [...] Read more.
Image super-resolution (SR) is essential for enhancing image quality in critical applications, such as medical imaging and satellite remote sensing. However, existing methods were often limited in their ability to effectively process and integrate multi-scales information from fine textures to global structures. To address these limitations, this paper proposes DSCNN, a dynamic snake convolution neural network for enhanced image super-resolution. DSCNN optimizes feature extraction and network architecture to enhance both performance and efficiency: To improve feature extraction, the core innovation is a feature extraction and enhancement module with dynamic snake convolution that dynamically adjusts the convolution kernel’s shape and position to better fit the image’s geometric structures, significantly improving feature extraction. To optimize the network’s structure, DSCNN employs an enhanced residual network framework. This framework utilizes parallel convolutional layers and a global feature fusion mechanism to further strengthen feature extraction capability and gradient flow efficiency. Additionally, the network incorporates a SwishReLU-based activation function and a multi-scale convolutional concatenation structure. This multi-scale design effectively captures both local details and global image structure, enhancing SR reconstruction. In summary, the proposed DSCNN outperforms existing methods in both objective metrics and visual perception (e.g., our method achieved optimal PSNR and SSIM results on the Set5 ×4 dataset). Full article
(This article belongs to the Special Issue Structural Networks for Image Application)
Show Figures

Figure 1

21 pages, 4163 KiB  
Article
Digital Twin-Based Ray Tracing Analysis for Antenna Orientation Optimization in Wireless Networks
by Onem Yildiz
Electronics 2025, 14(15), 3023; https://doi.org/10.3390/electronics14153023 - 29 Jul 2025
Viewed by 139
Abstract
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a [...] Read more.
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a digital twin-based evaluation approach utilizing ray tracing simulations to assess the influence of antenna orientation on critical performance metrics: path gain, received signal strength (RSS), and signal-to-interference-plus-noise ratio (SINR). A thorough array of orientation scenarios was simulated to produce a dataset reflecting varied coverage conditions. The dataset was utilized to investigate antenna configurations that produced the optimal and suboptimal performance for each parameter. Additionally, three machine learning models—k-nearest neighbors (KNN), multi-layer perceptron (MLP), and XGBoost—were developed to forecast ideal configurations. XGBoost had superior prediction accuracy compared to the other models, as evidenced by regression outcomes and cumulative distribution function (CDF) analyses. The proposed workflow demonstrates that learning-based predictors can uncover orientation refinements that conventional grid sweeps overlook, enabling agile, interference-aware optimization. Key contributions include an end-to-end digital twin methodology for rapid what-if analysis and a systematic comparison of lightweight machine learning predictors for antenna orientation. This comprehensive method provides a pragmatic and scalable solution for the data-driven optimization of wireless systems in real-world settings. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Performance Analysis)
Show Figures

Figure 1

27 pages, 2966 KiB  
Article
Identifying Weekly Student Engagement Patterns in E-Learning via K-Means Clustering and Label-Based Validation
by Nisreen Alzahrani, Maram Meccawy, Halima Samra and Hassan A. El-Sabagh
Electronics 2025, 14(15), 3018; https://doi.org/10.3390/electronics14153018 - 29 Jul 2025
Viewed by 109
Abstract
While prior work has explored learner behavior using learning management systems (LMS) data, few studies provide week-level clustering validated against external engagement labels. To understand and assist students in online learning platforms and environments, this study presents a week-level engagement profiling framework for [...] Read more.
While prior work has explored learner behavior using learning management systems (LMS) data, few studies provide week-level clustering validated against external engagement labels. To understand and assist students in online learning platforms and environments, this study presents a week-level engagement profiling framework for e-learning environments, utilizing K-means clustering and label-based validation. Leveraging log data from 127 students over a 13-week course, 44 activity-based features were engineered to classify student engagement into high, moderate, and low levels. The optimal number of clusters (k = 3) was identified using the elbow method and assessed through internal metrics, including a silhouette score of 0.493 and R2 of 0.80. External validation confirmed strong alignment with pre-labeled engagement levels based on activity frequency and weighting. The clustering approach successfully revealed distinct behavioral patterns across engagement tiers, enabling a nuanced understanding of student interaction dynamics over time. Regression analysis further demonstrated a significant association between engagement levels and academic performance, underscoring the model’s potential as an early warning system for identifying at-risk learners. These findings suggest that clustering based on LMS behavior offers a scalable, data-driven strategy for improving learner support, personalizing instruction, and enhancing retention and academic outcomes in digital education settings such as MOOCs. Full article
Show Figures

Figure 1

14 pages, 411 KiB  
Review
Extracorporeal CPR Performance Metrics in Adult In-Hospital Cardiac Arrest: A Stepwise and Evidence-Based Appraisal of the VA-ECMO Implementation Process
by Timothy Ford, Brent Russell and Pritee Tarwade
J. Clin. Med. 2025, 14(15), 5330; https://doi.org/10.3390/jcm14155330 - 28 Jul 2025
Viewed by 353
Abstract
Extracorporeal cardiopulmonary resuscitation (ECPR) is an established intervention for select patients experiencing refractory cardiac arrest. Among modifiable predictors of survival and neurologic recovery during ECPR implementation, timely restoration of circulation remains critical in the setting of refractory cardiac arrest (CA). The in-hospital cardiac [...] Read more.
Extracorporeal cardiopulmonary resuscitation (ECPR) is an established intervention for select patients experiencing refractory cardiac arrest. Among modifiable predictors of survival and neurologic recovery during ECPR implementation, timely restoration of circulation remains critical in the setting of refractory cardiac arrest (CA). The in-hospital cardiac arrest (IHCA) setting is particularly amenable to reducing the low-flow interval through structured system-based design and implementation. Despite increasing utilization of ECPR, the literature remains limited regarding operational standards, quality improvement metrics, and performance evaluation. Establishing operational standards and performance metrics is a critical first step toward systematically reducing low-flow interval duration. In support of this aim, we conducted a comprehensive literature review structured around the Extracorporeal Life Support Organization (ELSO) framework for ECPR implementation. At each step, we synthesized evidence-based best practices and identified operational factors that directly influence time-to-circulation. Our goal is to provide a stepwise evaluation of ECPR initiation to consolidate existing best practices and highlight process components with potential for further study and standardization. We further evaluated the literature surrounding key technical components of ECPR, including cannula selection, placement technique, and positioning. Ongoing research is needed to refine and standardize each stage of the ECPR workflow. Developing optimized, protocol-driven approaches to ensure rapid, high-quality deployment will be essential for improving outcomes with this lifesaving but resource-intensive therapy. Full article
(This article belongs to the Special Issue New Trends and Challenges in Critical Care Management)
Show Figures

Graphical abstract

24 pages, 14323 KiB  
Article
GTDR-YOLOv12: Optimizing YOLO for Efficient and Accurate Weed Detection in Agriculture
by Zhaofeng Yang, Zohaib Khan, Yue Shen and Hui Liu
Agronomy 2025, 15(8), 1824; https://doi.org/10.3390/agronomy15081824 - 28 Jul 2025
Viewed by 214
Abstract
Weed infestation contributes significantly to global agricultural yield loss and increases the reliance on herbicides, raising both economic and environmental concerns. Effective weed detection in agriculture requires high accuracy and architectural efficiency. This is particularly important under challenging field conditions, including densely clustered [...] Read more.
Weed infestation contributes significantly to global agricultural yield loss and increases the reliance on herbicides, raising both economic and environmental concerns. Effective weed detection in agriculture requires high accuracy and architectural efficiency. This is particularly important under challenging field conditions, including densely clustered targets, small weed instances, and low visual contrast between vegetation and soil. In this study, we propose GTDR-YOLOv12, an improved object detection framework based on YOLOv12, tailored for real-time weed identification in complex agricultural environments. The model is evaluated on the publicly available Weeds Detection dataset, which contains a wide range of weed species and challenging visual scenarios. To achieve better accuracy and efficiency, GTDR-YOLOv12 introduces several targeted structural enhancements. The backbone incorporates GDR-Conv, which integrates Ghost convolution and Dynamic ReLU (DyReLU) to improve early-stage feature representation while reducing redundancy. The GTDR-C3 module combines GDR-Conv with Task-Dependent Attention Mechanisms (TDAMs), allowing the network to adaptively refine spatial features critical for accurate weed identification and localization. In addition, the Lookahead optimizer is employed during training to improve convergence efficiency and reduce computational overhead, thereby contributing to the model’s lightweight design. GTDR-YOLOv12 outperforms several representative detectors, including YOLOv7, YOLOv9, YOLOv10, YOLOv11, YOLOv12, ATSS, RTMDet and Double-Head. Compared with YOLOv12, GTDR-YOLOv12 achieves notable improvements across multiple evaluation metrics. Precision increases from 85.0% to 88.0%, recall from 79.7% to 83.9%, and F1-score from 82.3% to 85.9%. In terms of detection accuracy, mAP:0.5 improves from 87.0% to 90.0%, while mAP:0.5:0.95 rises from 58.0% to 63.8%. Furthermore, the model reduces computational complexity. GFLOPs drop from 5.8 to 4.8, and the number of parameters is reduced from 2.51 M to 2.23 M. These reductions reflect a more efficient network design that not only lowers model complexity but also enhances detection performance. With a throughput of 58 FPS on the NVIDIA Jetson AGX Xavier, GTDR-YOLOv12 proves both resource-efficient and deployable for practical, real-time weeding tasks in agricultural settings. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

17 pages, 1133 KiB  
Review
Novel Interventions to Improve Adherence to Guideline-Directed Medical Therapy in Claudicants
by Richard Shi, Nicholas Bulatao and Adam Tanious
J. Clin. Med. 2025, 14(15), 5309; https://doi.org/10.3390/jcm14155309 - 28 Jul 2025
Viewed by 254
Abstract
Intermittent claudication is the most common manifestation of peripheral arterial disease as well as a lifestyle-limiting disease with a favorable prognosis. Despite societal guideline recommendations, most claudicants do not trial optimal medical therapy (OMT) and supervised exercise therapy (SET) or receive a quality-of-life [...] Read more.
Intermittent claudication is the most common manifestation of peripheral arterial disease as well as a lifestyle-limiting disease with a favorable prognosis. Despite societal guideline recommendations, most claudicants do not trial optimal medical therapy (OMT) and supervised exercise therapy (SET) or receive a quality-of-life (QoL) assessment prior to intervention. In this review, we discuss the components of OMT and SET and the trials establishing their clear benefits in claudicants. We assess adherence rates to OMT/SET and qualitative and quantitative studies attempting to understand the barriers to adoption. We also review how patient-reported outcome metrics were developed to assess QoL in claudicants and reasons for their underutilization in daily clinical practice. Last, we describe novel initiatives seeking to improve adherence to OMT, SET, and QoL assessment. Full article
(This article belongs to the Special Issue Vascular Surgery: Current Status and Future Perspectives)
Show Figures

Figure 1

20 pages, 2772 KiB  
Article
Cable Force Optimization of Circular Ring Pylon Cable-Stayed Bridges Based on Response Surface Methodology and Multi-Objective Particle Swarm Optimization
by Shengdong Liu, Fei Chen, Qingfu Li and Xiyu Ma
Buildings 2025, 15(15), 2647; https://doi.org/10.3390/buildings15152647 - 27 Jul 2025
Viewed by 141
Abstract
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization [...] Read more.
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) to overcome these challenges. RSM constructs surrogate models for strain energy and mid-span displacement, reducing reliance on finite element analysis, while MOPSO optimizes Pareto solution sets for rapid cable force adjustment. Validated through an engineering case, the method reduces the main girder’s max bending moment by 8.7%, mid-span displacement by 31.2%, and strain energy by 7.1%, improving stiffness and mitigating stress concentrations. The response surface model demonstrates prediction errors of 0.35% for strain energy and 5.1% for maximum vertical mid-span deflection. By synergizing explicit modeling with intelligent algorithms, this methodology effectively resolves the longstanding efficiency–accuracy trade-off in cable force optimization for cable-stayed bridges. It achieves over 80% reduction in computational costs while enhancing critical structural performance metrics. Engineers are thereby equipped with a rapid and reliable optimization framework for geometrically complex cable-stayed bridges, delivering significant improvements in structural safety and construction feasibility. Ultimately, this approach establishes both theoretical substantiation and practical engineering benchmarks for designing non-conventional cable-stayed bridge configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Viewed by 665
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

22 pages, 16961 KiB  
Article
Highly Accelerated Dual-Pose Medical Image Registration via Improved Differential Evolution
by Dibin Zhou, Fengyuan Xing, Wenhao Liu and Fuchang Liu
Sensors 2025, 25(15), 4604; https://doi.org/10.3390/s25154604 - 25 Jul 2025
Viewed by 181
Abstract
Medical image registration is an indispensable preprocessing step to align medical images to a common coordinate system before in-depth analysis. The registration precision is critical to the following analysis. In addition to representative image features, the initial pose settings and multiple poses in [...] Read more.
Medical image registration is an indispensable preprocessing step to align medical images to a common coordinate system before in-depth analysis. The registration precision is critical to the following analysis. In addition to representative image features, the initial pose settings and multiple poses in images will significantly affect the registration precision, which is largely neglected in state-of-the-art works. To address this, the paper proposes a dual-pose medical image registration algorithm based on improved differential evolution. More specifically, the proposed algorithm defines a composite similarity measurement based on contour points and utilizes this measurement to calculate the similarity between frontal–lateral positional DRR (Digitally Reconstructed Radiograph) images and X-ray images. In order to ensure the accuracy of the registration algorithm in particular dimensions, the algorithm implements a dual-pose registration strategy. A PDE (Phased Differential Evolution) algorithm is proposed for iterative optimization, enhancing the optimization algorithm’s ability to globally search in low-dimensional space, aiding in the discovery of global optimal solutions. Extensive experimental results demonstrate that the proposed algorithm provides more accurate similarity metrics compared to conventional registration algorithms; the dual-pose registration strategy largely reduces errors in specific dimensions, resulting in reductions of 67.04% and 71.84%, respectively, in rotation and translation errors. Additionally, the algorithm is more suitable for clinical applications due to its lower complexity. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 380
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

Back to TopTop