Delta Changes in [18F]FDG PET/CT Parameters Can Prognosticate Clinical Outcomes in Recurrent NSCLC Patients Who Have Undergone Reirradiation–Chemoimmunotherapy
Abstract
1. Introduction
2. Methods
2.1. Patients
2.2. Therapy
2.3. Organs at Risk (OAR) and Toxicity
2.4. Follow-Up
2.5. Delta [18F]FDG PET/CT Metrics Calculation
2.6. [18F]FDG PET/CT
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCI | Charlson comorbidity index |
CTCAE | Common toxicity criteria for adverse events |
DART | Dose-differentiated accelerated radiotherapy |
ECOG | Eastern cooperative oncology group |
EQD2 | Biologically equivalent dose in 2 Gy fractions |
FDG-PET-CT | Fluorodeoxyglucose-positron emission tomography |
IMRT | Intensity modulated radiotherapy |
LRC | Locoregional control |
TLG | Total lesion glycolysis |
mOS | Median overall survival |
MTV | Metabolic tumor volume |
MVA | Multivariate analysis |
NSCLC | Non-small cell lung cancer |
OAR | Organs at risk |
OS | Overall survival |
PFS | Progression free survival |
PS | Performance score |
RT | Radiotherapy |
SABR | Stereotactic ablative body therapy |
SCLC | Small-cell lung cancer |
SULmax | Lean body mass corrected SUV max |
SULpeak | Lean body mass corrected |
SUV peak | Standardized uptake value peak |
SUVmax | Maximum standardized uptake value |
SUVmean | Mean standardized uptake value |
SUVpeak | Peak standardized uptake value |
TPS | Treatment planning system |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Grambozov, B.; Stana, M.; Kaiser, B.; Karner, J.; Gerum, S.; Ruznic, E.; Zellinger, B.; Moosbrugger, R.; Studnicka, M.; Fastner, G.; et al. High Dose Thoracic Re-Irradiation and Chemo-Immunotherapy for Centrally Recurrent NSCLC. Cancers 2022, 14, 573. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Faivre-Finn, C.; Le Pechoux, C.; Peeters, S.; Belderbos, J. High-dose re-irradiation following radical radiotherapy for non-small-cell lung cancer. Lancet Oncol. 2014, 15, e620–e624. [Google Scholar] [CrossRef]
- Rulach, R.; Ball, D.; Chua, K.L.M.; Dahele, M.; De Ruysscher, D.; Franks, K.; Gomez, D.; Guckenberger, M.; Hanna, G.G.; Louie, A.V.; et al. An International Expert Survey on the Indications and Practice of Radical Thoracic Reirradiation for Non-Small Cell Lung Cancer. Adv. Radiat. Oncol. 2021, 6, 100653. [Google Scholar] [CrossRef]
- Rulach, R.; Hanna, G.G.; Franks, K.; McAleese, J.; Harrow, S. Re-irradiation for Locally Recurrent Lung Cancer: Evidence, Risks and Benefits. Clin. Oncol. (R. Coll. Radiol.) 2018, 30, 101–109. [Google Scholar] [CrossRef]
- Jeremic, B.; Videtic, G.M. Chest reirradiation with external beam radiotherapy for locally recurrent non-small-cell lung cancer: A review. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Grambozov, B.; Wass, R.; Stana, M.; Gerum, S.; Karner, J.; Fastner, G.; Studnicka, M.; Sedlmayer, F.; Zehentmayr, F. Impact of reirradiation, chemotherapy, and immunotherapy on survival of patients with recurrent lung cancer: A single-center retrospective analysis. Thorac. Cancer 2021, 12, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Eze, C.; Schmidt-Hegemann, N.S.; Sawicki, L.M.; Kirchner, J.; Roengvoraphoj, O.; Kasmann, L.; Mittlmeier, L.M.; Kunz, W.G.; Tufman, A.; Dinkel, J.; et al. PET/CT imaging for evaluation of multimodal treatment efficacy and toxicity in advanced NSCLC-current state and future directions. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3975–3989. [Google Scholar] [CrossRef] [PubMed]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50 (Suppl. 1), 122S–150S. [Google Scholar] [CrossRef]
- Nestle, U.; Schimek-Jasch, T.; Kremp, S.; Schaefer-Schuler, A.; Mix, M.; Kusters, A.; Tosch, M.; Hehr, T.; Eschmann, S.M.; Bultel, Y.P.; et al. Imaging-based target volume reduction in chemoradiotherapy for locally advanced non-small-cell lung cancer (PET-Plan): A multicentre, open-label, randomised, controlled trial. Lancet Oncol. 2020, 21, 581–592. [Google Scholar] [CrossRef]
- Zukotynski, K.A.; Gerbaudo, V.H. Molecular Imaging and Precision Medicine in Lung Cancer. PET Clin. 2017, 12, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Menon, H.; Guo, C.; Verma, V.; Simone, C.B., 2nd. The Role of Positron Emission Tomography Imaging in Radiotherapy Target Delineation. PET Clin. 2020, 15, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Grambozov, B.; Kalantari, F.; Beheshti, M.; Stana, M.; Karner, J.; Ruznic, E.; Zellinger, B.; Sedlmayer, F.; Rinnerthaler, G.; Zehentmayr, F. Pretreatment 18-FDG-PET/CT parameters can serve as prognostic imaging biomarkers in recurrent NSCLC patients treated with reirradiation-chemoimmunotherapy. Radiother. Oncol. 2023, 185, 109728. [Google Scholar] [CrossRef] [PubMed]
- Roengvoraphoj, O.; Wijaya, C.; Eze, C.; Li, M.; Dantes, M.; Taugner, J.; Tufman, A.; Huber, R.M.; Belka, C.; Manapov, F. Analysis of primary tumor metabolic volume during chemoradiotherapy in locally advanced non-small cell lung cancer. Strahlenther. Onkol. 2018, 194, 107–115. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Balter, P.; Allen, P.K.; Komaki, R.; Pan, T.; Chuang, H.H.; Chang, J.Y. Positron emission tomography for assessing local failure after stereotactic body radiotherapy for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1558–1565. [Google Scholar] [CrossRef]
- Lopez Guerra, J.L.; Gladish, G.; Komaki, R.; Gomez, D.; Zhuang, Y.; Liao, Z. Large decreases in standardized uptake values after definitive radiation are associated with better survival of patients with locally advanced non-small cell lung cancer. J. Nucl. Med. 2012, 53, 225–233. [Google Scholar] [CrossRef]
- Grambozov, B.; Nussdorfer, E.; Kaiser, J.; Gerum, S.; Fastner, G.; Stana, M.; Gaisberger, C.; Wass, R.; Studnicka, M.; Sedlmayer, F.; et al. Re-Irradiation for Locally Recurrent Lung Cancer: A Single Center Retrospective Analysis. Curr. Oncol. 2021, 28, 1835–1846. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Y.; Li, Y.; Zhang, Y.; Xu, Y.; Ding, H.; Chen, Y.; Ren, P.; Ye, H.; Fu, S.; et al. Predictive value of (18)F-FDG PET/CT for evaluating the response to hypofractionated radiotherapy combined with PD-1 blockade in non-small cell lung cancer. Front. Immunol. 2023, 14, 1034416. [Google Scholar] [CrossRef]
- van Diessen, J.N.A.; La Fontaine, M.; van den Heuvel, M.M.; van Werkhoven, E.; Walraven, I.; Vogel, W.V.; Belderbos, J.S.A.; Sonke, J.J. Local and regional treatment response by (18)FDG-PET-CT-scans 4 weeks after concurrent hypofractionated chemoradiotherapy in locally advanced NSCLC. Radiother. Oncol. 2020, 143, 30–36. [Google Scholar] [CrossRef]
- Gensheimer, M.F.; Hong, J.C.; Chang-Halpenny, C.; Zhu, H.; Eclov, N.C.W.; To, J.; Murphy, J.D.; Wakelee, H.A.; Neal, J.W.; Le, Q.T.; et al. Mid-radiotherapy PET/CT for prognostication and detection of early progression in patients with stage III non-small cell lung cancer. Radiother. Oncol. 2017, 125, 338–343. [Google Scholar] [CrossRef]
- Holzgreve, A.; Taugner, J.; Kasmann, L.; Muller, P.; Tufman, A.; Reinmuth, N.; Li, M.; Winkelmann, M.; Unterrainer, L.M.; Nieto, A.E.; et al. Metabolic patterns on [(18)F]FDG PET/CT in patients with unresectable stage III NSCLC undergoing chemoradiotherapy +/− durvalumab maintenance treatment. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2466–2476. [Google Scholar] [CrossRef]
- Yang, D.M.; Palma, D.A.; Kwan, K.; Louie, A.V.; Malthaner, R.; Fortin, D.; Rodrigues, G.B.; Yaremko, B.P.; Laba, J.; Gaede, S.; et al. Predicting pathological complete response (pCR) after stereotactic ablative radiation therapy (SABR) of lung cancer using quantitative dynamic [(18)F]FDG PET and CT perfusion: A prospective exploratory clinical study. Radiat. Oncol. 2021, 16, 11. [Google Scholar] [CrossRef]
- Mena, E.; Yanamadala, A.; Cheng, G.; Subramaniam, R.M. The Current and Evolving Role of PET in Personalized Management of Lung Cancer. PET Clin. 2016, 11, 243–259. [Google Scholar] [CrossRef]
- Jamal-Hanjani, M.; Hackshaw, A.; Ngai, Y.; Shaw, J.; Dive, C.; Quezada, S.; Middleton, G.; de Bruin, E.; Le Quesne, J.; Shafi, S.; et al. Tracking genomic cancer evolution for precision medicine: The lung TRACERx study. PLoS Biol. 2014, 12, e1001906. [Google Scholar] [CrossRef]
- Ji, R.C. Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses. Int. J. Mol. Sci. 2016, 18, 51. [Google Scholar] [CrossRef]
- Dehing-Oberije, C.; De Ruysscher, D.; van der Weide, H.; Hochstenbag, M.; Bootsma, G.; Geraedts, W.; Pitz, C.; Simons, J.; Teule, J.; Rahmy, A.; et al. Tumor volume combined with number of positive lymph node stations is a more important prognostic factor than TNM stage for survival of non-small-cell lung cancer patients treated with (chemo)radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1039–1044. [Google Scholar] [CrossRef]
- Brodin, N.P.; Tome, W.A.; Abraham, T.; Ohri, N. (18)F-Fluorodeoxyglucose PET in Locally Advanced Non-small Cell Lung Cancer: From Predicting Outcomes to Guiding Therapy. PET Clin. 2020, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Choi, W.H.; Yoo, I.R.; Park, J.K.; Sung, S.W.; Kim, Y.S.; Kang, J.H. Prognostic value of 18F-FDG PET parameters in patients with locally advanced non-small cell lung cancer treated with induction chemotherapy. Asia Pac. J. Clin. Oncol. 2020, 16, 70–74. [Google Scholar] [CrossRef] [PubMed]
- De Ruysscher, D.; Wanders, S.; van Haren, E.; Hochstenbag, M.; Geeraedts, W.; Utama, I.; Simons, J.; Dohmen, J.; Rhami, A.; Buell, U.; et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: A prospective clinical study. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 988–994. [Google Scholar] [CrossRef] [PubMed]
Patients N = 47 | |||
---|---|---|---|
Characteristics at reirradiation | Age (years) | median | 67 |
Sex | male | 34 | |
female | 13 | ||
Weight loss (%) | >5% | 17 | |
<5% | 30 | ||
Histology | adeno | 19 | |
squamous | 24 | ||
NOS | 4 | ||
UICC-stage | I | 12 | |
II | 6 | ||
III | 25 | ||
IV | 4 | ||
Charlson Comorbidity Index range: 2–9 | median | 5 |
Patients N = 47 | |||
---|---|---|---|
Treatment-related factors | PTV of recurrent tumor and lymph nodes in mL range: 4.5–239 | median | 50 |
Tumor location | peripheral | 23 | |
central | 24 | ||
Treatment concept (n) | CRTX | 7 | |
(C)RIT | 28 | ||
RT alone | 12 | ||
Cumulative EQD2 tumor (Gy) range: 108–249 | median | 133 | |
Cumulative EQD2 lymph nodes (Gy) range: 86–144 | median | 105 |
Toxicity (N = 47) | ||||||
---|---|---|---|---|---|---|
Type of Toxicity | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | |
Acute | Esophagitis | n.a. | 3 | 1 | 0 | 0 |
Pneumonitis | n.a. | 3 | 1 | 0 | 0 | |
Late | Esophagitis | n.a. | 0 | 0 | 0 | 0 |
Heart tox. | n.a. | 0 | 0 | 0 | 0 | |
Chest wall pain | n.a. | 0 | 0 | 0 | 0 | |
Hemorrhage | n.a. | 1 | 1 | 0 | 0 |
Patients N = 47 | |||
---|---|---|---|
Dosimetric cumulative data | MLD (Gy) range: 3.4–24.3 | median | 15.4 |
V20 total lung (%) range: 3–50 | median | 26.5 | |
Mean esophageal dose (Gy) range: 2–48 | median | 23.3 | |
Aorta Dmax (Gy) range: 12–128 | median | 80 | |
Pulmonary trunk and pulmonary arteries Dmax (Gy) range: 9–130 | median | 89 | |
Spinal cord Dmax (Gy) range: 8–68.6 | median | 42 | |
Heart V25 (Gy) range: 0.5–75 | median | 8.5 |
Overall Survival (OS) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Primary (n = 47) | LN (n = 46) | Primary (n = 47) | LN (n = 46) | Primary (n = 44) | LN (n = 44) | Primary (n = 47) | LN (n = 47) | Primary (n = 47) | LN (n = 47) | ||||||||||
UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UMA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | |
Tumor location | 0.201 | n.s. | 0.131 | n.s. | 0.201 | n.s. | 0.131 | n.s. | 0.264 | n.s. | 0.263 | n.s. | 0.201 | n.s. | 0.201 | n.s. | 0.201 | n.s. | 0.201 | n.s. |
Age | 0.953 | n.s. | 0.928 | n.s. | 0.953 | n.s. | 0.928 | n.s. | 0.787 | n.s. | 0.883 | n.s. | 0.953 | n.s. | 0.953 | n.s. | 0.953 | n.s. | 0.953 | n.s. |
Sex | 0.569 | n.s. | 0.494 | n.s. | 0.569 | n.s. | 0.494 | n.s. | 0.818 | n.s. | 0.434 | n.s. | 0.569 | n.s. | 0.569 | n.s. | 0.569 | n.s. | 0.569 | n.s. |
Weight loss | 0.552 | n.s. | 0.654 | n.s. | 0.552 | n.s. | 0.654 | n.s. | 0.643 | n.s. | 0.971 | n.s. | 0.552 | n.s. | 0.552 | n.s. | 0.552 | n.s. | 0.552 | n.s. |
Histology | 0.045 | n.s. | 0.069 | n.s. | 0.045 | n.s. | 0.069 | n.s. | 0.069 | n.s. | 0.077 | n.s. | 0.045 | n.s. | 0.045 | n.s. | 0.045 | n.s. | 0.045 | n.s. |
UICC | 0.070 | n.s. | 0.061 | n.s. | 0.070 | n.s. | 0.061 | n.s. | 0.139 | n.s. | 0.054 | n.s. | 0.070 | n.s. | 0.070 | n.s. | 0.070 | n.s. | 0.070 | n.s. |
Charlson Comorbidity Index | 0.220 | n.s. | 0.301 | n.s. | 0.220 | n.s. | 0.301 | n.s. | 0.295 | n.s. | 0.469 | n.s. | 0.220 | n.s. | 0.220 | n.s. | 0.220 | n.s. | 0.220 | n.s. |
PTV (ml) | 0.435 | n.s. | 0.401 | n.s. | 0.435 | n.s. | 0.401 | n.s. | 0.405 | n.s. | 0.434 | n.s. | 0.435 | n.s. | 0.435 | n.s. | 0.435 | n.s. | 0.435 | n.s. |
Systemic therapy | 0.696 | n.s. | 0.774 | n.s. | 0.696 | n.s. | 0.774 | n.s. | 0.509 | n.s. | 0.767 | n.s. | 0.696 | n.s. | 0.696 | n.s. | 0.696 | n.s. | 0.696 | n.s. |
EQD2 tumor total | 0.128 | n.s. | 0.109 | n.s. | 0.128 | n.s. | 0.109 | n.s. | 0.195 | n.s. | 0.097 | n.s. | 0.128 | n.s. | 0.128 | n.s. | 0.128 | n.s. | 0.128 | n.s. |
EQD2 LN total | 0.155 | n.s. | 0.099 | n.s. | 0.155 | n.s. | 0.099 | n.s. | 0.305 | n.s. | 0.088 | n.s. | 0.155 | n.s. | 0.155 | n.s. | 0.155 | n.s. | 0.155 | n.s. |
MTV | 0.816 | n.s. | 0.023 | 0.028 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
TLG | n.a. | n.a. | n.a. | n.a. | 0.576 | n.s. | 0.023 | 0.028 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
SULpeak | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.165 | n.s. | <0.001 | <0.001 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
SUV max | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.079 | n.s. | 0.002 | 0.003 | n.a. | n.a. | n.a. | n.a. |
SULmax | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.097 | n.s. | 0.002 | 0.003 |
Progression Free Survival (PFS) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Primary (n = 47) | LN (n = 46) | Primary (n = 47) | LN (n = 46) | Primary (n = 44) | LN (n = 44) | Primary (n = 47) | LN (n = 47) | Primary (n = 47) | LN (n = 47) | ||||||||||
UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UMA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | |
Tumor location | 0.276 | n.s. | 0.340 | n.s. | 0.276 | n.s. | 0.340 | n.s | 0.244 | 0.016 | 0.425 | n.s. | 0.276 | n.s. | 0.276 | n.s. | 0.276 | n.s. | 0.276 | n.s. |
Age | 0.204 | n.s. | 0.211 | n.s. | 0.204 | n.s. | 0.211 | n.s | 0.249 | n.s. | 0.212 | n.s. | 0.204 | n.s. | 0.204 | n.s. | 0.204 | n.s. | 0.204 | n.s. |
Sex | 0.317 | n.s. | 0.356 | n.s. | 0.317 | n.s. | 0.356 | n.s | 0.248 | n.s. | 0.356 | n.s. | 0.317 | n.s. | 0.317 | n.s. | 0.317 | n.s. | 0.317 | n.s. |
Weight loss | 0.561 | n.s. | 0.480 | n.s. | 0.561 | n.s. | 0.480 | n.s | 0.664 | n.s. | 0.642 | n.s. | 0.561 | n.s. | 0.561 | n.s. | 0.561 | n.s. | 0.561 | n.s. |
Histology | 0.024 | 0.031 | 0.012 | 0.018 | 0.024 | 0.031 | 0.012 | 0.018 | 0.022 | 0.029 | 0.038 | n.s. | 0.024 | 0.031 | 0.024 | n.s. | 0.024 | 0.031 | 0.024 | n.s. |
UICC | 0.094 | n.s. | 0.099 | n.s. | 0.094 | n.s. | 0.099 | n.s | 0.112 | n.s. | 0.058 | n.s. | 0.094 | n.s. | 0.094 | n.s. | 0.094 | n.s. | 0.094 | n.s. |
Charlson Comorbidity Index | 0.235 | n.s. | 0.147 | n.s. | 0.235 | n.s. | 0.147 | n.s | 0.340 | n.s. | 0.305 | n.s. | 0.235 | n.s. | 0.235 | n.s. | 0.235 | n.s. | 0.235 | n.s. |
PTV (ml) | 0.601 | n.s. | 0.609 | n.s. | 0.601 | n.s. | 0.609 | n.s | 0.500 | n.s. | 0.721 | n.s. | 0.601 | n.s. | 0.601 | n.s. | 0.601 | n.s. | 0.601 | n.s. |
Systemic therapy | 0.928 | n.s. | 0.958 | n.s. | 0.928 | n.s. | 0.958 | n.s | 0.957 | n.s. | 0.683 | n.s. | 0.928 | n.s. | 0.928 | n.s. | 0.928 | n.s. | 0.928 | n.s. |
EQD2 tumor total | 0.624 | n.s. | 0.648 | n.s. | 0.624 | n.s. | 0.648 | n.s | 0.837 | n.s. | 0.697 | n.s. | 0.624 | n.s. | 0.624 | n.s. | 0.624 | n.s. | 0.624 | n.s. |
EQD2 LN total | 0.111 | n.s. | 0.143 | n.s. | 0.111 | n.s. | 0.143 | n.s | 0.131 | n.s. | 0.118 | n.s. | 0.111 | n.s. | 0.111 | n.s. | 0.111 | n.s. | 0.111 | n.s. |
MTV | 0.652 | n.s. | 0.027 | n.s. | n.a | n.a | n.a. | n.a. | n.a. | n.a. | n.a. | n.s. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
TLG | n.a. | n.a. | n.a. | n.a. | 0.945 | n.s. | 0.027 | n.s | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
SULpeak | n.a. | n.a. | n.a. | n.a. | n.a | n.a. | n.a. | n.a. | 0.032 | n.s. | 0.007 | 0.010 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
SUV max | n.a. | n.a. | n.a. | n.a. | n.a | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.053 | n.s. | 0.007 | 0.009 | n.a. | n.a. | n.a. | n.a. |
SULmax | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.072 | n.s. | 0.007 | 0.009 |
Locoregional Control (LRC) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Primary (n = 47) | LN (n = 46) | Primary (n = 47) | LN (n = 46) | Primary (n = 44) | LN (n = 44) | Primary (n = 47) | LN (n = 47) | Primary (n = 47) | LN (n = 47) | ||||||||||
UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | UVA | MVA | |
Tumor location | 0.524 | n.s. | 0.604 | n.s. | 0.524 | n.s. | 0.604 | n.s. | 0.434 | n.s. | 0.747 | n.s. | 0.524 | n.s. | 0.524 | n.s. | 0.524 | n.s. | 0.524 | n.s. |
Age | 0.126 | n.s. | 0.125 | n.s. | 0.126 | n.s. | 0.125 | n.s. | 0.157 | n.s. | 0.125 | n.s. | 0.126 | n.s. | 0.126 | n.s. | 0.126 | n.s. | 0.126 | n.s. |
Sex | 0.567 | n.s. | 0.627 | n.s. | 0.567 | n.s. | 0.627 | n.s. | 0.429 | n.s. | 0.664 | n.s. | 0.567 | n.s. | 0.567 | n.s. | 0.567 | n.s. | 0.567 | n.s. |
Weight loss | 0.386 | n.s. | 0.331 | n.s. | 0.386 | n.s. | 0.331 | n.s. | 0.479 | n.s. | 0.478 | n.s. | 0.386 | n.s. | 0.386 | n.s. | 0.386 | n.s. | 0.386 | n.s. |
Histology | 0.055 | n.s. | 0.035 | 0.046 | 0.055 | n.s. | 0.035 | 0.046 | 0.037 | 0.049 | 0.104 | n.s. | 0.055 | n.s. | 0.055 | n.s. | 0.055 | n.s. | 0.055 | n.s. |
UICC | 0.065 | n.s. | 0.069 | n.s. | 0.065 | n.s. | 0.069 | n.s. | 0.076 | n.s. | 0.040 | n.s. | 0.065 | n.s. | 0.065 | n.s. | 0.065 | n.s. | 0.065 | n.s. |
Charlson Comorbidity Index | 0.827 | n.s. | 0.754 | n.s. | 0.827 | n.s. | 0.754 | n.s. | 0.874 | n.s. | 0.928 | n.s. | 0.827 | n.s. | 0.827 | n.s. | 0.824 | n.s. | 0.824 | n.s. |
PTV (ml) | 0.426 | n.s. | 0.427 | n.s. | 0.426 | n.s. | 0.427 | n.s. | 0.336 | n.s. | 0.520 | n.s. | 0.426 | n.s. | 0.426 | n.s. | 0.426 | n.s. | 0.426 | n.s. |
Systemic therapy | 0.732 | n.s. | 0.775 | n.s. | 0.732 | n.s. | 0.775 | n.s. | 0.750 | n.s. | 0.366 | n.s. | 0.732 | n.s. | 0.732 | n.s. | 0.732 | n.s. | 0.732 | n.s. |
EQD2 tumor total | 0.798 | n.s. | 0.824 | n.s. | 0.798 | n.s. | 0.824 | n.s. | 0.983 | n.s. | 0.874 | n.s. | 0.798 | n.s. | 0.798 | n.s. | 0.798 | n.s. | 0.798 | n.s. |
EQD2 LN total | 0.092 | n.s. | 0.114 | n.s. | 0.092 | n.s. | 0.114 | n.s. | 0.103 | n.s. | 0.095 | n.s. | 0.092 | n.s. | 0.092 | n.s. | 0.092 | n.s. | 0.092 | n.s. |
MTV | 0.433 | n.s. | 0.038 | n.s. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
TLG | n.a. | n.a | n.a. | n.a. | 0.656 | n.s. | 0.038 | n.s. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
SULpeak | n.a. | n.a | n.a. | n.a. | n.a. | n.a | n.a. | n.a. | 0.276 | n.s. | 0.012 | 0.017 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
SUV max | n.a. | n.a | n.a. | n.a. | n.a. | n.a | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.151 | n.s. | 0.004 | 0.006 | n.a. | n.a. | n.a. | n.a. |
SULmax | n.a. | n.a | n.a. | n.a | n.a. | n.a | n.a. | n.a | n.a. | n.a | n.a. | n.a | n.a. | n.a | n.a. | n.a | 0.229 | n.s. | 0.004 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grambozov, B.; Zamani-Siahkali, N.; Stana, M.; Beheshti, M.; Ruznic, E.; Iskakova, Z.; Karner, J.; Zellinger, B.; Gerum, S.; Roeder, F.; et al. Delta Changes in [18F]FDG PET/CT Parameters Can Prognosticate Clinical Outcomes in Recurrent NSCLC Patients Who Have Undergone Reirradiation–Chemoimmunotherapy. Biomedicines 2025, 13, 1866. https://doi.org/10.3390/biomedicines13081866
Grambozov B, Zamani-Siahkali N, Stana M, Beheshti M, Ruznic E, Iskakova Z, Karner J, Zellinger B, Gerum S, Roeder F, et al. Delta Changes in [18F]FDG PET/CT Parameters Can Prognosticate Clinical Outcomes in Recurrent NSCLC Patients Who Have Undergone Reirradiation–Chemoimmunotherapy. Biomedicines. 2025; 13(8):1866. https://doi.org/10.3390/biomedicines13081866
Chicago/Turabian StyleGrambozov, Brane, Nazanin Zamani-Siahkali, Markus Stana, Mohsen Beheshti, Elvis Ruznic, Zarina Iskakova, Josef Karner, Barbara Zellinger, Sabine Gerum, Falk Roeder, and et al. 2025. "Delta Changes in [18F]FDG PET/CT Parameters Can Prognosticate Clinical Outcomes in Recurrent NSCLC Patients Who Have Undergone Reirradiation–Chemoimmunotherapy" Biomedicines 13, no. 8: 1866. https://doi.org/10.3390/biomedicines13081866
APA StyleGrambozov, B., Zamani-Siahkali, N., Stana, M., Beheshti, M., Ruznic, E., Iskakova, Z., Karner, J., Zellinger, B., Gerum, S., Roeder, F., Pirich, C., & Zehentmayr, F. (2025). Delta Changes in [18F]FDG PET/CT Parameters Can Prognosticate Clinical Outcomes in Recurrent NSCLC Patients Who Have Undergone Reirradiation–Chemoimmunotherapy. Biomedicines, 13(8), 1866. https://doi.org/10.3390/biomedicines13081866