Novel Interventions to Improve Adherence to Guideline-Directed Medical Therapy in Claudicants
Abstract
1. Introduction
2. Optimal Medical Therapy
2.1. Current Guideline Recommendations
2.2. Adherence Rates to OMT
2.3. Current and Upcoming Interventions
Study Title and Year | Intervention | Control | Study Sample | Primary Outcome | Results |
---|---|---|---|---|---|
Effects of a person−centered, nurse−led follow−up programme on adherence to prescribed medication among patients surgically treated for intermittent claudication: randomized clinical trial (2022) [47] | Three visits and two telephone calls by a specially trained vascular nurse over one year after revascularization | Two visits after surgery to vascular surgeon or nurse | Two centers, 214 patients | Proportion of days covered (PDC) (number of available dispensed doses via registry data/number of days patient prescribed the medication) | No difference in PDC for lipid−modifying agents, antiplatelets, anticoagulants |
Randomised trial of telephone counselling to improve participants' adherence to prescribed drugs in a vascular screening trial (2020) [48] | 5−15 min sessions of telephone counseling by nurse regarding refilling prescriptions, side effects, and health advice | No telephone counseling | 1446 patients with AAA, PAD, or hypertension | Proportion of days covered (PDC) by statin, antithrombotic, and antihypertensive agents at 6−month follow-up | Increase in PDC for statins at 6 months. No other differences noted at 6, 12, and 60 months. |
Effect of Text Messaging on Risk Factor Management in Patients With Coronary Heart Disease: The CHAT Randomized Clinical Trial (2019) [49] | Six texts/week of education information related to disease knowledge, physical activity, and medication adherence | Two thank you text messages a month | 37 hospitals, 822 patients with coronary heart disease | Systolic blood pressure at six months | No differences in blood pressure at six months. No differences in LDL, physical activity, or smoking activity. |
Cluster Randomized Trial of a Personalized Clinical Decision Support Intervention to Improve Statin Prescribing in Patients With Atherosclerotic Cardiovascular Disease (2023) [52] | Clinical decision support tool to alerts physicians before clinic visits about current statin and dose, date of last fill, type of side effect | Usual clinician access to patient dashboard detailing compliance with statin | 27 primary care clinics, 36,641 patients with cardiovascular disease | Statin adherence (defined as proportion of days covered for statin > 80%) | Absolute change in statin adherence was +10.1% in intervention group vs −0.18% decrease in control group |
A polypill strategy to improve adherence: results from the FOCUS project (2014) [53] | Polypill containing aspirin 100 mg, simvastatin 40 mg, and ramipril 2.5/5/10 mg | Three drugs given separately | 2118 patients | Medication adherence via Morisky−Green Questionnaire (MAQ) and pill count after nine months | Adherence was 50.8% in intervention group versus 41% (p = 0.02). No difference in blood pressure or cholesterol levels. |
3. Supervised Exercise Therapy
3.1. Mechanisms and Benefits of Supervised Exercise Therapy
3.2. Adherence to Supervised Exercise Therapy
3.3. Interventions to Enhance and Facilitate SET
4. Patient-Reported Outcome Measures
4.1. Existing PROMs for Claudication
4.2. Barriers to PROM Implementation
4.3. Keys to PROM Adoption
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aday, A.W.; Matsushita, K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ. Res. 2021, 128, 1818–1832. [Google Scholar] [CrossRef]
- Meru, A.V.; Mittra, S.; Thyagarajan, B.; Chugh, A. Intermittent claudication: An overview. Atherosclerosis 2006, 187, 221–237. [Google Scholar] [CrossRef]
- Conte, M.S.; Pomposelli, F.B.; Clair, D.G.; Geraghty, P.J.; McKinsey, J.F.; Mills, J.L.; Moneta, G.L.; Murad, M.H.; Powell, R.J.; Reed, A.B.; et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: Management of asymptomatic disease and claudication. J. Vasc. Surg. 2015, 61 (Suppl. S3), 2S–41S. [Google Scholar] [CrossRef]
- Sachs, T.; Pomposelli, F.; Hamdan, A.; Wyers, M.; Schermerhorn, M. Trends in the national outcomes and costs for claudication and limb threatening ischemia: Angioplasty vs bypass graft. J. Vasc. Surg. 2011, 54, 1021–1031.e1. [Google Scholar] [CrossRef] [PubMed]
- Thanigaimani, S.; Phie, J.; Sharma, C.; Wong, S.; Ibrahim, M.; Huynh, P.; Moxon, J.; Jones, R.; Golledge, J. Network Meta-Analysis Comparing the Outcomes of Treatments for Intermittent Claudication Tested in Randomized Controlled Trials. J. Am. Heart Assoc. 2021, 10, e019672. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Banerjee, S.; Ngo, C.; Mody, P.; Marso, S.P.; Brilakis, E.S.; Armstrong, E.J.; Giri, J.; Bonaca, M.P.; Pradhan, A.; et al. Comparative Efficacy of Endovascular Revascularization Versus Supervised Exercise Training in Patients with Intermittent Claudication: Meta-Analysis of Randomized Controlled Trials. JACC Cardiovasc. Interv. 2017, 10, 712–724. [Google Scholar] [CrossRef] [PubMed]
- Madabhushi, V.; Davenport, D.; Jones, S.; Khoudoud, S.A.; Orr, N.; Minion, D.; Endean, E.; Tyagi, S. Revascularization of intermittent claudicants leads to more chronic limb-threatening ischemia and higher amputation rates. J. Vasc. Surg. 2021, 74, 771–779. [Google Scholar] [CrossRef]
- Woo, K.; Siracuse, J.J.; Klingbeil, K.; Kraiss, L.W.; Osborne, N.H.; Singh, N.; Tan, T.-W.; Arya, S.; Banerjee, S.; Bonaca, M.P.; et al. Society for Vascular Surgery appropriate use criteria for management of intermittent claudication. J. Vasc. Surg. 2022, 76, 3–22.e1. [Google Scholar] [CrossRef]
- Gornik, H.L.; Aronow, H.D.; Goodney, P.P.; Arya, S.; Brewster, L.P.; Byrd, L.; Chandra, V.; Drachman, D.E.; Eaves, J.M.; Ehrman, J.K.; et al. 2024 ACC/AHA/AACVPR/APMA/ABC/SCAI/SVM/SVN/SVS/SIR/VESS Guideline for the Management of Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 2497–2604. [Google Scholar] [CrossRef]
- Bath, J.; Lawrence, P.F.; Neal, D.; Zhao, Y.; Smith, J.B.; Beck, A.W.; Conte, M.; Schermerhorn, M.; Woo, K. Endovascular interventions for claudication do not meet minimum standards for the Society for Vascular Surgery efficacy guidelines. J. Vasc. Surg. 2021, 73, 1693–1700.e3. [Google Scholar] [CrossRef]
- Jarosinski, M.C.; Hafeez, M.S.; Sridharan, N.D.; Andraska, E.A.; Meyer, J.M.; Khamzina, Y.; Tzeng, E.; Reitz, K.M. Markers of optimal medical therapy are associated with improved limb outcomes after elective revascularization for intermittent claudication. J. Vasc. Surg. 2025, 81, 200–209.e3. [Google Scholar] [CrossRef]
- Dua, A.; Gologorsky, R.; Savage, D.; Rens, N.; Gandhi, N.; Brooke, B.; Corriere, M.; Jackson, E.; Aalami, O. National assessment of availability, awareness, and utilization of supervised exercise therapy for peripheral artery disease patients with intermittent claudication. J. Vasc. Surg. 2020, 71, 1702–1707. [Google Scholar] [CrossRef]
- Holeman, T.A.; Chester, C.; Hales, J.B.; Zhang, Y.; Johnson, C.E.; Brooke, B.S. Long-term patient-reported outcomes among patients undergoing revascularization vs medical therapy for intermittent claudication. J. Vasc. Surg. 2024, 80, 466–477.e4. [Google Scholar] [CrossRef]
- Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Bmj 2002, 324, 71–86. [CrossRef]
- Berger, J.S.; Krantz, M.J.; Kittelson, J.M.; Hiatt, W.R. Aspirin for the prevention of cardiovascular events in patients with peripheral artery disease: A meta-analysis of randomized trials. JAMA 2009, 301, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.S.; Caron, F.; Eikelboom, J.W.; Bosch, J.; Dyal, L.; Aboyans, V.; Abola, M.T.; Branch, K.R.H.; Keltai, K.; Bhatt, D.L.; et al. Major Adverse Limb Events and Mortality in Patients with Peripheral Artery Disease: The COMPASS Trial. J. Am. Coll. Cardiol. 2018, 71, 2306–2315. [Google Scholar] [CrossRef]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Bauersachs, R.M.; Anand, S.S.; Debus, E.S.; Nehler, M.R.; Patel, M.R.; Fanelli, F.; Capell, W.H.; Diao, L.; Jaeger, N.; et al. Rivaroxaban in Peripheral Artery Disease after Revascularization. N. Engl. J. Med. 2020, 382, 1994–2004. [Google Scholar] [CrossRef]
- Anand, S.S.; Bosch, J.; Eikelboom, J.W.; Connolly, S.J.; Diaz, R.; Widimsky, P.; Aboyans, V.; Alings, M.; Kakkar, A.K.; Keltai, K.; et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: An international, randomised, double-blind, placebo-controlled trial. Lancet 2018, 391, 219–229. [Google Scholar] [CrossRef]
- Hiatt, W.R.; Bonaca, M.P.; Patel, M.R.; Nehler, M.R.; Debus, E.S.; Anand, S.S.; Capell, W.H.; Brackin, T.; Jaeger, N.; Hess, C.N.; et al. Rivaroxaban and Aspirin in Peripheral Artery Disease Lower Extremity Revascularization: Impact of Concomitant Clopidogrel on Efficacy and Safety. Circulation 2020, 142, 2219–2230. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Nault, P.; Giugliano, R.P.; Keech, A.C.; Pineda, A.L.; Kanevsky, E.; Kuder, J.; Murphy, S.A.; Jukema, J.W.; Lewis, B.S.; et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation 2018, 137, 338–350. [Google Scholar] [CrossRef]
- Jukema, J.W.; Szarek, M.; Zijlstra, L.E.; de Silva, H.A.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; et al. Alirocumab in Patients with Polyvascular Disease and Recent Acute Coronary Syndrome: ODYSSEY OUTCOMES Trial. J. Am. Coll. Cardiol. 2019, 74, 1167–1176. [Google Scholar] [CrossRef]
- Bonaca, M.P.; Gutierrez, J.A.; Cannon, C.; Giugliano, R.; Blazing, M.; Park, J.G.; White, J.; Tershakovec, A.; Braunwald, E. Polyvascular disease, type 2 diabetes, and long-term vascular risk: A secondary analysis of the IMPROVE-IT trial. Lancet Diabetes Endocrinol. 2018, 6, 934–943. [Google Scholar] [CrossRef]
- Armstrong, E.J.; Wu, J.; Singh, G.D.; Dawson, D.L.; Pevec, W.C.; Amsterdam, E.A.; Laird, J.R. Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease. J. Vasc. Surg. 2014, 60, 1565–1571. [Google Scholar] [CrossRef]
- Selvarajah, S.; Black, J.H.; Malas, M.B.; Lum, Y.W.; Propper, B.W.; Abularrage, C.J. Preoperative smoking is associated with early graft failure after infrainguinal bypass surgery. J. Vasc. Surg. 2014, 59, 1308–1314. [Google Scholar] [CrossRef]
- Barua, R.S.; Rigotti, N.A.; Benowitz, N.L.; Cummings, K.M.; Jazayeri, M.A.; Morris, P.B.; Ratchford, E.V.; Sarna, L.; Stecker, E.C.; Wiggins, B.S. 2018 ACC Expert Consensus Decision Pathway on Tobacco Cessation Treatment: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 2018, 72, 3332–3365. [Google Scholar] [CrossRef] [PubMed]
- Piller, L.B.; Simpson, L.M.; Baraniuk, S.; Habib, G.B.; Rahman, M.; Basile, J.N.; Dart, R.A.; Ellsworth, A.J.; Fendley, H.; Probstfield, J.L.; et al. Characteristics and long-term follow-up of participants with peripheral arterial disease during ALLHAT. J. Gen. Intern. Med. 2014, 29, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Diehm, C.; Pittrow, D.; Lawall, H. Effect of nebivolol vs. hydrochlorothiazide on the walking capacity in hypertensive patients with intermittent claudication. J. Hypertens. 2011, 29, 1448–1456. [Google Scholar] [CrossRef]
- Armstrong, E.J.; Chen, D.C.; Singh, G.D.; Amsterdam, E.A.; Laird, J.R. Angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use is associated with reduced major adverse cardiovascular events among patients with critical limb ischemia. Vasc. Med. 2015, 20, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef]
- Resnick, H.E.; Carter, E.A.; Sosenko, J.M.; Henly, S.J.; Fabsitz, R.R.; Ness, F.K.; Welty, T.K.; Lee, E.T. Incidence of lower-extremity amputation in American Indians: The Strong Heart Study. Diabetes Care 2004, 27, 1885–1891. [Google Scholar] [CrossRef]
- Bedenis, R.; Stewart, M.; Cleanthis, M.; Robless, P.; Mikhailidis, D.P.; Stansby, G. Cilostazol for intermittent claudication. Cochrane Database Syst. Rev. 2014, 2014, CD003748. [Google Scholar] [CrossRef]
- Mohammed, M.; Gosch, K.; Safley, D.; Jelani, Q.U.; Aronow, H.D.; Mena, C.; Shishehbor, M.H.; Spertus, J.A.; Abbott, J.D.; Smolderen, K.G. Cilostazol and peripheral artery disease-specific health status in ambulatory patients with symptomatic PAD. Int. J. Cardiol. 2020, 316, 222–228. [Google Scholar] [CrossRef]
- Ma, B.; Fan, X.; Liu, P. Therapeutic Effects of Medication Use on Intermittent Claudication: A Network Meta-analysis. J. Cardiovasc. Pharmacol. 2021, 77, 253–262. [Google Scholar] [CrossRef]
- Packer, M.; Carver, J.R.; Rodeheffer, R.J.; Ivanhoe, R.J.; DiBianco, R.; Zeldis, S.M.; Hendrix, G.H.; Bommer, W.J.; Elkayam, U.; Kukin, M.L.; et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med. 1991, 325, 1468–1475. [Google Scholar] [CrossRef]
- Broderick, C.; Forster, R.; Abdel-Hadi, M.; Salhiyyah, K. Pentoxifylline for intermittent claudication. Cochrane Database Syst. Rev. 2020, 10, CD005262. [Google Scholar] [CrossRef]
- Dawson, D.L.; Cutler, B.S.; Hiatt, W.R.; Hobson, R.W.; Martin, J.D.; Bortey, E.B.; Forbes, W.P.; Strandness, D.E., Jr. A comparison of cilostazol and pentoxifylline for treating intermittent claudication. Am. J. Med. 2000, 109, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Nordanstig, J.; Behrendt, C.A.; Baumgartner, I.; Belch, J.; Bäck, M.; Fitridge, R.; Hinchliffe, R.; Lejay, A.; Mills, J.L.; Rother, U.; et al. Editor’s Choice -- European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Asymptomatic Lower Limb Peripheral Arterial Disease and Intermittent Claudication. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 9–96. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Saxon, J.T.; Safley, D.M.; Mena-Hurtado, C.; Heyligers, J.; Fitridge, R.; Shishehbor, M.; Spertus, J.A.; Gosch, K.; Patel, M.R.; Smolderen, K.G. Adherence to Guideline-Recommended Therapy-Including Supervised Exercise Therapy Referral-Across Peripheral Artery Disease Specialty Clinics: Insights from the International PORTRAIT Registry. J. Am. Heart Assoc. 2020, 9, e012541. [Google Scholar] [CrossRef]
- Kalbaugh, C.A.; Gonzalez, N.J.; Luckett, D.J.; Fine, J.; Brothers, T.E.; Farber, M.A.; Beck, A.W.; Hallett, J.W.; Marston, W.A.; Vallabhaneni, R. The impact of current smoking on outcomes after infrainguinal bypass for claudication. J. Vasc. Surg. 2018, 68, 495–502.e1. [Google Scholar] [CrossRef]
- Alameddine, D.; Damara, F.A.; Pinto Rodriguez, P.; Huttler, J.; Slade, M.D.; Arhuidese, I.; Aboian, E.; Chaar, C.I.O. The Use and Impact of Cilostazol on Patients Undergoing Endovascular Peripheral Interventions. Ann. Vasc. Surg. 2024, 103, 47–57. [Google Scholar] [CrossRef]
- Cea-Soriano, L.; Fowkes, F.G.R.; Johansson, S.; Allum, A.M.; García Rodriguez, L.A. Time trends in peripheral artery disease incidence, prevalence and secondary preventive therapy: A cohort study in The Health Improvement Network in the UK. BMJ Open 2018, 8, e018184. [Google Scholar] [CrossRef] [PubMed]
- Fan, E.Y.; Crawford, A.S.; Nguyen, T.; Judelson, D.; Learned, A.; Chan, J.; Schanzer, A.; Simons, J.P.; Jones, D.W. Hemoglobin A1c monitoring practices before lower extremity bypass in patients with diabetes vary broadly and do not predict outcomes. J. Vasc. Surg. 2022, 76, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Lampridou, S.; Saghdaoui, L.B.; Reguenga, M.; Davies, A.H.; Wells, M. Understanding adherence to guideline-recommended therapy in patients with peripheral artery disease: A qualitative study. J. Vasc. Nurs. 2025, 43, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Haile, S.T.; Joelsson-Alm, E.; Johansson, U.B.; Lööf, H.; Palmer-Kazen, U.; Gillgren, P.; Linné, A. Effects of a person-centred, nurse-led follow-up programme on adherence to prescribed medication among patients surgically treated for intermittent claudication: Randomized clinical trial. Br. J. Surg. 2022, 109, 846–856. [Google Scholar] [CrossRef]
- Qvist, I.; Lindholt, J.S.; Søgaard, R.; Lorentzen, V.; Hallas, J.; Frost, L. Randomised trial of telephone counselling to improve participants’ adherence to prescribed drugs in a vascular screening trial. Basic. Clin. Pharmacol. Toxicol. 2020, 127, 477–487. [Google Scholar] [CrossRef]
- Zheng, X.; Spatz, E.S.; Bai, X.; Huo, X.; Ding, Q.; Horak, P.; Wu, X.; Guan, W.; Chow, C.K.; Yan, X. Effect of Text Messaging on Risk Factor Management in Patients with Coronary Heart Disease: The CHAT Randomized Clinical Trial. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005616. [Google Scholar] [CrossRef]
- Bae, J.W.; Woo, S.I.; Lee, J.; Park, S.D.; Kwon, S.W.; Choi, S.H.; Yoon, G.-S.; Kim, M.-S.; Hwang, S.-S.; Lee, W.K. mHealth Interventions for Lifestyle and Risk Factor Modification in Coronary Heart Disease: Randomized Controlled Trial. JMIR Mhealth Uhealth 2021, 9, e29928. [Google Scholar] [CrossRef]
- Gobbel, G.T.; Matheny, M.E.; Reeves, R.R.; Akeroyd, J.M.; Turchin, A.; Ballantyne, C.M.; Petersen, L.A.; Virani, S.S. Leveraging structured and unstructured electronic health record data to detect reasons for suboptimal statin therapy use in patients with atherosclerotic cardiovascular disease. Am. J. Prev. Cardiol. 2022, 9, 100300. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Ramsey, D.J.; Westerman, D.; Kuebeler, M.K.; Chen, L.; Akeroyd, J.M.; Gobbel, G.T.; Ballantyne, C.M.; Petersen, L.A.; Turchin, A.; et al. Cluster Randomized Trial of a Personalized Clinical Decision Support Intervention to Improve Statin Prescribing in Patients with Atherosclerotic Cardiovascular Disease. Circulation 2023, 147, 1411–1413. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.M.; Sanz, G.; Peñalvo, J.L.; Bansilal, S.; Fernández-Ortiz, A.; Alvarez, L.; Guzmán, L.; Linares, J.C.; García, F.; D'Aniello, F.; et al. A polypill strategy to improve adherence: Results from the FOCUS project. J. Am. Coll. Cardiol. 2014, 64, 2071–2082. [Google Scholar] [CrossRef]
- Treat-Jacobson, D.; McDermott, M.M.; Beckman, J.A.; Burt, M.A.; Creager, M.A.; Ehrman, J.K.; Gardner, A.W.; Mays, R.J.; Regensteiner, J.G.; Salisbury, D.L.; et al. Implementation of Supervised Exercise Therapy for Patients with Symptomatic Peripheral Artery Disease: A Science Advisory from the American Heart Association. Circulation 2019, 140, e700–e710. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.P.; Cerezo, J.; Cutlip, D.E.; Reynolds, M.R.; Regensteiner, J.G.; Mohler, E.R.; Cohen, D.J.; Massaro, J.M.; Lewis, B.A.; Oldenburg, N.C.; et al. Supervised exercise versus primary stenting for claudication resulting from aortoiliac peripheral artery disease: Six-month outcomes from the claudication: Exercise versus endoluminal revascularization (CLEVER) study. Circulation 2012, 125, 130–139. [Google Scholar] [CrossRef]
- Fakhry, F.; Fokkenrood, H.J.; Spronk, S.; Teijink, J.A.; Rouwet, E.V.; Hunink, M.G.M. Endovascular revascularisation versus conservative management for intermittent claudication. Cochrane Database Syst Rev 2018, 3, CD010512. [Google Scholar] [CrossRef]
- Ehrman, J.K.; Gardner, A.W.; Salisbury, D.; Lui, K.; Treat-Jacobson, D. Supervised Exercise Therapy for Symptomatic Peripheral Artery Disease: A review of current experience and practice-based recommendations. J. Cardiopulm. Rehabil. Prev. 2023, 43, 15–21. [Google Scholar] [CrossRef]
- Harwood, A.E.; Smith, G.E.; Cayton, T.; Broadbent, E.; Chetter, I.C. A Systematic Review of the Uptake and Adherence Rates to Supervised Exercise Programs in Patients with Intermittent Claudication. Ann. Vasc. Surg. 2016, 34, 280–289. [Google Scholar] [CrossRef]
- Cetlin, M.D.; Polonsky, T.; Ho, K.; Zhang, D.; Tian, L.; Zhao, L.; Greenland, P.; Treat-Jacobson, D.; Kibbe, M.R.; Criqui, M.H.; et al. Barriers to participation in supervised exercise therapy reported by people with peripheral artery disease. J. Vasc. Surg. 2023, 77, 506–514. [Google Scholar] [CrossRef]
- McDermott, M.M.; Domanchuk, K.; Liu, K.; Guralnik, J.M.; Tian, L.; Criqui, M.H.; Ferrucci, L.; Kibbe, M.; Jones, D.-L.; Pearce, W.H.; et al. The Group Oriented Arterial Leg Study (GOALS) to improve walking performance in patients with peripheral arterial disease. Contemp. Clin. Trials 2012, 33, 1311–1320. [Google Scholar] [CrossRef]
- McDermott, M.M.; Spring, B.; Tian, L.; Treat-Jacobson, D.; Ferrucci, L.; Lloyd-Jones, D.; Zhao, L.; Polonsky, T.; Kibbe, M.R.; Bazzano, L.; et al. Effect of Low-Intensity vs High-Intensity Home-Based Walking Exercise on Walk Distance in Patients with Peripheral Artery Disease: The LITE Randomized Clinical Trial. JAMA 2021, 325, 1266–1276. [Google Scholar] [CrossRef]
- Normahani, P.; Kwasnicki, R.; Bicknell, C.; Allen, L.; Jenkins, M.P.; Gibbs, R.; Cheshire, N.; Darzi, A.; Riga, C. Wearable Sensor Technology Efficacy in Peripheral Vascular Disease (wSTEP): A Randomized Controlled Trial. Ann. Surg. 2018, 268, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Paldán, K.; Steinmetz, M.; Simanovski, J.; Rammos, C.; Ullrich, G.; Jánosi, R.A.; Moebus, S.; Rassaf, T.; Lortz, J. Supervised Exercise Therapy Using Mobile Health Technology in Patients with Peripheral Arterial Disease: Pilot Randomized Controlled Trial. JMIR Mhealth Uhealth 2021, 9, e24214. [Google Scholar] [CrossRef] [PubMed]
- Cleary, C.M.; Adajian, A.; Gifford, E.D.; Orosco, E.; Li, Y.H.; Healy, L.; Dawiczyk, S.; Bozeman, P.; Guerin, E.; Farrell, H.; et al. Incentives and individualized coaching improve completion rates of supervised exercise therapy for claudication. J. Vasc. Surg. 2024, 80, 821–830.e3. [Google Scholar] [CrossRef]
- US Food & Drug Administration. Guidance for Industry on Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims. In Food & Drug Administration; US Food & Drug Administration: Silver Spring, MD, USA, 2009. [Google Scholar]
- Hicks, C.W.; Vavra, A.K.; Goldsborough, E.; Rebuffatti, M.; Almeida, J.; Duwayri, Y.M.; Haurani, M.; Ross, C.B.; Shah, S.K.; Shireman, P.K.; et al. Current status of patient-reported outcome measures in vascular surgery. J. Vasc. Surg. 2021, 74, 1693–1706.e1. [Google Scholar] [CrossRef]
- Ware, J.E.; Jr Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Myers, S.A.; Johanning, J.M.; Stergiou, N.; Lynch, T.G.; Longo, G.M.; Pipinos, I.I. Claudication distances and the Walking Impairment Questionnaire best describe the ambulatory limitations in patients with symptomatic peripheral arterial disease. J. Vasc. Surg. 2008, 47, 550–555. [Google Scholar] [CrossRef]
- Dyer, M.T.; Goldsmith, K.A.; Sharples, L.S.; Buxton, M.J. A review of health utilities using the EQ-5D in studies of cardiovascular disease. Health Qual. Life Outcomes 2010, 8, 13. [Google Scholar] [CrossRef]
- Fakhry, F.; Spronk, S.; van der Laan, L.; Wever, J.J.; Teijink, J.A.; Hoffmann, W.H.; Smits, T.M.; van Brussel, J.P.; Stultiens, G.N.; Derom, A.; et al. Endovascular Revascularization and Supervised Exercise for Peripheral Artery Disease and Intermittent Claudication: A Randomized Clinical Trial. JAMA 2015, 314, 1936–1944. [Google Scholar] [CrossRef]
- Tepe, G.; Brodmann, M.; Bachinsky, W.; Holden, A.; Zeller, T.; Mangalmurti, S.; Nolte-Ernsting, C.; Virmani, R.; Parikh, S.A.; Gray, W.A. Intravascular Lithotripsy for Peripheral Artery Calcification: Mid-term Outcomes from the Randomized Disrupt PAD III Trial. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100341. [Google Scholar] [CrossRef] [PubMed]
- de Vries, M.; Ouwendijk, R.; Kessels, A.G.; de Haan, M.W.; Flobbe, K.; Hunink, M.G.; van Engelshoven, J.M.; Nelemans, P.J. Comparison of generic and disease-specific questionnaires for the assessment of quality of life in patients with peripheral arterial disease. J. Vasc. Surg. 2005, 41, 261–268. [Google Scholar] [CrossRef]
- McDermott, M.M.; Liu, K.; Guralnik, J.M.; Martin, G.J.; Criqui, M.H.; Greenland, P. Measurement of walking endurance and walking velocity with questionnaire: Validation of the walking impairment questionnaire in men and women with peripheral arterial disease. J. Vasc. Surg. 1998, 28, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Liu, K.; Ferrucci, L.; Criqui, M.H.; Tian, L.; Guralnik, J.M.; Tao, H.; McDermott, M.M. The Walking Impairment Questionnaire stair-climbing score predicts mortality in men and women with peripheral arterial disease. J. Vasc. Surg. 2012, 55, 1662–1673.e2. [Google Scholar] [CrossRef]
- Holeman, T.A.; Hales, J.; Cizik, A.M.; Zickmund, S.; Kean, J.; Brooke, B.S. Factors that impact the implementation of patient reported outcomes in routine clinical care for peripheral artery disease from the patient perspective. Qual. Life Res. 2025, 34, 711–723. [Google Scholar] [CrossRef]
- Pasqualini, I.; Piuzzi, N.S. New CMS Policy on the Mandatory Collection of Patient-Reported Outcome Measures for Total Hip and Knee Arthroplasty by 2027: What Orthopaedic Surgeons Should Know. J. Bone Jt. Surg. Am. 2024, 106, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Harwood, A.E.; Totty, J.P.; Broadbent, E.; Smith, G.E.; Chetter, I.C. Quality of life in patients with intermittent claudication. Gefasschirurgie 2017, 22, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Rolstad, S.; Adler, J.; Rydén, A. Response burden and questionnaire length: Is shorter better? A review and meta-analysis. Value Health 2011, 14, 1101–1108. [Google Scholar] [CrossRef]
- Roberts, A.; Benterud, E.; Santana, M.J.; Engbers, J.; Lorenz, C.; Verdin, N.; Pearson, W.; Edgar, P.; Adekanye, J.; Javaheri, P.; et al. APPROACH e-PROM system: A user-centered development and evaluation of an electronic patient-reported outcomes measurement system for management of coronary artery disease. J. Patient Rep. Outcomes 2024, 8, 102. [Google Scholar] [CrossRef]
- Kane, L.T.; Namdari, S.; Plummer, O.R.; Beredjiklian, P.; Vaccaro, A.; Abboud, J.A. Use of Computerized Adaptive Testing to Develop More Concise Patient-Reported Outcome Measures. JBJS Open Access 2020, 5, e0052. [Google Scholar] [CrossRef]
- Wagle, N. Implementing patient-reported outcome measures. NEJM Catal. 2017, 3. [Google Scholar]
- Rotenstein, L.S.; Agarwal, A.; O’Neil, K.; Kelly, A.; Keaty, M.; Whitehouse, C.; Kalinowski, B.; Orio, P.F.; Wagle, N.; E Martin, N. Implementing patient-reported outcome surveys as part of routine care: Lessons from an academic radiation oncology department. J. Am. Med. Inf. Assoc. 2017, 24, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Beaton, D.E.; Boers, M.; Wells, G.A. Many faces of the minimal clinically important difference (MCID): A literature review and directions for future research. Curr. Opin. Rheumatol. 2002, 14, 109–114. [Google Scholar] [CrossRef] [PubMed]
Study Title and Year | Intervention | Control | Study Sample | Primary Outcome | Results |
---|---|---|---|---|---|
Home−Based Walking Exercise Intervention in Peripheral Artery Disease A Randomized Clinical Trial (2013) [60] | Home−based group−mediated cognitive behavioral walking intervention | Weekly lectures on health−related topics | 194 patients | Six−minute walk performance at six−month follow-up | Intervention group increased 6−minute walk distance from 357.4 to 399.8 meters. Control group decreased from 353.3 to 342.2 m. |
Wearable Sensor Technology Efficacy in Peripheral Vascular Disease (wSTEP): A Randomized Controlled Trial (2018) [62] | Wrist-worn activity monitor to track and encourage daily walking, in addition to SET session | SET only | 37 patients | Maximum walking distance at 3, 6, and 12 months | Intervention group showed improvement in MWD at 3, 6, and 12 months. No improvements were seen in control group. |
Supervised Exercise Therapy Using Mobile Health Technology in Patients With Peripheral Arterial Disease: Pilot Randomized Controlled Trial (2021) [63] | TrackPAD app to track SET sessions. App monitors training duration, step count, and pain levels. | SET only | 39 patients | Six−minute walking distance at three months | Intervention group increased their six−minute walking distance. Control group decreased their walking distance. |
Incentives and individualized coaching improve completion rates of supervised exercise therapy for claudication (2024) [64] | Financial incentive of $180, scheduled health coaching, information materials, alongside SET | SET only | 73 patients | SET completion rate | Intervention increased SET completion rate from 54% to 76.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.; Bulatao, N.; Tanious, A. Novel Interventions to Improve Adherence to Guideline-Directed Medical Therapy in Claudicants. J. Clin. Med. 2025, 14, 5309. https://doi.org/10.3390/jcm14155309
Shi R, Bulatao N, Tanious A. Novel Interventions to Improve Adherence to Guideline-Directed Medical Therapy in Claudicants. Journal of Clinical Medicine. 2025; 14(15):5309. https://doi.org/10.3390/jcm14155309
Chicago/Turabian StyleShi, Richard, Nicholas Bulatao, and Adam Tanious. 2025. "Novel Interventions to Improve Adherence to Guideline-Directed Medical Therapy in Claudicants" Journal of Clinical Medicine 14, no. 15: 5309. https://doi.org/10.3390/jcm14155309
APA StyleShi, R., Bulatao, N., & Tanious, A. (2025). Novel Interventions to Improve Adherence to Guideline-Directed Medical Therapy in Claudicants. Journal of Clinical Medicine, 14(15), 5309. https://doi.org/10.3390/jcm14155309