Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,316)

Search Parameters:
Keywords = optically active

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4356 KB  
Article
Loading-Controlled Photoactivity in TiO2@BiVO4 Heterostructures
by Małgorzata Knapik, Wojciech Zając, Agnieszka Wojteczko and Anita Trenczek-Zając
Molecules 2026, 31(2), 353; https://doi.org/10.3390/molecules31020353 (registering DOI) - 19 Jan 2026
Abstract
In this study, we have investigated heterostructural TiO2/BiVO4 anodes to determine the effect of the amount and form of BiVO4 nanoparticles on TiO2 on the response of photoanodes under UV and visible illumination. BiVO4 nanopowders were prepared [...] Read more.
In this study, we have investigated heterostructural TiO2/BiVO4 anodes to determine the effect of the amount and form of BiVO4 nanoparticles on TiO2 on the response of photoanodes under UV and visible illumination. BiVO4 nanopowders were prepared and annealed at temperatures ranging from 200 to 500 °C. Structural and optical characterization indicates that as the annealing temperature is increased, a phase transition from a weakly ordered to a dominant monoclinic BiVO4 phase is observed, which is accompanied by an increase in visible light absorption. Subsequently, the most crystalline powder was utilized to deposit BiVO4 on nanostructured TiO2 either as a compact overlayer (drop-casting) or as a progressively grown nanoparticle (TiO2@S series) in the successive ionic layer adsorption and reaction process (SILAR). Photoelectrochemical measurements were performed, revealing a morphology-dependent photocurrent response under UV and visible illumination. A further increase in the number of cycles systematically increases the photocurrent in the visible light range while limiting the response to UV radiation. The TiO2@d photoanode demonstrates the highest relative activity within the visible range; however, it also generates the lowest absolute photocurrent, indicating the presence of significant transport and recombination losses within the thick BiVO4 layer. The results demonstrate that the presence of BiVO4 nanoparticles on TiO2 exerts a substantial influence on the separation of charge between semiconductors and the synergistic utilization of photons from the UV and visible ranges. This research yielded a proposed scheme of mutual band arrangement and charge carrier transfer mechanism in TiO2@BiVO4 heterostructures. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

16 pages, 2121 KB  
Article
Effect of Monomer Feeding Strategy on the Sequence and Properties of Fluorine-Containing Polyarylates via Interfacial Polycondensation
by Lingli Li, Tiantian Li, Siyu Chen, Jintang Duan, Cailiang Zhang, Xueping Gu and Lianfang Feng
Polymers 2026, 18(2), 267; https://doi.org/10.3390/polym18020267 - 19 Jan 2026
Abstract
Fluorine-containing polyarylates (F-PARs) were synthesized via interfacial polycondensation of hexafluorobisphenol A (BPAF), bisphenol A (BPA), and two acyl chloride monomers under four feeding strategies. Sequential feeding affords the highest Mw (2.02 × 105 g/mol) and high alternating sequence content; the one-pot [...] Read more.
Fluorine-containing polyarylates (F-PARs) were synthesized via interfacial polycondensation of hexafluorobisphenol A (BPAF), bisphenol A (BPA), and two acyl chloride monomers under four feeding strategies. Sequential feeding affords the highest Mw (2.02 × 105 g/mol) and high alternating sequence content; the one-pot method gives intermediate Mw and a random sequence; and segmented and parallel methods yield lower-Mw polymers and pseudo-block sequences. Time-resolved GPC results reveal that the concentration of -CF3-activated acyl chloride termini during chain propagation controls the subsequent chain propagation and, thus, the final Mw. Consequently, sequential feeding delivers the highest Tg (215 °C) and stiffness (2.51 GPa) for thermal–mechanical loads; the one-pot protocol maximizes optical clarity (T450 = 85%) for transparent films. Systematic variation in the BPAF/BPA ratio via sequential feeding further reveals that higher BPAF content increases Mw, enhances thermal stability, and blue-shifts UV absorption, whereas BPA-rich compositions improve the tensile strength and modulus. These findings provide a quantitative roadmap for the rational design of F-PAR chain architectures, enabling on-demand tuning of thermal, mechanical, and optical properties without additional synthetic complexity. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 3115 KB  
Article
BINOL-Based Zirconium Metal–Organic Cages: Self-Assembly, Guest Complexation, Aggregation-Induced Emission, and Circularly Polarized Luminescence
by Yawei Liu, Gen Li, Roy Lavendomme, En-Qing Gao and Dawei Zhang
Nanomaterials 2026, 16(2), 132; https://doi.org/10.3390/nano16020132 - 19 Jan 2026
Abstract
The development of nanoscale chiral materials with enhanced optical properties holds significant promise for advancing technologies in light-emitting devices and enantioselective sensing. Here, we report the self-assembly of chiral metal–organic cages from an axially chiral, AIE-active binaphthyl dicarboxylate ligand. This supramolecular architecture functions [...] Read more.
The development of nanoscale chiral materials with enhanced optical properties holds significant promise for advancing technologies in light-emitting devices and enantioselective sensing. Here, we report the self-assembly of chiral metal–organic cages from an axially chiral, AIE-active binaphthyl dicarboxylate ligand. This supramolecular architecture functions as a multifunctional platform, demonstrating a high affinity for anionic guests through synergistic electrostatic and hydrogen-bonding interactions. The rigid cage framework not only enhances the ligand’s intrinsic aggregation-induced emission (AIE) but also serves as a highly effective chiral amplifier. Notably, MOCs significantly boost the circularly polarized luminescence (CPL), achieving a luminescence dissymmetry factor (|glum|) of 1.2 × 10−3. This value represents an approximately five-fold enhancement over that of the unassembled ligand. The photophysical properties of this chiral supramolecular system provide a strategic blueprint for designing next-generation optical nanomaterials. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

15 pages, 1640 KB  
Article
Formulation and Characterization of Hydrogel Chitosan–Pectin Active Films Containing Silymarin
by Svetla Dyankova, Nadya Bozakova, Vanya Boneva, Ayten Solak and Veselin Ivanov
Molecules 2026, 31(2), 322; https://doi.org/10.3390/molecules31020322 - 17 Jan 2026
Viewed by 156
Abstract
Silymarin—a standardized extract from the seeds of milk thistle (Silybum marianum L. Gaertn.)—is mainly used for the treatment of hepatitis and other liver diseases. In recent years, the attention of researchers has been directed to its use in dermatology and wound treatment. [...] Read more.
Silymarin—a standardized extract from the seeds of milk thistle (Silybum marianum L. Gaertn.)—is mainly used for the treatment of hepatitis and other liver diseases. In recent years, the attention of researchers has been directed to its use in dermatology and wound treatment. Despite the promising results, there are still many unresolved issues in this area. The aim of the present study is to develop and characterize hydrogel chitosan–pectin films containing silymarin as an active ingredient with potential medical application. Six variants of hydrogel films (control and silymarin-loaded) were obtained from chitosan and pectin solutions by the casting method and analyzed in terms of their physicochemical, structural, mechanical and optical properties, as well as the in vitro dissolution profile of silymarin. The highest tensile strength was measured for the chitosan-based films—23.35 ± 1.74 MPa (control) and 22.01 ± 2.67 MPa (silymarin-loaded), while the barrier properties to UV and visible light were the strongest for chitosan–pectin films with silymarin. The antioxidant potential of the films was determined by DPPH assay and it was found that the variants with silymarin have over 20 times higher antioxidant activity (from 2.020 ± 0.048 to 2.106 ± 0.190 mg TE/g) than the corresponding controls. The results showed that chitosan–pectin films with incorporated silymarin could find application as potential hydrogel dressings in the therapy of wounds and superficial burns. Full article
(This article belongs to the Special Issue Natural Extracts for Pharmaceutical Applications)
Show Figures

Figure 1

15 pages, 2212 KB  
Article
Enhancing User Experience in Virtual Reality Through Optical Flow Simplification with the Help of Physiological Measurements: Pilot Study
by Abdualrhman Abdalhadi, Nitin Koundal, Mahdiyeh Sadat Moosavi, Ruding Lou, Mohd Zuki bin Yusoff, Frédéric Merienne and Naufal M. Saad
Sensors 2026, 26(2), 610; https://doi.org/10.3390/s26020610 - 16 Jan 2026
Viewed by 144
Abstract
The use of virtual reality (VR) has made significant advancements, and now it is widely used across a range of applications. However, consumers’ capacity to fully enjoy VR experiences continues to be limited by a chronic problem known as cybersickness (CS). This study [...] Read more.
The use of virtual reality (VR) has made significant advancements, and now it is widely used across a range of applications. However, consumers’ capacity to fully enjoy VR experiences continues to be limited by a chronic problem known as cybersickness (CS). This study explores the feasibility of mitigating CS through geometric scene simplification combined with electroencephalography (EEG)-based monitoring. According to the sensory conflict theory, this issue is caused by the discrepancy between the visually induced self-motion (VIMS) through immersive displays and the real motion the vestibular system detects. While prior mitigation strategies have largely relied on hardware modifications or visual field restrictions, this paper introduces a novel framework that integrates geometric scene simplification with EEG-based neurophysiological activity to reduce VIMS during VR immersion. The proposed framework combines EEG neurophysiology, allowing us to monitor users’ brainwave activity and cognitive states during virtual immersion experience. The empirical evidence from our investigation shows a correlation between CS manifestation and neural activation in the parietal and temporal lobes. As an experiment with 15 subjects, statistical differences were significantly different with P= 0.001 and large effect size η2=0.28, while preliminary trends suggest lower neural activation during simplified scenes. Notably, a decrease in neural activation corresponding to reduced optic flow (OF) suggests that VR environment simplification may help attenuate CS symptoms, providing preliminary support for the proposed strategy. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

27 pages, 6715 KB  
Article
Study on the Lagged Response Mechanism of Vegetation Productivity Under Atypical Anthropogenic Disturbances Based on XGBoost-SHAP
by Jingdong Sun, Longhuan Wang, Shaodong Huang, Yujie Li and Jia Wang
Remote Sens. 2026, 18(2), 300; https://doi.org/10.3390/rs18020300 - 16 Jan 2026
Viewed by 170
Abstract
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. [...] Read more.
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. This study combined multi-source environmental data with an interpretable machine learning framework (XGBoost-SHAP) to analyze spatiotemporal variations in net primary productivity (NPP) across the Beijing-Tianjin-Hebei region during the strict lockdown (March–May) and recovery (June–August) periods, using 2017–2019 as a baseline. Results indicate that: (1) NPP showed a significant increase during lockdown, with 88.4% of pixels showing positive changes, especially in central urban areas. During recovery, vegetation responses weakened (65.31% positive) and became more spatially heterogeneous. (2) Integrating lagged environmental variables improved model performance (R2 increased by an average of 0.071). SHAP analysis identified climatic factors (temperature, precipitation, radiation) as dominant drivers of NPP, while aerosol optical depth (AOD) and nighttime light (NTL) had minimal influence and weak lagged effects. Importantly, under lockdown, vegetation exhibited stronger immediate responses to concurrent temperature, precipitation, and radiation (SHAP contribution increased by approximately 7.05% compared to the baseline), whereas lagged effects seen in baseline conditions were substantially reduced. Compared to the lockdown period, anthropogenic disturbances during the recovery phase showed a direct weakening of their impact (decreasing by 6.01%). However, the air quality improvements resulting from the spring lockdown exhibited a significant cross-seasonal lag effect. (3) Spatially, NPP response times showed an “urban-immediate, mountainous-delayed” pattern, reflecting both the ecological memory of mountain systems and the rapid adjustment capacity of urban vegetation. These findings demonstrate that short-term removal of anthropogenic disturbances shifted vegetation responses toward greater immediacy and sensitivity to environmental conditions. This offers new insights into a “green window period” for ecological management and supports evidence-based, adaptive regional climate and ecosystem policies. Full article
Show Figures

Figure 1

25 pages, 5742 KB  
Article
Functionalization of Photopolymer with Laser-Ablated Copper NPs: A Comprehensive Study of ROS Generation, Antimicrobial Activity and Cytotoxic Profile
by Dmitriy E. Burmistrov, Dmitriy A. Serov, Lev R. Sizov, Maxim E. Astashev, Ekaterina E. Karmanova, Ilya V. Baimler, Alexander V. Simakin, Dmitriy N. Ignatenko, Fatikh M. Yanbaev, Evgeny V. Kuzmin and Sergey V. Gudkov
Polymers 2026, 18(2), 238; https://doi.org/10.3390/polym18020238 - 16 Jan 2026
Viewed by 83
Abstract
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on [...] Read more.
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on a photopolymerizable acrylate resin modified with laser-ablated copper nanoparticles (Cu NPs). The synthesized Cu NPs exhibited a monomodal size distribution with a peak at 47 nm, a high zeta potential of −33 mV, and a spherical morphology. Incorporation of Cu NPs into the polymer matrix via Masked Stereolithography (MSLA) enabled the fabrication of complex structures that maintained high surface quality and optical transparency after polishing. Modification of photopolymer resin with Cu NPs significantly increased the strength of the resulting products and caused dose-dependent formation of reactive oxygen species (ROS). The resulting composite materials exhibited strong antibacterial activity against E. coli. Crucially, despite their potent antimicrobial efficacy, the materials showed no cytotoxicity towards human fibroblast cultures. These results highlight the potential of these composites for a new generation of biomedical applications, such as implantable devices and wound coatings, which combine programmable antimicrobial activity with high biocompatibility. Full article
Show Figures

Figure 1

21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Viewed by 69
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

22 pages, 1591 KB  
Article
Color Change of Polymerized Smart Bioactive Resin Luting Agents: A Spectrophotometric Analysis Through Varying Nano-Ceramic Hybrid CAD/CAM Composite Thicknesses
by Hanin E. Yeslam and Alaa Turkistani
Processes 2026, 14(2), 314; https://doi.org/10.3390/pr14020314 - 15 Jan 2026
Viewed by 208
Abstract
Using multifunctional dual-cure smart bioactive resin luting agents (DRLs) offers benefits in adhesive dentistry, but their optical stability remains a concern. Their pre-cured form is a shear-thinning structure with thixotropic gel-like behavior. The effect of their hydrophilicity and different thicknesses of nanoceramic hybrid [...] Read more.
Using multifunctional dual-cure smart bioactive resin luting agents (DRLs) offers benefits in adhesive dentistry, but their optical stability remains a concern. Their pre-cured form is a shear-thinning structure with thixotropic gel-like behavior. The effect of their hydrophilicity and different thicknesses of nanoceramic hybrid on the final shade of milled esthetic restorations needs further investigation. This study examined how the optical function deterioration of dual-cure smart bioactive resin luting agents used to bond a CAD/CAM nano-ceramic hybrid composite would influence the restoration’s final shade at three different thicknesses. A nanoceramic hybrid composite (GD) was cut into blocks and grouped by thickness (0.8, 1.0, 1.5 mm). Ten blocks from each group were assigned to subgroups based on the DRL type: Panavia SA Universal (PN), Predicta Bioactive (PR), and ACTIVA BioACTIVE (AC). Color and whiteness changes after a 24 h/day (24 days) coffee immersion were analyzed using statistical methods (ANOVA and Tukey’s HSD for ΔE00; Welch’s ANOVA and Games-Howell for ΔWID and ΔL*). DRL type significantly affected ΔE00, ΔWID, and ΔL* (p < 0.001). All materials showed the least color change and optical function deterioration at a restoration thickness of 1.5 mm, which was below the acceptability threshold (AT). Despite PR’s bioactive functionality, it maintained its primary optical function with the least color change at GD thicknesses of 1.0 and 1.5 mm (p < 0.001). AC exhibited the greatest ΔE00 above AT, especially at a thickness of 0.8 mm (p < 0.001). ΔL*, ΔE00, and ΔWID varied significantly based on DRL type, GD thickness, and the interaction between DRL and thickness (p < 0.05). This suggests that although dual-cure smart DRLs containing bioactive glasses are advantageous, their optical function shifts may become more noticeable in thin, translucent restorations. Increasing the restoration thickness can help mitigate this by altering the optical pathway. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

38 pages, 54018 KB  
Article
Adsorption of Copper (II) from Real Textile Wastewater Using Natural and Waste Materials
by Martyna Gloc, Zdzisława Mrozińska, Marcin H. Kudzin, Iwona Kucińska-Król, Katarzyna Paździor and Magdalena Olak-Kucharczyk
Appl. Sci. 2026, 16(2), 905; https://doi.org/10.3390/app16020905 - 15 Jan 2026
Viewed by 75
Abstract
Heavy metals are major toxic anthropogenic contaminants released into the environment mainly through wastewater discharges. Adsorption is one of the most effective and widely applied methods for their removal from aqueous systems. However, although activated carbon is commonly used, its high cost and [...] Read more.
Heavy metals are major toxic anthropogenic contaminants released into the environment mainly through wastewater discharges. Adsorption is one of the most effective and widely applied methods for their removal from aqueous systems. However, although activated carbon is commonly used, its high cost and limited regenerability motivate the search for cheaper and more environmentally friendly alternatives. In this study, selected natural and waste-derived materials were evaluated for Cu2+ removal from both model solutions and atypical textile wastewater. Coffee grounds, chestnut seeds, acorns, potato peels, eggshells, marine shells, and poultry bones were tested and compared with commercial activated carbon. Their structural and functional properties were characterised using specific surface area measurements, optical microscopy, SEM-EDS, and FTIR analyses. Two adsorption isotherm models (Langmuir and Freundlich) were used to analyse the experimental data for the selected adsorbents, and model parameters were determined by linear regression. Based on model solution tests, two materials showed the highest Cu2+ sorption potential: coarse poultry bones (97.0% at 24 h) and fine cockle shells (96.2% at 24 h). When applied to real textile wastewater, the bone-derived material achieved the highest Cu2+ removal efficiency (79.4%). Although this efficiency is lower than typical values obtained in laboratory solutions, it demonstrates the feasibility of waste-derived materials as low-cost adsorbents and suggests that further optimisation could further improve their performance. Full article
(This article belongs to the Special Issue Advanced Adsorbents for Wastewater Treatment)
Show Figures

Figure 1

10 pages, 3111 KB  
Article
Tunable Optical Bistability in Asymmetric Dielectric Sandwich with Graphene
by Qiawu Lin, Wenyao Liang, Renlong Zhou, Sa Yang and Shuang Li
Nanomaterials 2026, 16(2), 116; https://doi.org/10.3390/nano16020116 - 15 Jan 2026
Viewed by 146
Abstract
This study theoretically investigates the nonlinear optical response of asymmetric dielectric structures embedded with graphene and demonstrates tunable optical bistability in the terahertz frequency range. Our findings reveal that the bistable behavior can be effectively modulated by varying the incident angle, the working [...] Read more.
This study theoretically investigates the nonlinear optical response of asymmetric dielectric structures embedded with graphene and demonstrates tunable optical bistability in the terahertz frequency range. Our findings reveal that the bistable behavior can be effectively modulated by varying the incident angle, the working wavelength, and the thickness and permittivity of the dielectric layers. In symmetric dielectric configurations, transmittance is enhanced, whereas in asymmetric structures, it is reduced. The thresholds of optical bistability decrease with increasing wavelength of the incident light, while they increase with thicker dielectric layers or higher permittivity of the dielectric medium. Furthermore, widening the bistability range can be achieved by increasing the incident angle. The proposed asymmetric graphene–dielectric layered structure offers a promising platform for the development of advanced terahertz active photonic devices, including optical modulators, optical switches, and mid-infrared functional components. Full article
(This article belongs to the Special Issue Nanophotonics, Nonlinear Optics and Optical Antennas)
Show Figures

Figure 1

26 pages, 10014 KB  
Article
Dynamic Monitoring and Analysis of Mountain Excavation and Land Creation Projects in Lanzhou Using Multi-Source Remote Sensing and Machine Learning
by Quanfu Niu, Jiaojiao Lei, Qiong Fang and Lifeng Zhang
Remote Sens. 2026, 18(2), 273; https://doi.org/10.3390/rs18020273 - 14 Jan 2026
Viewed by 129
Abstract
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an [...] Read more.
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an integrated monitoring framework for MELCPs by combining ascending and descending Sentinel-1 SAR data, Sentinel-2 optical imagery, SRTM digital elevation models (DEM), and field survey data. The framework incorporates multi-temporal change detection, random forest classification, and time-series InSAR analysis to systematically capture the spatiotemporal evolution and subsidence mechanisms associated with MELCPs. Key findings include: (1) The use of dual-orbit SAR data significantly improves the detection accuracy of excavation areas, achieving an overall accuracy of 87.1% (Kappa = 0.85) and effectively overcoming observation limitations imposed by complex terrain. (2) By optimizing the combination of spectral, texture, topographic, and polarimetric features using a random forest algorithm, the classification accuracy of MELCPs is enhanced to 91.2% (Kappa = 0.889). This enables precise annual identification of MELCP progression from 2017 to 2022, revealing a three-stage evolution pattern: concentrated expansion, peak activity, and restricted slowdown. Specifically, the reclaimed area increased from 2.66 km2 (pre-2018) to a peak of 12.61 km2 in 2021, accounting for 34.56% of the total area of the study region, before decreasing to 2.69 km2 in 2022. (3) InSAR monitoring from 2017 to 2023 indicates that areas with only filling experience minor shallow subsidence (<50 mm), whereas subsequent building loads and underground engineering activities lead to continuous deep soil consolidation, with maximum cumulative subsidence reaching 333.8 mm. This study demonstrates that subsidence in MELCPs follows distinct spatiotemporal patterns and is predictable, offering important theoretical insights and practical tools for engineering safety management and territorial spatial optimization in mountainous cities. Full article
Show Figures

Figure 1

21 pages, 8110 KB  
Article
Study on the Performance of Bi2O3/BiOBrγIx Adsorptive Photocatalyst for Removal of 2,4-Dichlorophenoxyacetic Acid
by Rixiong Mo, Yuanzhen Li, Bo Liu, Yi Yang, Yaoyao Zhou, Yuxi Cheng, Haorong Shi and Guanlong Yu
Separations 2026, 13(1), 30; https://doi.org/10.3390/separations13010030 - 14 Jan 2026
Viewed by 61
Abstract
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the [...] Read more.
In this study, a novel Bi2O3/BiOBr0.9I0.1 (BO0.9−BBI0.1) composite photocatalyst was successfully synthesized via a single-pot solvothermal method for the efficient degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under visible light. The structure, morphology, and optical properties of the photocatalyst were characterized through X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectra (DRS), Steady-state photoluminescence (PL), and Electrochemical Impedance Spectroscopy (EIS). The composite exhibits a 3D hierarchical morphology with increased specific surface area and optimized pore structure, enhancing pollutant adsorption and providing more active sites. Under visible light irradiation, BO0.9−BBI0.1 achieved a 92.4% removal rate of 2,4-D within 2 h, with a reaction rate constant 5.3 and 4.6 times higher than that of pure BiOBr and BiOI, respectively. Mechanism studies confirm that photogenerated holes (h+) and superoxide radicals (·O2) are the primary active species, and the Z-scheme charge transfer pathway significantly promotes the separation of electron-hole pairs while maintaining strong redox capacity. The catalyst also demonstrated good stability over multiple cycles. This work provides a feasible dual-modification strategy for designing efficient bismuth-based photocatalysts for pesticide wastewater treatment. Full article
Show Figures

Figure 1

14 pages, 1263 KB  
Article
Natural Essential Oils as Promising Antimicrobial Agents to Improve Food Safety: Mechanistic Insights Against Multidrug-Resistant Campylobacter jejuni and Campylobacter coli Isolated from Tunisia
by Manel Gharbi, Chedia Aouadhi, Chadlia Hamdi, Safa Hamrouni and Abderrazak Maaroufi
Foods 2026, 15(2), 308; https://doi.org/10.3390/foods15020308 - 14 Jan 2026
Viewed by 173
Abstract
The increasing prevalence of multidrug-resistant (MDR) Campylobacter species poses a serious threat to food safety and public health, highlighting the urgent need for natural antimicrobial alternatives to conventional antibiotics. This study investigated the antibacterial potential and mechanism of action of seven essential oils [...] Read more.
The increasing prevalence of multidrug-resistant (MDR) Campylobacter species poses a serious threat to food safety and public health, highlighting the urgent need for natural antimicrobial alternatives to conventional antibiotics. This study investigated the antibacterial potential and mechanism of action of seven essential oils (EOs), Cymbopogon citratus, Mentha pulegium, Artemisia absinthium, Myrtus communis, Thymus algeriensis, Thymus capitatus, and Eucalyptus globulus, against multidrug-resistant Campylobacter jejuni and Campylobacter coli. The antimicrobial activity was first assessed by the agar disk diffusion and broth microdilution methods to determine inhibition zones, minimum inhibitory concentrations (MICs), and minimum bactericidal concentrations (MBCs). The most active EOs were further evaluated through time–kill kinetics, cell lysis, salt tolerance, and membrane integrity assays to elucidate their bactericidal mechanisms. Results showed that E. globulus, T. algeriensis, and M. communis exhibited the strongest inhibitory effects, particularly against C. jejuni, with MIC values ranging from 3.125% to 6.25%, while C. coli was more resistant. Time–kill and lysis experiments demonstrated rapid bacterial reduction and significant decreases in optical density, indicating cell disruption. Additionally, EO treatments reduced salt tolerance and induced leakage of cytoplasmic materials, confirming membrane damage. Overall, these findings suggest that selected essential oils exert potent antimicrobial effects through membrane disruption and osmotic imbalance, offering promising natural strategies to control MDR Campylobacter in food systems. The application of such bioactive compounds could contribute significantly to improving food quality, extending shelf life, and enhancing food safety. Full article
Show Figures

Figure 1

21 pages, 2728 KB  
Article
Two Engineered Bacillus subtilis Surfactin High-Producers: Effects of Culture Medium, and Potential Agricultural and Petrochemical Applications
by Graciely Gomes Corrêa, Elvio Henrique Benatto Perino, Cristiano José de Andrade, Maliheh Vahidinasab, Lucas Degang, Behnoush Hosseini, Lars Lilge, Vitória Fernanda Bertolazzi Zocca, Jens Pfannstiel, Danielle Biscaro Pedrolli, Rudolf Hausmann and Jonas Contiero
Biology 2026, 15(2), 146; https://doi.org/10.3390/biology15020146 - 14 Jan 2026
Viewed by 167
Abstract
Two genetically engineered Bacillus subtilis strains, BMV9 and BsB6, were evaluated in terms of culture medium (effect of nutrients on surfactin yield) and potential biotechnological applications of surfactin in agriculture and the petrochemical industry. BMV9 (spo0A3; abrB*; ΔmanPA; [...] Read more.
Two genetically engineered Bacillus subtilis strains, BMV9 and BsB6, were evaluated in terms of culture medium (effect of nutrients on surfactin yield) and potential biotechnological applications of surfactin in agriculture and the petrochemical industry. BMV9 (spo0A3; abrB*; ΔmanPA; sfp+) is, to date, the highest surfactin producer reported scientifically, and BsB6 is a sfp+ laboratory derivative strain that has also demonstrated considerable production potential. To assess their performance, fermentation experiments were conducted in shake flasks using two different culture media, a mineral salt medium and a complex medium, each supplemented with 2% (w/v) glucose. Lipopeptides (surfactin and fengycin) were extracted and quantified at multiple time points (up to 48 h) via high-performance thin-layer chromatography (HPTLC). Optical density, residual glucose, and pH were monitored throughout the cultivation. In parallel, microbial growth in both media were also validated in small-scale cultivation approaches. Antifungal activity of culture supernatants and lipopeptide extracts was tested against two Diaporthe species, key phytopathogens in soybean crops. Given the agricultural relevance of these pathogens, the biocontrol potential of lipopeptides represents a sustainable alternative to conventional chemical fungicides. Additionally, oil displacement tests were performed to evaluate the efficacy of surfactin in enhanced oil recovery (EOR), bioremediation, and related petrochemical processes. High-resolution LC-MS/MS analysis enabled structural characterization and relative quantification of the lipopeptides. Overall, these investigations provide a comprehensive comparison of strain production performance and the associated impact of cultivation media, aiming to define the optimal conditions for economically viable surfactin production and to explore its broader biotechnological applications in agriculture and the petrochemical industry. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

Back to TopTop