Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,387)

Search Parameters:
Keywords = optical imaging satellite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 10199 KB  
Article
Predictive Benthic Habitat Mapping Reveals Significant Loss of Zostera marina in the Puck Lagoon, Baltic Sea, over Six Decades
by Łukasz Janowski, Anna Barańska, Krzysztof Załęski, Maria Kubacka, Monika Michałek, Anna Tarała, Michał Niemkiewicz and Juliusz Gajewski
Remote Sens. 2025, 17(22), 3725; https://doi.org/10.3390/rs17223725 (registering DOI) - 15 Nov 2025
Abstract
This research presents a comprehensive analysis of the spatial extent and temporal change in benthic habitats within the Puck Lagoon in the southern Baltic Sea, utilizing integrated machine learning classification and multi-sourced remote sensing. Object-based image analysis was integrated with Random Forest, Support [...] Read more.
This research presents a comprehensive analysis of the spatial extent and temporal change in benthic habitats within the Puck Lagoon in the southern Baltic Sea, utilizing integrated machine learning classification and multi-sourced remote sensing. Object-based image analysis was integrated with Random Forest, Support Vector Machine, and K-Nearest Neighbors algorithms for benthic habitat classification based on airborne bathymetric LiDAR (ALB), multibeam echosounder (MBES), satellite bathymetry, and high-resolution aerial photography. Ground-truth data collected by 2023 field surveys were supplemented with long temporal datasets (2010–2023) for seagrass meadow analysis. Boruta feature selection showed that geomorphometric variables (aspect, slope, and terrain ruggedness index) and optical features (ALB intensity and spectral bands) were the most significant discriminators in each classification case. Binary classification models were more effective (93.3% accuracy in the presence/absence of Zostera marina) compared to advanced multi-class models (43.3% for EUNIS Level 4/5), which identified the inherent equilibrium between ecological complexity and map validity. Change detection between contemporary and 1957 habitat data revealed extensive Zostera marina loss, with 84.1–99.0% cover reduction across modeling frameworks. Seagrass coverage declined from 61.15% of the study area to just 9.70% or 0.63%, depending on the model. Seasonal mismatch may inflate loss estimates by 5–15%, but even adjusted values (70–94%) indicate severe ecosystem degradation. Spatial exchange components exhibited patterns of habitat change, whereas net losses in total were many orders of magnitude larger than any redistribution in space. These findings recorded the most severe seagrass habitat destruction ever described within Baltic Sea ecosystems and emphasize the imperative for conservation action at the landscape level. The methodology framework provides a reproducible model for analogous change detection analysis in shallow nearshore habitats, creating critical baselines to inform restoration planning and biodiversity conservation activities. It also demonstrated both the capabilities and limitations of automatic techniques for habitat monitoring. Full article
Show Figures

Figure 1

19 pages, 1602 KB  
Article
Delineation of Management Zones Based on the Agricultural Potential Concept for Potato Production Using Optical Satellite Images
by David A. Ramirez-Gonzalez, Karem Chokmani, Athyna N. Cambouris and Michelle L. D’Souza
Remote Sens. 2025, 17(22), 3709; https://doi.org/10.3390/rs17223709 - 14 Nov 2025
Viewed by 55
Abstract
Management zones (MZs) are a key precision agriculture strategy for managing spatial variability in crops, but conventional delineation methods are costly, time-consuming, and rely on specialized equipment. Previous studies in potato production have primarily relied on single-year NDVI or proximal soil sensor data [...] Read more.
Management zones (MZs) are a key precision agriculture strategy for managing spatial variability in crops, but conventional delineation methods are costly, time-consuming, and rely on specialized equipment. Previous studies in potato production have primarily relied on single-year NDVI or proximal soil sensor data analyses, limiting their ability to capture temporal stability and variability across multiple fields. This study addresses this gap by applying multi-year, multi-source NDVI composites to characterize spatial and temporal patterns of agricultural potential across 17 commercial potato fields at McCain’s Farm of the Future, Florenceville-Bristol, New Brunswick. A total of 230 NDVI images from Sentinel-2 and Landsat 8 (2015–2023) were processed into composite metrics (mean, standard deviation, skewness) to delineate three agricultural potential (AP) MZs. Validation was conducted using 2023 potato tuber yield and soil physicochemical properties. The results showed statistically significant correlations between NDVI metrics and key soil nutrients (total carbon: |r| < 0.19; total nitrogen: |r| < 0.28), with tuber yield (|r| < 0.41). Spatial patterns of total carbon and nitrogen corresponded with delineated MZs, and tuber yield variability partially aligned with these zones. These findings demonstrate that multi-year NDVI composites provide a cost-effective and scalable approach for mapping agricultural potential, capturing both spatial and temporal variability, and supporting data-driven management decisions in potato production systems. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

17 pages, 13144 KB  
Article
Performance Evaluation of Satellite Observation of Sand/Dust Weather and Its Application in Assessing the Accuracy of Numerical Models
by Pak Wai Chan, Ying Wa Chan, Chun Kit Ho, Yuzhao Ma, Wai Ho Tang, Ho Yi Wong and Xiaoxue Zhang
Appl. Sci. 2025, 15(21), 11745; https://doi.org/10.3390/app152111745 - 4 Nov 2025
Viewed by 242
Abstract
Air quality monitoring and forecasting has been a challenging problem for years. In addition to traditional ground-based observational stations, in recent years there have been more geostationary and polar orbiting satellite observations on air quality. However, evaluation of performance of these observations is [...] Read more.
Air quality monitoring and forecasting has been a challenging problem for years. In addition to traditional ground-based observational stations, in recent years there have been more geostationary and polar orbiting satellite observations on air quality. However, evaluation of performance of these observations is lacking, especially for the region of southern China, which is rarely affected by severe sand/dust weather. In the spring of 2025, two events of sand/dust weather, one case of sand/dust spreading to southern China in April and another case of sand/dust confining to northern China in May, provide a good opportunity for detailed case study and examination of the performance of the tools. The surface particulate matter (PM) concentration retrieved from a geostationary satellite, Geostationary Korea Multi-Purpose Satellite—2B (GEO-KOMPSAT-2B, or GK2B), is studied by checking consistency with the analysis of two numerical models: the Copernicus Atmosphere Monitoring Service model of the European Centre of Medium Range Weather Forecast (ECMWF-CAMS) and Chinese Unified Atmospheric Chemistry Environment model of the China Meteorological Administration (CMA-CUACE). The former shows comparable PM concentration with satellite observations, while overestimation is found with the latter. It is also found that there may be latitude dependence of the quality of the satellite-based data. To further validate the satellite observation data, it is directly compared with the ground-based station measurements in Hong Kong for the event in mid-April 2025, the performance of satellite data points near Hong Kong is generally satisfactory. For polar orbiting satellite, there is information about the aerosol classification in addition to aerosol optical depth, and the classification result is found to be reasonable by comparison with ground-based observation, though some refinements appear to be necessary. The geostationary satellite images provide high spatial coverage and frequently updated air quality data, which are confirmed to be useful in monitoring the southward spread of sand/dust weather to southern China which is a very rare event. The monitoring can be both qualitative and quantitative. The performance of various monitoring and forecasting tools is examined in details based on the cases. It also forms a reference for the use in operation, and opens up a new era for air quality study for southern China. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

20 pages, 3046 KB  
Article
Integrating Remotely Sensed Thermal Observations for Calibration of Process-Based Land-Surface Models: Accuracy, Revisit Windows, and Implications in a Dryland Ecosystem
by Arnau Riba, Monica Garcia, Ana M. Tarquís, Francisco Domingo, Michal Antala, Sijia Feng, Jun Liu, Mark S. Johnson, Yeonuk Kim and Sheng Wang
Remote Sens. 2025, 17(21), 3630; https://doi.org/10.3390/rs17213630 - 3 Nov 2025
Viewed by 361
Abstract
Understanding land surface fluxes is essential for sustaining dryland ecosystem functioning and services. However, the scarcity of in situ measurements poses a significant challenge to dryland monitoring. Satellite optical and thermal remote sensing data can provide the instantaneous estimates of land surface fluxes, [...] Read more.
Understanding land surface fluxes is essential for sustaining dryland ecosystem functioning and services. However, the scarcity of in situ measurements poses a significant challenge to dryland monitoring. Satellite optical and thermal remote sensing data can provide the instantaneous estimates of land surface fluxes, such as surface temperature (LST), net radiation (Rn), sensible heat flux (H), evapotranspiration (latent heat flux, LE), and gross primary productivity (GPP). However, satellite-based estimates are often limited by sensor revisit frequencies and cloud-cover conditions. To facilitate temporally continuous estimation, process-based land surface models are often used to integrate sparse remote sensing observations and meteorological inputs, thereby generating continuous estimates of energy, water, and carbon fluxes. However, the impact of satellite thermal data accuracy and temporal resolutions on simulating land surface fluxes is under-explored, particularly in dryland ecosystems. Therefore, this study assessed the accuracy of Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data in a dryland tussock grassland ecosystem in southern Spain. We also assessed the incorporation and various temporal frequencies of thermal data into process-based modelling for simulating land surface fluxes. The model simulations were validated against in situ measurements from eddy covariance towers. Results show that MODIS LST has a high correlation but large bias with in situ measurements (R2 = 0.81, RMSE = 4.34 °C). After a linear correction of MODIS LST with in situ measurements, we found that the adjusted MODIS LST can effectively improve the half-hourly simulation of LST, Rn, H, LE, SWC, and GPP with relative RMSEs of 7.84, 5.67, 7.81, 11.32, 6.59, and 13.09%, respectively. Such performance is close to the flux simulations driven by in situ LST. We also found that by adjusting the revisit frequency of the satellite sensor to 8 days, the model performance of simulating surface fluxes did not change significantly. This study provides insights into how satellite thermal remote sensing can be integrated with the process-based model to understand dryland ecosystem functioning, which is critical for ecological management and climate adaptation strategies. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

23 pages, 5274 KB  
Article
Assessing an Optical Tool for Identifying Tidal and Associated Mangrove Swamp Rice Fields in Guinea-Bissau, West Africa
by Jesus Céspedes, Jaime Garbanzo-León, Marina Temudo and Gabriel Garbanzo
Land 2025, 14(11), 2144; https://doi.org/10.3390/land14112144 - 28 Oct 2025
Viewed by 455
Abstract
An optical remote sensing approach was developed to identify areas with high and low salinity within the mangrove swamp rice system in West Africa. Conducted between 2019 and 2024 in Guinea-Bissau, this study examined two contrasting rice-growing environments, tidal mangrove (TM) and associated [...] Read more.
An optical remote sensing approach was developed to identify areas with high and low salinity within the mangrove swamp rice system in West Africa. Conducted between 2019 and 2024 in Guinea-Bissau, this study examined two contrasting rice-growing environments, tidal mangrove (TM) and associated mangrove (AM), to assess changes in vegetation dynamics, soil salinity concentration, and soil chemical properties. Field sampling was conducted during the dry season to avoid waterlogging, and soil analyses included texture, cation exchange capacity, micronutrients, and electrical conductivity (ECe). Meteorological stations recorded rainfall and environmental conditions over the period. Moreover, orthorectified and atmospherically corrected surface reflectance satellite imagery from PlanetScope and Sentinel-2 was selected due to their high spatial resolution and revisit frequency. From this data, vegetation dynamics were monitored using the Normalized Difference Vegetation Index (NDVI), with change detection calculated as the difference in NDVI between sequential images (ΔNDVI). Thresholds of 0.15 ≤ NDVI ≤ 0.5 and ΔNDVI > 0.1 were tested to identify significant vegetation growth, with smaller polygons (<1000 m2) removed to reduce noise. In this process, at least three temporal images per season were analyzed, and multi-year intersections were done to enhance accuracy. Our parameter optimization tests found that a locally calibrated NDVI threshold of 0.26 improved site classification. Thus, this integrated field–remote sensing approach proved to be a reproducible and cost-effective tool for detecting AM and TM environments and assessing vegetation responses to seasonal changes, contributing to improved land and water management in the salinity-affected mangrove swamp rice system. Full article
Show Figures

Figure 1

13 pages, 326 KB  
Technical Note
Fast and Accurate System for Onboard Target Recognition on Raw SAR Echo Data
by Gustavo Jacinto, Mário Véstias, Paulo Flores and Rui Policarpo Duarte
Remote Sens. 2025, 17(21), 3547; https://doi.org/10.3390/rs17213547 - 26 Oct 2025
Viewed by 402
Abstract
Synthetic Aperture Radar (SAR) onboard satellites provides high-resolution Earth imaging independent of weather conditions. SAR data are acquired by an aircraft or satellite and sent to a ground station to be processed. However, for novel applications requiring real-time analysis and decisions, onboard processing [...] Read more.
Synthetic Aperture Radar (SAR) onboard satellites provides high-resolution Earth imaging independent of weather conditions. SAR data are acquired by an aircraft or satellite and sent to a ground station to be processed. However, for novel applications requiring real-time analysis and decisions, onboard processing is necessary to escape the limited downlink bandwidth and latency. One such application is real-time target recognition, which has emerged as a decisive operation in areas such as defense and surveillance. In recent years, deep learning models have improved the accuracy of target recognition algorithms. However, these are based on optical image processing and are computation and memory expensive, which requires not only processing the SAR pulse data but also optimized models and architectures for efficient deployment in onboard computers. This paper presents a fast and accurate target recognition system directly on raw SAR data using a neural network model. This network receives and processes SAR echo data for fast processing, alleviating the computationally expensive DSP image generation algorithms such as Backprojection and RangeDoppler. Thus, this allows the use of simpler and faster models, while maintaining accuracy. The system was designed, optimized, and tested on low-cost embedded devices with low size, weight, and energy requirements (Khadas VIM3 and Raspberry Pi 5). Results demonstrate that the proposed solution achieves a target classification accuracy for the MSTAR dataset close to 100% in less than 1.5 ms and 5.5 W of power. Full article
Show Figures

Figure 1

24 pages, 4973 KB  
Article
An Enhanced Method for Optical Imaging Computation of Space Objects Integrating an Improved Phong Model and Higher-Order Spherical Harmonics
by Qinyu Zhu, Can Xu, Yasheng Zhang, Yao Lu, Xia Wang and Peng Li
Remote Sens. 2025, 17(21), 3543; https://doi.org/10.3390/rs17213543 - 26 Oct 2025
Viewed by 323
Abstract
Space-based optical imaging detection serves as a crucial means for acquiring characteristic information of space objects, with the quality and resolution of images directly influencing the accuracy of subsequent missions. Addressing the scarcity of datasets in space-based optical imaging, this study introduces a [...] Read more.
Space-based optical imaging detection serves as a crucial means for acquiring characteristic information of space objects, with the quality and resolution of images directly influencing the accuracy of subsequent missions. Addressing the scarcity of datasets in space-based optical imaging, this study introduces a method that combines an improved Phong model and higher-order spherical harmonics (HOSH) for the optical imaging computation of space objects. Utilizing HOSH to fit the light field distribution, this approach comprehensively considers direct sunlight, earthshine, reflected light from other extremely distant celestial bodies, and multiple scattering from object surfaces. Through spectral reflectance experiments, an improved Phong model is developed to calculate the optical scattering characteristics of space objects and to retrieve common material properties such as metallicity, roughness, index of refraction (IOR), and Alpha for four types of satellite surfaces. Additionally, this study designs two sampling methods: a random sampling based on the spherical Fibonacci function (RSSF) and a sequential frame sampling based on predefined trajectories (SSPT). Through numerical analysis of the geometric and radiative rendering pipeline, this method simulates multiple scenarios under both high-resolution and wide-field-of-view operational modes across a range of relative distances. Simulation results validate the effectiveness of the proposed approach, with average rendering speeds of 2.86 s per frame and 1.67 s per frame for the two methods, respectively, demonstrating the capability for real-time rapid imaging while maintaining low computational resource consumption. The data simulation process spans six distinct relative distance intervals, ensuring that multi-scale images retain substantial textural features and are accompanied by attitude labels, thereby providing robust support for algorithms aimed at space object attitude estimation, and 3D reconstruction. Full article
Show Figures

Figure 1

20 pages, 7699 KB  
Article
Large-Gradient Displacement Monitoring and Parameter Inversion of Mining Collapse with the Optical Flow Method of Synthetic Aperture Radar Images
by Chuanjiu Zhang and Jie Chen
Remote Sens. 2025, 17(21), 3533; https://doi.org/10.3390/rs17213533 - 25 Oct 2025
Viewed by 410
Abstract
Monitoring large-gradient surface displacement caused by underground mining remains a significant challenge for conventional Synthetic Aperture Radar (SAR)-based techniques. This study introduces optical flow methods to monitor large-gradient displacement in mining areas and conducts a comprehensive comparison with Small Baseline Subset Interferometric SAR [...] Read more.
Monitoring large-gradient surface displacement caused by underground mining remains a significant challenge for conventional Synthetic Aperture Radar (SAR)-based techniques. This study introduces optical flow methods to monitor large-gradient displacement in mining areas and conducts a comprehensive comparison with Small Baseline Subset Interferometric SAR (SBAS-InSAR) and Pixel Offset Tracking (POT) methods. Using 12 high-resolution TerraSAR-X (TSX) SAR images over the Daliuta mining area in Yulin, China, we evaluate the performance of each method in terms of sensitivity to displacement gradients, computational efficiency, and monitoring accuracy. Results indicate that SBAS-InSAR is only capable of detecting displacement at the decimeter level in the Dalinta mining area and is unable to monitor rapid, large-gradient displacement exceeding the meter scale. While POT can detect meter-scale displacements, it suffers from low efficiency and low precision. In contrast, the proposed optical flow method (OFM) achieves sub-pixel accuracy with root mean square errors of 0.17 m (compared to 0.26 m for POT) when validated against Global Navigation Satellite System (GNSS) data while improving computational efficiency by nearly 30 times compared to POT. Furthermore, based on the optical flow results, mining parameters and three-dimensional (3D) displacement fields were successfully inverted, revealing maximum vertical subsidence exceeding 4.4 m and horizontal displacement over 1.5 m. These findings demonstrate that the OFM is a reliable and efficient tool for large-gradient displacement monitoring in mining areas, offering valuable support for hazard assessment and mining management. Full article
Show Figures

Figure 1

23 pages, 4617 KB  
Article
IAASNet: Ill-Posed-Aware Aggregated Stereo Matching Network for Cross-Orbit Optical Satellite Images
by Jiaxuan Huang, Haoxuan Sun and Taoyang Wang
Remote Sens. 2025, 17(21), 3528; https://doi.org/10.3390/rs17213528 - 24 Oct 2025
Viewed by 366
Abstract
Stereo matching estimates disparity by finding correspondences between stereo image pairs. Under ill-posed conditions such as geometric differences, radiometric differences, and temporal changes, accurate estimation becomes difficult due to insufficient matching information. In remote sensing imagery, such ill-posed regions are more common because [...] Read more.
Stereo matching estimates disparity by finding correspondences between stereo image pairs. Under ill-posed conditions such as geometric differences, radiometric differences, and temporal changes, accurate estimation becomes difficult due to insufficient matching information. In remote sensing imagery, such ill-posed regions are more common because of complex imaging conditions. This problem is particularly pronounced in cross-track satellite stereo images, where existing methods often fail to effectively handle noise due to insufficient features or excessive reliance on prior assumptions. In this work, we propose an ill-posed-aware aggregated satellite stereo matching network, which integrates monocular depth estimation with an ill-posed-guided adaptive aware geometry fusion module to balance local and global features while reducing noise interference. In addition, we design an enhanced mask augmentation strategy during training to simulate occlusions and texture loss in complex scenarios, thereby improving robustness. Experimental results demonstrate that our method outperforms existing state-of-the-art approaches on the US3D dataset, achieving a 5.38% D1-error and 0.958 pixels endpoint error (EPE). In particular, our method shows significant advantages in ill-posed regions. Overall, the proposed network not only exhibits strong feature learning ability but also demonstrates robust generalization in real-world remote sensing applications. Full article
Show Figures

Figure 1

19 pages, 3709 KB  
Article
Evaluating the Influence of Aerosol Optical Depth on Satellite-Derived Nighttime Light Radiance in Asian Megacities
by Hyeryeong Park, Jaemin Kim and Yun Gon Lee
Remote Sens. 2025, 17(20), 3492; https://doi.org/10.3390/rs17203492 - 21 Oct 2025
Viewed by 344
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) provides invaluable nighttime light (NTL) radiance data, widely employed for diverse applications including urban and socioeconomic studies. However, the inherent reliability of NTL data as a proxy for socioeconomic activities is significantly compromised [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) provides invaluable nighttime light (NTL) radiance data, widely employed for diverse applications including urban and socioeconomic studies. However, the inherent reliability of NTL data as a proxy for socioeconomic activities is significantly compromised by atmospheric conditions, particularly aerosols. This study analyzed the long-term spatiotemporal variations in NTL radiance with respect to atmospheric aerosol optical depth (AOD) in nine major Asian cities from January 2012 to May 2021. Our findings reveal a complex and heterogeneous interplay between NTL radiance and AOD, fundamentally influenced by a region’s unique atmospheric characteristics and developmental stages. While major East Asian cities (e.g., Beijing, Tokyo, Seoul) exhibited a statistically significant inverse correlation, indicating aerosol-induced NTL suppression, other regions showed different patterns. For instance, the rapidly urbanizing city of Dhaka displayed a statistically significant positive correlation, suggesting a concurrent increase in NTL and AOD due to intensified urban activities. This highlights that the NTL-AOD relationship is not solely a physical phenomenon but is also shaped by independent socioeconomic processes. These results underscore the critical importance of comprehensively understanding these regional discrepancies for the reliable interpretation and effective reconstruction of NTL radiance data. By providing nuanced insights into how atmospheric aerosols influence NTL measurements in diverse urban settings, this research aims to enhance the utility and robustness of satellite-derived NTL data for effective socioeconomic analyses. Full article
Show Figures

Figure 1

24 pages, 1777 KB  
Systematic Review
Monitoring Biodiversity and Ecosystem Services Using L-Band Synthetic Aperture Radar Satellite Data
by Brian Alan Johnson, Chisa Umemiya, Koji Miwa, Takeo Tadono, Ko Hamamoto, Yasuo Takahashi, Mariko Harada and Osamu Ochiai
Remote Sens. 2025, 17(20), 3489; https://doi.org/10.3390/rs17203489 - 20 Oct 2025
Viewed by 465
Abstract
Over the last decade, L-band synthetic aperture radar (SAR) satellite data has become more widely available globally, providing new opportunities for biodiversity and ecosystem services (BES) monitoring. To better understand these opportunities, we conducted a systematic scoping review of articles that utilized L-band [...] Read more.
Over the last decade, L-band synthetic aperture radar (SAR) satellite data has become more widely available globally, providing new opportunities for biodiversity and ecosystem services (BES) monitoring. To better understand these opportunities, we conducted a systematic scoping review of articles that utilized L-band synthetic aperture radar (SAR) satellite data for BES monitoring. We found that the data have mainly been analyzed using image classification and regression methods, with classification methods attempting to understand how the extent, spatial distribution, and/or changes in different types of land use/land cover affect BES, and regression methods attempting to generate spatially explicit maps of important BES-related indicators like species richness or vegetation above-ground biomass. Random forest classification and regression algorithms, in particular, were used frequently and found to be promising in many recent studies. Deep learning algorithms, while also promising, have seen relatively little usage thus far. PALSAR-1/-2 annual mosaic data was by far the most frequently used dataset. Although free, this data is limited by its low temporal resolution. To help overcome this and other limitations of the existing L-band SAR datasets, 64% of studies combined them with other types of remote sensing data (most commonly, optical multispectral data). Study sites were mainly subnational in scale and located in countries with high species richness. Future research opportunities include investigating the benefits of new free, high temporal resolution L-band SAR datasets (e.g., PALSAR-2 ScanSAR data) and the potential of combining L-band SAR with new sources of SAR data (e.g., P-band SAR data from the “Biomass” satellite) and further exploring the potential of deep learning techniques. Full article
(This article belongs to the Special Issue Global Biospheric Monitoring with Remote Sensing (2nd Edition))
Show Figures

Figure 1

19 pages, 2733 KB  
Article
Style Transfer from Sentinel-1 to Sentinel-2 for Fluvial Scenes with Multi-Modal and Multi-Temporal Image Fusion
by Patrice E. Carbonneau
Remote Sens. 2025, 17(20), 3445; https://doi.org/10.3390/rs17203445 - 15 Oct 2025
Viewed by 426
Abstract
Recently, there has been significant progress in the area of semantic classification of water bodies at global scales with deep learning. For the key purposes of water inventory and change detection, advanced deep learning classifiers such as UNets and Vision Transformers have been [...] Read more.
Recently, there has been significant progress in the area of semantic classification of water bodies at global scales with deep learning. For the key purposes of water inventory and change detection, advanced deep learning classifiers such as UNets and Vision Transformers have been shown to be both accurate and flexible when applied to large-scale, or even global, satellite image datasets from optical (e.g., Sentinel-2) and radar sensors (e.g., Sentinel-1). Most of this work is conducted with optical sensors, which usually have better image quality, but their obvious limitation is cloud cover, which is why radar imagery is an important complementary dataset. However, radar imagery is generally more sensitive to soil moisture than optical data. Furthermore, topography and wind-ripple effects can alter the reflected intensity of radar waves, which can induce errors in water classification models that fundamentally rely on the fact that water is darker than the surrounding landscape. In this paper, we develop a solution to the use of Sentinel-1 radar images for the semantic classification of water bodies that uses style transfer with multi-modal and multi-temporal image fusion. Instead of developing new semantic classification models that work directly on Sentinel-1 images, we develop a global style transfer model that produces synthetic Sentinel-2 images from Sentinel-1 input. The resulting synthetic Sentinel-2 imagery can then be classified with existing models. This has the advantage of obviating the need for large volumes of manually labeled Sentinel-1 water masks. Next, we show that fusing an 8-year cloud-free composite of the near-infrared band 8 of Sentinel-2 to the input Sentinel-1 image improves the classification performance. Style transfer models were trained and validated with global scale data covering the years 2017 to 2024, and include every month of the year. When tested against a global independent benchmark, S1S2-Water, the semantic classifications produced from our synthetic imagery show a marked improvement with the use of image fusion. When we use only Sentinel-1 data, we find an overall IoU (Intersection over Union) score of 0.70, but when we add image fusion, the overall IoU score rises to 0.93. Full article
(This article belongs to the Special Issue Multimodal Remote Sensing Data Fusion, Analysis and Application)
Show Figures

Figure 1

13 pages, 2518 KB  
Article
Investigating Scattering Spectral Characteristics of GaAs Solar Cells by Nanosecond Pulse Laser Irradiation
by Hao Chang, Weijing Zhou, Zhilong Jian, Can Xu, Yingjie Ma and Chenyu Xiao
Aerospace 2025, 12(10), 909; https://doi.org/10.3390/aerospace12100909 - 10 Oct 2025
Viewed by 335
Abstract
Reliable power generation from solar cells is critical for spacecraft operation. High-energy laser irradiation poses a significant threat, as it can potentially cause irreversible damage to solar cells, which is difficult to detect remotely using conventional techniques such as radar or optical imaging. [...] Read more.
Reliable power generation from solar cells is critical for spacecraft operation. High-energy laser irradiation poses a significant threat, as it can potentially cause irreversible damage to solar cells, which is difficult to detect remotely using conventional techniques such as radar or optical imaging. Spectral detection offers a potential approach through unique “spectral fingerprints,” but the spectral characteristics of laser-damaged solar cells remain insufficiently documented. This study investigates the scattering spectral characteristics of triple-junction GaAs (Gallium Arsenide) solar cells subjected to nanosecond pulsed laser irradiation to establish spectral signatures for damage assessment. GaAs solar cells were irradiated at varying energy densities. Bidirectional Reflectance Distribution Function (BRDF) spectra (400–1200 nm) were measured. A thin-film interference model was used to simulate damage effects by varying layer thicknesses, thereby interpreting experimental results. The results demonstrate that as the laser energy density increases from 0.12 to 2.96 J/cm2, the number of absorption peaks in the visible range (400–750 nm) decreases from three to zero, and the oscillation in the near-infrared range vanishes completely, indicating progressive damage to the GaInP (Gallium Indium Phosphide) and GaAs layers. This study provides a spectral-based approach for remote assessment of laser-induced damage to solar cells, which is crucial for satellite health monitoring. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

32 pages, 19967 KB  
Article
Monitoring the Recovery Process After Major Hydrological Disasters with GIS, Change Detection and Open and Free Multi-Sensor Satellite Imagery: Demonstration in Haiti After Hurricane Matthew
by Wilson Andres Velasquez Hurtado and Deodato Tapete
Water 2025, 17(19), 2902; https://doi.org/10.3390/w17192902 - 7 Oct 2025
Viewed by 683
Abstract
Recovery from disasters is the complex process requiring coordinated measures to restore infrastructure, services and quality of life. While remote sensing is a well-established means for damage assessment, so far very few studies have shown how satellite imagery can be used by technical [...] Read more.
Recovery from disasters is the complex process requiring coordinated measures to restore infrastructure, services and quality of life. While remote sensing is a well-established means for damage assessment, so far very few studies have shown how satellite imagery can be used by technical officers of affected countries to provide crucial, up-to-date information to monitor the reconstruction progress and natural restoration. To address this gap, the present study proposes a multi-temporal observatory method relying on GIS, change detection techniques and open and free multi-sensor satellite imagery to generate thematic maps documenting, over time, the impact and recovery from hydrological disasters such as hurricanes, tropical storms and induced flooding. The demonstration is carried out with regard to Hurricane Matthew, which struck Haiti in October 2016 and triggered a humanitarian crisis in the Sud and Grand’Anse regions. Synthetic Aperture Radar (SAR) amplitude change detection techniques were applied to pre-, cross- and post-disaster Sentinel-1 image pairs from August 2016 to September 2020, while optical Sentinel-2 images were used for verification and land cover classification. With regard to inundated areas, the analysis allowed us to determine the needed time for water recession and rural plain areas to be reclaimed for agricultural exploitation. With regard to buildings, the cities of Jérémie and Les Cayes were not only the most impacted areas, but also were those where most reconstruction efforts were made. However, some instances of new settlements located in at-risk zones, and thus being susceptible to future hurricanes, were found. This result suggests that the thematic maps can support policy-makers and regulators in reducing risk and making the reconstruction more resilient. Finally, to evaluate the replicability of the proposed method, an example at a country-scale is discussed with regard to the June 2023 flooding event. Full article
(This article belongs to the Special Issue Applications of GIS and Remote Sensing in Hydrology and Hydrogeology)
Show Figures

Figure 1

36 pages, 9276 KB  
Article
Understanding Landslide Expression in SAR Backscatter Data: Global Study and Disaster Response Application
by Erin Lindsay, Alexandra Jarna Ganerød, Graziella Devoli, Johannes Reiche, Steinar Nordal and Regula Frauenfelder
Remote Sens. 2025, 17(19), 3313; https://doi.org/10.3390/rs17193313 - 27 Sep 2025
Viewed by 1092
Abstract
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures [...] Read more.
Cloud cover can delay landslide detection in optical satellite imagery for weeks, complicating disaster response. Synthetic Aperture Radar (SAR) backscatter imagery, which is widely used for monitoring floods and avalanches, remains underutilised for landslide detection due to a limited understanding of landslide signatures in SAR data. We developed a conceptual model of landslide expression in SAR backscatter (σ°) change images through iterative investigation of over 1000 landslides across 30 diverse study areas. Using multi-temporal composites and dense time series Sentinel-1 C-band SAR data, we identified characteristic patterns linked to land cover, terrain, and landslide material. The results showed either increased or decreased backscatter depending on environmental conditions, with reduced visibility in urban or mixed vegetation areas. Detection was also hindered by geometric distortions and snow cover. The diversity of landslide expression illustrates the need to consider local variability and multi-track (ascending and descending) satellite data in designing representative training datasets for automated detection models. The conceptual model was applied to three recent disaster events using the first post-event Sentinel-1 image, successfully identifying previously unknown landslides before optical imagery became available in two cases. This study provides a theoretical foundation for interpreting landslides in SAR imagery and demonstrates its utility for rapid landslide detection. The findings support further exploration of rapid landslides in SAR backscatter data and future development of automated detection models, offering a valuable tool for disaster response. Full article
Show Figures

Graphical abstract

Back to TopTop