Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,768)

Search Parameters:
Keywords = optical fiber sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3713 KiB  
Article
Error Analysis and Suppression of Rectangular-Pulse Binary Phase Modulation Technology in an Interferometric Fiber-Optic Sensor
by Qian Cheng, Hong Ding, Xianglei Pan, Nan Chen, Wenxu Sun, Zhongjie Ren and Ke Cui
Sensors 2025, 25(15), 4839; https://doi.org/10.3390/s25154839 - 6 Aug 2025
Abstract
In the field of interferometric fiber-optic sensing, the phase-shifting technique is well known as a highly efficient method for retrieving the phase signal from the interference light intensity. The rectangular-pulse binary phase modulation (RPBPM) method is a typical phase-shifting method with the advantages [...] Read more.
In the field of interferometric fiber-optic sensing, the phase-shifting technique is well known as a highly efficient method for retrieving the phase signal from the interference light intensity. The rectangular-pulse binary phase modulation (RPBPM) method is a typical phase-shifting method with the advantages of high efficiency, low complexity, and easy array multiplexing. Exploring the impact of the parameters on the performance is of great significance for guiding its application in practical systems. In this study, the influence of the sampling interval and modulation depth deviation involved in the method is analyzed in detail. Through a comparative simulation analysis with the traditional heterodyne and phase-generated carrier methods, the superiority of the RPBPM method is effectively validated. Meanwhile, an improved method based on the ellipse fitting of the Lissajous figure is proposed to compensate for the error and improve the signal-to-noise-and-distortion ratio (SINAD) from 26.3 dB to 37.1 dB in a specific experiment. Finally, the experimental results guided by the above method show excellent performance in a practical vibration system. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 6376 KiB  
Article
Components for an Inexpensive CW-ODMR NV-Based Magnetometer
by André Bülau, Daniela Walter and Karl-Peter Fritz
Magnetism 2025, 5(3), 18; https://doi.org/10.3390/magnetism5030018 - 1 Aug 2025
Viewed by 233
Abstract
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and [...] Read more.
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and expensive detectors, such as Avalanche photodiodes or single photon detectors, overall, leading to custom and expensive setups. In order to provide an inexpensive NV-based magnetometer setup for educational use in schools, to teach the three topics, fluorescence, optically detected magnetic resonance, and Zeeman splitting, inexpensive, miniaturized, off-the-shelf components with high reliability have to be used. The cheaper such a setup, the more setups a school can afford. Hence, in this work, we investigated LEDs as light sources, considered different diamonds for our setup, tested different color filters, proposed an inexpensive microwave resonator, and used a cheap photodiode with an appropriate transimpedance amplifier as the basis for our quantum magnetometer. As a result, we identified cheap and functional components and present a setup and show that it can demonstrate the three topics mentioned at a hardware cost <EUR 100. Full article
Show Figures

Figure 1

14 pages, 2107 KiB  
Article
Optimal Coherence Length Control in Interferometric Fiber Optic Hydrophones via PRBS Modulation: Theory and Experiment
by Wujie Wang, Qihao Hu, Lina Ma, Fan Shang, Hongze Leng and Junqiang Song
Sensors 2025, 25(15), 4711; https://doi.org/10.3390/s25154711 - 30 Jul 2025
Viewed by 167
Abstract
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, [...] Read more.
Interferometric fiber optic hydrophones (IFOHs) are highly sensitive for underwater acoustic detection but face challenges owing to the trade-off between laser monochromaticity and coherence length. In this study, we propose a pseudo-random binary sequence (PRBS) phase modulation method for laser coherence length control, establishing the first theoretical model that quantitatively links PRBS parameter to coherence length, elucidating the mechanism underlying its suppression of parasitic interference noise. Furthermore, our research findings demonstrate that while reducing the laser coherence length effectively mitigates parasitic interference noise in IFOHs, this reduction also leads to elevated background noise caused by diminished interference visibility. Consequently, the modulation of coherence length requires a balanced optimization approach that not only suppresses parasitic noise but also minimizes visibility-introduced background noise, thereby determining the system-specific optimal coherence length. Through theoretical modeling and experimental validation, we determined that for IFOH systems with a 500 ns delay, the optimal coherence lengths for link fibers of 3.3 km and 10 km are 0.93 m and 0.78 m, respectively. At the optimal coherence length, the background noise level in the 3.3 km system reaches −84.5 dB (re: rad/√Hz @1 kHz), representing an additional noise suppression of 4.5 dB beyond the original suppression. This study provides a comprehensive theoretical and experimental solution to the long-standing contradiction between high laser monochromaticity, stability and appropriate coherence length, establishing a coherence modulation noise suppression framework for hydrophones, gyroscopes, distributed acoustic sensing (DAS), and other fields. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 4484 KiB  
Article
Microscale Flow Simulation of Resin in RTM Process for Optical Fiber-Embedded Composites
by Tianyou Lu, Bo Ruan, Zhanjun Wu and Lei Yang
Polymers 2025, 17(15), 2076; https://doi.org/10.3390/polym17152076 - 29 Jul 2025
Viewed by 201
Abstract
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product [...] Read more.
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product is highly dependent on the resin flow and impregnation effects. The embedding of optical fibers can affect the microscopic flow and impregnation behavior of the resin; therefore, it is necessary to investigate the specific impact of optical fiber embedding on the resin flow and impregnation of fiber bundles. Due to the difficulty of directly observing this process at the microscopic scale through experiments, numerical simulation has become a key method for studying this issue. This paper focuses on the resin micro-flow in RTM processes for intelligent composites with embedded optical fibers. Firstly, a steady-state analysis of the resin flow and impregnation process was conducted using COMSOL 6.0 obtaining the velocity and pressure field distribution characteristics under different optical fiber embedding conditions. Secondly, the dynamic process of resin flow and impregnation of fiber bundles at the microscopic scale was simulated using Fluent 2022R2. This study comprehensively analyzes the impact of different optical fiber embedding configurations on resin flow and impregnation characteristics, determining the impregnation time and porosity after impregnation under different optical fiber embedding scenarios. Additionally, this study reveals the mechanisms of pore formation and their distribution patterns. The research findings provide important theoretical guidance for optimizing the RTM molding process parameters for intelligent composite materials. Full article
(This article belongs to the Special Issue Constitutive Modeling of Polymer Matrix Composites)
Show Figures

Figure 1

29 pages, 4763 KiB  
Review
Quantum-Empowered Fiber Sensing Metrology
by Xiaojie Zuo, Zhangguan Tang, Boyao Li, Xiaoyong Chen and Jinghua Sun
Photonics 2025, 12(8), 763; https://doi.org/10.3390/photonics12080763 - 29 Jul 2025
Viewed by 351
Abstract
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing [...] Read more.
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing installations and generating high-quality optical fiber quantum states. Following decades of comprehensive investigations and remarkable advances in optical fiber quantum sensing technology, this review systematically examines research achievements in this field through two complementary perspectives: one is the basic principle of generating optical fiber quantum states and their applications in sensing and the other is optical fiber quantum interferometers and their applications in sensing. Finally, examine current opportunities and challenges as well as the future development of optical fiber quantum sensing. Full article
(This article belongs to the Special Issue Quantum High Precision Measurement)
Show Figures

Figure 1

22 pages, 1149 KiB  
Review
A Review of Influencing and Controlling Vortex-Induced Vibrations for Deepwater Risers
by Chao Yan, Qi Feng and Shuangchun Yang
Processes 2025, 13(8), 2353; https://doi.org/10.3390/pr13082353 - 24 Jul 2025
Viewed by 355
Abstract
With the expansion of offshore oil and gas resources to deepwater areas, the problem of the vortex-induced vibration of marine risers, as a key structure connecting offshore platforms and subsea wellheads, has become increasingly prominent. At present, there are few reviews on the [...] Read more.
With the expansion of offshore oil and gas resources to deepwater areas, the problem of the vortex-induced vibration of marine risers, as a key structure connecting offshore platforms and subsea wellheads, has become increasingly prominent. At present, there are few reviews on the vortex-induced vibration of flexible risers. This review provides a detailed discussion of vortex-induced vibration in marine risers. This review begins with the engineering background. It then systematically analyzes the key factors that influence VIV response. These factors include the riser’s structural parameters, such as aspect ratio and mass ratio. They also include the external fluid environment. Next, this review evaluates current VIV suppression strategies by analyzing specific experimental results. It compares the effectiveness and trade-offs of passive techniques. It also examines the potential and limitations of active methods, which often use smart materials, like piezoelectrics. This study highlights the major challenges in VIV research today. These challenges relate to prediction accuracy and suppression efficiency. Key problems include model uncertainty at high Reynolds numbers and the practical implementation of suppression devices in engineering systems. Finally, this paper presents an outlook on the future directions. It concludes that an intelligent, full-lifecycle integrity management system is the best path forward. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

14 pages, 2402 KiB  
Article
On-Chip Mid-Infrared Dual-Band Wavelength Splitting with Integrated Metalens and Enhanced Bandwidth
by Deming Hu, Qi Zhang, Zhibin Ye, Xuan-Ming Duan and Yang Zhang
Photonics 2025, 12(7), 736; https://doi.org/10.3390/photonics12070736 - 19 Jul 2025
Viewed by 222
Abstract
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The [...] Read more.
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The tilt grating serves to separate the wavelength bands, and the metalenses following the grating guarantee a smooth transition of light into single-mode waveguides, giving rise to transmittances of 73.59% at 4 μm and 68.74% at 11 μm. The use of this tandem structure results in a significant footprint reduction and a remarkable 25.8% bandwidth enhancement over conventional approaches. The proposed spectral splitting scheme, with its broad wavelength range applicability, unlocks new pathways for on-chip simultaneous multi-target molecule detection. Full article
(This article belongs to the Special Issue Infrared Optoelectronic Materials and Devices)
Show Figures

Figure 1

19 pages, 3666 KiB  
Article
Rapid and Accurate Shape-Sensing Method Using a Multi-Core Fiber Bragg Grating-Based Optical Fiber
by Georgios Violakis, Nikolaos Vardakis, Zhenyu Zhang, Martin Angelmahr and Panagiotis Polygerinos
Sensors 2025, 25(14), 4494; https://doi.org/10.3390/s25144494 - 19 Jul 2025
Viewed by 509
Abstract
Shape-sensing optical fibers have become increasingly important in applications requiring flexible navigation, spatial awareness, and deformation monitoring. Fiber Bragg Grating (FBG) sensors inscribed in multi-core optical fibers have been democratized over the years and nowadays offer a compact and robust platform for shape [...] Read more.
Shape-sensing optical fibers have become increasingly important in applications requiring flexible navigation, spatial awareness, and deformation monitoring. Fiber Bragg Grating (FBG) sensors inscribed in multi-core optical fibers have been democratized over the years and nowadays offer a compact and robust platform for shape reconstruction. In this work, we propose a novel, computationally efficient method for determining the 3D tip position of a bent multi-core FBG-based optical fiber using a second-order polynomial approximation of the fiber’s shape. The method begins with a calibration procedure, where polynomial coefficients are fitted for known bend configurations and subsequently modeled as a function of curvature using exponential decay functions. This allows for real-time estimation of the fiber tip position from curvature measurements alone, with no need for iterative numerical solutions or high processing power. The method was validated using miniaturized test structures and achieved sub-millimeter accuracy (<0.1 mm) over a 4.5 mm displacement range. Its simplicity and accuracy make it suitable for embedded or edge-computing applications in confined navigation, structural inspection, and medical robotics. Full article
(This article belongs to the Special Issue New Prospects in Fiber Optic Sensors and Applications)
Show Figures

Graphical abstract

23 pages, 7773 KiB  
Article
Strengthening-Effect Assessment of Smart CFRP-Reinforced Steel Beams Based on Optical Fiber Sensing Technology
by Bao-Rui Peng, Fu-Kang Shen, Zi-Yi Luo, Chao Zhang, Yung William Sasy Chan, Hua-Ping Wang and Ping Xiang
Photonics 2025, 12(7), 735; https://doi.org/10.3390/photonics12070735 - 18 Jul 2025
Viewed by 300
Abstract
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety [...] Read more.
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety and residual service life. However, the current problem is the lack of an efficient, long-term, and stable monitoring technique to characterize the structural behavior of coated composite structures in the whole life cycle. For this reason, bare and packaged fiber Bragg grating (FBG) sensors have been specially developed and designed in sensing networks to monitor the structural performance of CFRP-coated composite beams under different loads. Some optical fibers have also been inserted in the CFRP laminates to configure the smart CFRP component. Detailed data interpretation has been conducted to declare the strengthening process and effect. Finite element simulation and simplified theoretical analysis have been conducted to validate the experimental testing results and the deformation profiles of steel beams before and after the CFRP coating has been carefully checked. Results indicate that the proposed FBG sensors and sensing layout can accurately reflect the structural performance of the composite beam structure, and the CFRP coating can share partial loads, which finally leads to the downward shift in the centroidal axis, with a value of about 10 mm. The externally bonded sensors generally show good stability and high sensitivity to the applied load and temperature-induced inner stress variation. The study provides a straightforward instruction for the establishment of a structural health monitoring system for CFRP-coated composite structures in the whole life cycle. Full article
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 302
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

15 pages, 4942 KiB  
Article
Study on Multiphase Flow in Horizontal Wells Based on Distributed Acoustic Sensing Monitoring
by Rui Zheng, Li Fang, Dong Yang and Qiao Deng
Processes 2025, 13(7), 2280; https://doi.org/10.3390/pr13072280 - 17 Jul 2025
Viewed by 377
Abstract
This study focuses on the multiphase flow in horizontal wells based on distributed acoustic sensing (DAS) monitoring. Through laboratory experiments and field data analysis, it was found that the micro-seismic differences in flow patterns can be clearly observed in the fiber optic micro-seismic [...] Read more.
This study focuses on the multiphase flow in horizontal wells based on distributed acoustic sensing (DAS) monitoring. Through laboratory experiments and field data analysis, it was found that the micro-seismic differences in flow patterns can be clearly observed in the fiber optic micro-seismic waterfall chart. In the case of slug flow, the DAS acoustic energy decreases when the inclination angle increases. The performance of annular flow is similar to that of bubble flow, with the DAS energy increasing as the inclination angle increases. Overall, the order of DAS acoustic energy from the strongest to weakest is slug flow, followed by annular flow, and then bubble flow. The research shows that fiber optic DAS monitoring signals can effectively identify differences in gas volume, well inclination, and flow pattern, which provides an important technical basis and research foundation for the monitoring and analysis of multiphase flow in horizontal wells. Full article
Show Figures

Figure 1

16 pages, 2133 KiB  
Article
Effects of Chromatic Dispersion on BOTDA Sensor
by Qingwen Hou, Mingjun Kuang, Jindong Wang, Jianping Guo and Zhengjun Wei
Photonics 2025, 12(7), 726; https://doi.org/10.3390/photonics12070726 - 17 Jul 2025
Viewed by 219
Abstract
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically [...] Read more.
This study investigates the influence of chromatic dispersion on the performance of Brillouin optical time-domain analysis (BOTDA) sensors, particularly under high-pump-power conditions, where nonlinear effects become significant. By incorporating dispersion terms into the coupled amplitude equations of stimulated Brillouin scattering (SBS), we theoretically analyzed the dispersion-induced pulse broadening effect and its impact on the Brillouin gain spectrum (BGS). Numerical simulations revealed that dispersion leads to a moderate broadening of pump pulses, resulting in slight changes to BGS characteristics, including increased peak power and reduced linewidth. To explore the interplay between dispersion and nonlinearity, we built a gain-based BOTDA experimental system and tested two types of fibers, namely standard single-mode fiber (SMF) with anomalous dispersion and dispersion-compensating fiber (DCF) with normal dispersion. Experimental results show that SMF is more prone to modulation instability (MI), which significantly degrades the signal-to-noise ratio (SNR) of the BGS. In contrast, DCF effectively suppresses MI and provides a more stable Brillouin signal. Despite SMF exhibiting narrower BGS linewidths, DCF achieves a higher SNR, aligning with theoretical predictions. These findings highlight the importance of fiber dispersion properties in BOTDA design and suggest that using normally dispersive fibers like DCF can improve sensing performance in long-range, high-power applications. Full article
Show Figures

Figure 1

16 pages, 1951 KiB  
Article
Real-Time Damage Detection in an Airplane Wing During Wind Tunnel Testing Under Realistic Flight Conditions
by Yoav Ofir, Uri Ben-Simon, Shay Shoham, Iddo Kressel, Bernardino Galasso, Umberto Mercurio, Antonio Concilio, Gianvito Apuleo, Jonathan Bohbot and Moshe Tur
Sensors 2025, 25(14), 4423; https://doi.org/10.3390/s25144423 - 16 Jul 2025
Viewed by 354
Abstract
A real-time structural health monitoring (SHM) system of an airplane composite wing with adjustable damage is reported, where testing under realistic flight conditions is carried out in the controllable and repeatable environment of an industrial wind tunnel. An FBG-based sensing array monitors a [...] Read more.
A real-time structural health monitoring (SHM) system of an airplane composite wing with adjustable damage is reported, where testing under realistic flight conditions is carried out in the controllable and repeatable environment of an industrial wind tunnel. An FBG-based sensing array monitors a debonded region, whose compromised structural strength is regained by a set of lockable fasteners. Damage tunability is achieved by loosening some of or all these fasteners. Real-time analysis of the data collected involves Principal Component Analysis, followed by Hotelling’s T-squared and Q measures. With previously set criteria, real-time data collection and processing software can declare the structural health status as normal or abnormal. During testing, the system using the Q measure successfully identified the initiation of the damage and its extent, while the T-squared one returned limited outcomes. Full article
Show Figures

Figure 1

20 pages, 16333 KiB  
Review
The Burgeoning Importance of Nanomotion Sensors in Microbiology and Biology
by Marco Girasole and Giovanni Longo
Biosensors 2025, 15(7), 455; https://doi.org/10.3390/bios15070455 - 15 Jul 2025
Viewed by 411
Abstract
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy [...] Read more.
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy cantilevers, but now they are expanding into new, more intriguing setups. The idea is to convert the inherent nanoscale movements of living organisms—a direct manifestation of their metabolic activity—into measurable signals. This review highlights the evolution and diverse applications of nanomotion sensing. Key methodologies include Atomic Force Microscopy-based sensors, optical nanomotion detection, graphene drum sensors, and optical fiber-based sensors, each offering unique advantages in sensitivity, cost, and applicability. The analysis of complex nanomotion data is increasingly supported by advanced modeling and the integration of artificial intelligence and machine learning, enhancing pattern recognition and automation. The versatility and real-time, label-free nature of nanomotion sensing position it as a transformative tool that could revolutionize diagnostics, therapeutics, and fundamental biological research. Full article
Show Figures

Figure 1

12 pages, 3546 KiB  
Article
A Hybrid Optical Fiber Detector for the Simultaneous Measurement of Dust Concentration and Temperature
by Chuanwei Zhai and Li Xiong
Sensors 2025, 25(14), 4333; https://doi.org/10.3390/s25144333 - 11 Jul 2025
Viewed by 297
Abstract
This work presents a hybrid optical fiber detector by combining the sensing mechanism of the fiber Bragg grating (FBG) and the light extinction method to enable the simultaneous measurement of dust concentration and temperature. Compared with the existing dust concentration sensors, the proposed [...] Read more.
This work presents a hybrid optical fiber detector by combining the sensing mechanism of the fiber Bragg grating (FBG) and the light extinction method to enable the simultaneous measurement of dust concentration and temperature. Compared with the existing dust concentration sensors, the proposed detector offers three key advantages: intrinsic safety, dual-parameter measurement capability, and potentially network-based monitoring. The critical sensing components of the proposed detector consist of two optical collimators and an FBG. Using the extinction effect of light between the two collimators, the dust concentration and temperature are simultaneously determined by monitoring the intensity and the wavelength of the FBG reflectance spectrum, respectively. The measurement feasibility has been evaluated demonstrating that the two parameters of interest can be effectively sensed with minimally coupled outputs of ±3 pm and ±0.1 mW, respectively. Calibration experiments demonstrate that the change in the intensity of light from the FBG is exponentially related to the dust concentration variation with fitting coefficients equal to 0.948, 0.946, and 0.945 for 200 meshes, 300 meshes, and 400 meshes, respectively. The detector’s relative measurement errors were validated against the weighing method, confirming low measurement deviations. Full article
(This article belongs to the Special Issue Advances in the Design and Application of Optical Fiber Sensors)
Show Figures

Figure 1

Back to TopTop