Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,173)

Search Parameters:
Keywords = optical engine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2482 KB  
Article
Enhancement of the Peroxidase Activity of Metal–Organic Framework with Different Clay Minerals for Detecting Aspartic Acid
by Chen Tian, Lang Zhang, Yali Yu, Ting Liu, Jianwu Chen, Jie Peng, Chu Dai and Jinhua Gan
Catalysts 2025, 15(12), 1172; https://doi.org/10.3390/catal15121172 - 17 Dec 2025
Abstract
The strategic engineering of metal–organic frameworks (MOFs) through integration with clay minerals offers a promising route to tailor their functional properties and expand their application scope. In this study, a series of clay-MOF composites was constructed by introducing MOFs onto the surfaces of [...] Read more.
The strategic engineering of metal–organic frameworks (MOFs) through integration with clay minerals offers a promising route to tailor their functional properties and expand their application scope. In this study, a series of clay-MOF composites was constructed by introducing MOFs onto the surfaces of different clay minerals. By varying the type of clay mineral, the nature and strength of surface-active sites could be effectively modulated. Notably, the Kaolinite-based MOFs (Ka-MOF) composite exhibited superior sensitivity for the detection of aspartic acid (AA), outperforming other composite nanozymes using o-phenylenediamine (OPD) and hydrogen peroxide (H2O2) as substrates, with a linear detection range of 0–37.56 μM and a low detection limit of 55.7 nM. The enhanced peroxidase-like activity is attributed to the substitution of silicon in the kaolinite structure by MOF components, which increases the density of Lewis acid–base sites. These sites facilitate H2O2 adsorption and promote its decomposition to generate singlet oxygen (1O2), thereby enhancing the catalytic oxidation process. Furthermore, the probe yielded satisfactory recoveries of aspartic acid (94.2% to 98.5%) in different real water samples through spiking recovery experiments. This work not only elucidates the influence of crystal surface engineering on the optical and catalytic properties of nanozymes but also provides a robust platform for tracing amino acids and studying their environmental chemical behaviors. Full article
Show Figures

Figure 1

15 pages, 1192 KB  
Article
Opto-Mechatronic–Electrical Synergistic Capacitive Sensor for High-Resolution Micro-Displacement Measurement Targeting Cost-Sensitive Applications
by Yuling Yang, Xiyao Liu, Qisheng Wu, Xiwei Zhou, Yulin Yang, Wei Li, Ye Tao and Weiyu Liu
Appl. Sci. 2025, 15(24), 13203; https://doi.org/10.3390/app152413203 - 17 Dec 2025
Abstract
To address the limitations of optical interferometry (strict environmental requirements, high cost) and piezoelectric methods (hysteresis, creep) in micro-displacement measurement, this study proposes a collaborative measurement approach based on the parallel plate capacitance principle—with its core innovation lying in integrated optimization rather than [...] Read more.
To address the limitations of optical interferometry (strict environmental requirements, high cost) and piezoelectric methods (hysteresis, creep) in micro-displacement measurement, this study proposes a collaborative measurement approach based on the parallel plate capacitance principle—with its core innovation lying in integrated optimization rather than original principles. Unlike existing studies that separately optimize mechanics, hardware, or algorithms, this work achieves the first synergy of three components: a mechanical coupling mechanism (integrating a high-resolution optical mount and a micrometer) for parallel plate regulation, a 21-bit capacitance detection module based on the STM32-PCAP01 (with a resolution of 0.0001 pF), and a linear response model relating capacitance to the reciprocal of displacement. Experimental validation confirms its engineering feasibility for sub-nanometer-level precision: with a 10 cm plate radius and 3–20 mm initial spacing, the system achieves 277.215 ± 0.244 pF·mm sensitivity and <0.05 μm displacement resolution. The relative error of micro-displacement measurement in the 10 μm range is less than 1.56%. Based on the hardware resolution, the system possesses the theoretical capability to detect displacements as low as 10−8 to 10−9 m. Compared to laser interferometry, it operates stably in common industrial environments without vibration isolation or darkrooms, reducing costs by ~90% while maintaining comparable accuracy. This cost-effective solution enables online precision measurement in semiconductor manufacturing and MEMS testing, with its multi-physics collaborative design offering a new paradigm for intelligent sensor development. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

25 pages, 4847 KB  
Review
Bubbles in 2D Materials: Formation Mechanisms, Impacts, and Removal Strategies for Next-Generation Electronic Devices
by Kaitai Du, Baoshi Qiao, Xiaolei Ding, Changjin Huang and Huan Hu
Nanomaterials 2025, 15(24), 1888; https://doi.org/10.3390/nano15241888 - 16 Dec 2025
Abstract
Two-dimensional materials and their van der Waals heterostructures have shown great potential in quantum physics, flexible electronics, and optoelectronic devices. However, interfacial bubbles originated from trapped air, solvent residues, adsorbed molecules and reaction byproducts remain a key limitation to performance. This review provides [...] Read more.
Two-dimensional materials and their van der Waals heterostructures have shown great potential in quantum physics, flexible electronics, and optoelectronic devices. However, interfacial bubbles originated from trapped air, solvent residues, adsorbed molecules and reaction byproducts remain a key limitation to performance. This review provides a comprehensive overview of the formation mechanisms, characteristics, impacts, and optimization strategies related to bubbles in 2D heterostructures. We first summarize common fabrication approaches for constructing 2D heterostructures and discuss the mechanisms of bubble formation together with their physicochemical features. Then, we introduce characterization techniques ranging from macroscopic morphological observation to atomic-scale interfacial analysis, including optical microscopy, atomic force microscopy, transmission electron microscopy, and spectroscopic methods systematically. The effects of bubbles on the mechanical, electrical, thermal, and optical properties of 2D materials are subsequently examined. Finally, we compare key interface optimization strategies—such as thermal annealing, chemical treatments, AFM-based cleaning, electric field-driven approaches, clean assembly and AI-assisted methods. We demonstrate that, although substantial advances have been made in understanding interfacial bubbles, key fundamental challenges persist. Future breakthroughs will require the combined advancement of mechanistic insight, in situ characterization, and process engineering. Moreover, with the rapid adoption of AI and autonomous experimental platforms in materials fabrication and data analysis, AI-enabled process optimization and real-time characterization are emerging as key enablers for achieving high-cleanliness and scalable van der Waals heterostructures. Full article
Show Figures

Graphical abstract

17 pages, 6933 KB  
Article
Hot Deformation Behavior via Isothermal Compression and Constitutive Model of GH2132 Superalloy
by Yue Sun, Peng Cheng, Decheng Wang, Chenxi Shao and Lu Cheng
Materials 2025, 18(24), 5650; https://doi.org/10.3390/ma18245650 - 16 Dec 2025
Abstract
GH2132, an Ni–Cr–Fe-based superalloy for aero-engine components, exhibits hot workability that is highly sensitive to processing parameters. The hot deformation behavior of GH2132 alloy was investigated via isothermal compression (Gleeble-3500-GTC) over 850–1100 °C and 0.001–10 s−1, combined with optical microscopy and [...] Read more.
GH2132, an Ni–Cr–Fe-based superalloy for aero-engine components, exhibits hot workability that is highly sensitive to processing parameters. The hot deformation behavior of GH2132 alloy was investigated via isothermal compression (Gleeble-3500-GTC) over 850–1100 °C and 0.001–10 s−1, combined with optical microscopy and EBSD characterization. A strain-compensated Arrhenius-type hyperbolic-sine model was established, achieving high predictive accuracy (R2 = 0.9916; AARE = 3.86%) with an average activation energy Q = 446.2 kJ·mol−1. Flow stress decreases with increasing temperature and increases with strain rate, while microstructural softening transitions from dynamic recovery to complete dynamic recrystallization at higher temperatures and lower strain rates. Three-dimensional power-dissipation and hot-processing maps (Dynamic Materials Model) delineate safe domains and instability regions, identifying an optimal window of 1000–1100 °C at 0.001–0.01 s−1 and instability at 850–900 °C with 0.01–0.1 s−1. These results provide guidance for selecting parameters for hot deformation behavior during thermomechanical processing of GH2132. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 6671 KB  
Article
A Nanosecond-Scale, High-Spatiotemporal-Resolution, Near-UV–Visible Imaging System for Advanced Optical Diagnostics with Application to Rotating Detonation Engines
by Junhui Ma, Wen Dai, Dongqi Chen, Jingling Hu, Dong Yang, Lingxue Wang, Dezhi Zheng, Yingchen Shi, Haocheng Wen and Bing Wang
Photonics 2025, 12(12), 1233; https://doi.org/10.3390/photonics12121233 - 16 Dec 2025
Abstract
The combustion diagnostics of rotating detonation engines (RDE) based on excited-state hydroxyl radical (OH*) chemiluminescence imaging is an important method used to characterize combustion flow fields. Overcoming the limitations of imaging devices to achieve nanosecond-scale temporal resolution is crucial for observing the propagation [...] Read more.
The combustion diagnostics of rotating detonation engines (RDE) based on excited-state hydroxyl radical (OH*) chemiluminescence imaging is an important method used to characterize combustion flow fields. Overcoming the limitations of imaging devices to achieve nanosecond-scale temporal resolution is crucial for observing the propagation of high-frequency detonation waves. In this work, a nanosecond-scale imaging system with an ultra-high spatiotemporal resolution was designed and constructed. The system employs four near ultraviolet (NUV)-visible ICMOS, equipped with a high-gain, dual-microchannel plate (MCP) architecture fabricated using a new atomic layer deposition (ALD) process. The system has a maximum electronic gain of 107, a minimum integration time of 3 ns, a minimum interval time 4 ns, and an imaging resolution of 1608 × 1104 pixels. Using this system, high-spatiotemporal-resolution visualization experiments were conducted on RDE, fueled by H2–oxygen-enriched air and NH3–H2–oxygen-enriched air. The results enable the observation of the detonation wave structure, the cellular structure, and the propagation velocity. In combination with optical flow analysis, the images reveal vortex structures embedded within the cellular structure. For NH3-H2 mixed fuel, the results indicate that detonation wave propagation is more unstable than in H2 combustion, with a larger bright gray area covering both the detonation wave and the product region. The experimental results demonstrate that high spatiotemporal OH* imaging enables non-contact, full-field measurements, providing valuable data for elucidating RDE combustion mechanisms, guiding model design, and supporting NH3 combustion applications. Full article
(This article belongs to the Special Issue Optical Measurement Systems, 2nd Edition)
Show Figures

Figure 1

21 pages, 4172 KB  
Article
OCC-Based Positioning Method for Autonomous UAV Navigation in GNSS-Denied Environments: An Offshore Wind Farm Simulation Study
by Ju-Hyun Kim and Sung-Yoon Jung
Sensors 2025, 25(24), 7569; https://doi.org/10.3390/s25247569 - 12 Dec 2025
Viewed by 218
Abstract
Precise positioning is critical for autonomous uncrewed aerial vehicle (UAV) navigation, especially in GNSS-denied environments where radio-based signals are unreliable. This study presents an optical camera communication (OCC)-based positioning method that enables real-time 3D coordinate estimation using aviation obstruction light-emitting diodes (LEDs) as [...] Read more.
Precise positioning is critical for autonomous uncrewed aerial vehicle (UAV) navigation, especially in GNSS-denied environments where radio-based signals are unreliable. This study presents an optical camera communication (OCC)-based positioning method that enables real-time 3D coordinate estimation using aviation obstruction light-emitting diodes (LEDs) as optical transmitters and a UAV-mounted camera as the receiver. In the proposed system, absolute positional identifiers are encoded into color-shift-keying-modulated optical signals emitted by fixed LEDs and captured by the UAV camera. The UAV’s 3D position is estimated by integrating the decoded LED information with geometric constraints through the Perspective-n-Point algorithm, eliminating the need for satellite or RF-based localization infrastructure. A virtual offshore wind farm, developed in Unreal Engine, was used to experimentally evaluate the feasibility and accuracy of the method. Results demonstrate submeter localization precision over a 50,000 cm flight path, confirming the system’s capability for reliable, real-time positioning. These findings indicate that OCC-based positioning provides a cost-effective and robust alternative for UAV navigation in complex or communication-restricted environments. The offshore wind farm inspection scenario further highlights the method’s potential for industrial operation and maintenance tasks and underscores the promise of integrating optical wireless communication into autonomous UAV systems. Full article
(This article belongs to the Special Issue Smart Sensor Systems for Positioning and Navigation)
Show Figures

Figure 1

42 pages, 9085 KB  
Review
In2O3: An Oxide Semiconductor for Thin-Film Transistors, a Short Review
by Christophe Avis and Jin Jang
Molecules 2025, 30(24), 4762; https://doi.org/10.3390/molecules30244762 - 12 Dec 2025
Viewed by 509
Abstract
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on [...] Read more.
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on transparent and flexible substrates. However, mobilities over 30 cm2/Vs have been difficult to reach and other materials have been introduced. Recently, polycrystalline In2O3 has demonstrated breakthroughs in the field. In2O3 TFTs have attracted attention because of their high mobility of over 100 cm2/Vs, which has been achieved multiple times, and because of their use in scaled devices with channel lengths down to 10 nm for high integration in back-end-of-the-line (BEOL) applications and others. The present review focuses first on the material properties with the understanding of the bandgap value, the importance of the position of the charge neutrality level (CNL), the doping effect of various atoms (Zr, Ge, Mo, Ti, Sn, or H) on the carrier concentration, the optical properties, the effective mass, and the mobility. We introduce the effects of the non-parabolicity of the conduction band and how to assess them. We also introduce ways to evaluate the CNL position (usually at ~EC + 0.4 eV). Then, we describe TFTs’ general properties and parameters, like the field effect mobility, the subthreshold swing, the measurements necessary to assess the TFT stability through positive and negative bias temperature stress, and the negative bias illumination stress (NBIS), to finally introduce In2O3 TFTs. Then, we will introduce vacuum and non-vacuum processes like spin-coating and liquid metal printing. We will introduce the various dopants and their applications, from mobility and crystal size improvements with H to NBIS improvements with lanthanides. We will also discuss the importance of device engineering, introducing how to choose the passivation layer, the source and drain, the gate insulator, the substrate, but also the possibility of advanced engineering by introducing the use of dual gate and 2 DEG devices on the mobility improvement. Finally, we will introduce the recent breakthroughs where In2O3 TFTs are integrated in neuromorphic applications and 3D integration. Full article
Show Figures

Figure 1

18 pages, 4275 KB  
Article
Full-Field In-Plane Tensile Characterization of Cotton Fabrics Using 2D Digital Image Correlation
by Nenad Mitrovic, Aleksandra Mitrovic, Mirjana Reljic and Svetlana Pelemis
Textiles 2025, 5(4), 67; https://doi.org/10.3390/textiles5040067 - 11 Dec 2025
Viewed by 221
Abstract
Textile materials are widely used in diverse applications, yet their anisotropic structure and large deformations present major challenges in mechanical characterization. Conventional uniaxial tensile tests can quantify bulk properties but offer limited insight into local strain distributions. In this work, it was shown [...] Read more.
Textile materials are widely used in diverse applications, yet their anisotropic structure and large deformations present major challenges in mechanical characterization. Conventional uniaxial tensile tests can quantify bulk properties but offer limited insight into local strain distributions. In this work, it was shown that a 2D Digital Image Correlation (DIC) technique captures full-field strain data in three types of woven cotton fabrics with distinct weave patterns and densities, each tested in warp and weft orientations. In controlled tensile experiments conducted per EN ISO 13934-1, DIC revealed that strain in the loading direction (EpsY) was highly orientation-dependent (p < 0.001), whereas strain perpendicular to loading (EpsX) was unaffected by orientation (p = 0.193). These findings contrast with traditional tensile data, which indicate significant orientation effects on maximum force and elongation (both p < 0.001). Compared to point-based techniques, 2D DIC provided richer information on anisotropic deformation, including the ability to detect local strain concentrations before failure. The strong interaction between fabric type and orientation indicates that each fabric exhibits distinct strain response when loaded along warp and weft directions, underscoring the importance of evaluating both orientations when designing or selecting textiles for multidirectional loading. By combining standard tensile testing with full-field optical strain measurements, a more comprehensive understanding of textile behavior emerges, enabling improved material selection, enhanced product performance, and broader applications in engineering and textile fields. Full article
Show Figures

Figure 1

26 pages, 2806 KB  
Article
Towards a Near-Real-Time Water Stress Monitoring System in Tropical Heterogeneous Landscapes Using Remote Sensing Data
by Abdul Holik, Wei Tian, Aris Psilovikos and Mohamed Elhag
Hydrology 2025, 12(12), 325; https://doi.org/10.3390/hydrology12120325 - 10 Dec 2025
Viewed by 398
Abstract
This study presents a near-real-time water stress monitoring framework for tropical heterogeneous landscapes by integrating optical and radar remote sensing data within the Google Earth Engine platform. Five complementary indices, vertical transmit/vertical receive–vertical transmit/horizontal receive (VV/VH) ratio, Dual Polarimetric Radar Vegetation Index (DpRVI), [...] Read more.
This study presents a near-real-time water stress monitoring framework for tropical heterogeneous landscapes by integrating optical and radar remote sensing data within the Google Earth Engine platform. Five complementary indices, vertical transmit/vertical receive–vertical transmit/horizontal receive (VV/VH) ratio, Dual Polarimetric Radar Vegetation Index (DpRVI), Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), and Ratio Drought Index (RDI), were analyzed across three contrasting agricultural systems: paddy, sugarcane, and rubber, revealing distinct phenological and water stress dynamics. Radar-derived structural indices captured patterns of biomass accumulation and canopy development, with VV/VH values ranging from 4.2 to 12.3 in paddy and 5.4 to 6.0 in rubber. In parallel, optical moisture indices detected crop physiological stress; for instance, NDMI dropped from 0.26 to 0.06 during drought in sugarcane. Cross-index analyses demonstrated strong complementarity; synchronized VV/VH and RDI peaks characterized paddy inundation, whereas lagged NDMI–VV/VH responses captured stress-induced defoliation in rubber trees. Temporal profiling established crop-specific diagnostic signatures, with DpRVI peaking at 0.75 in paddy, gradual RDI decline in sugarcane, and NDMI values of 0.2–0.3 in rubber. The framework provides spatially explicit, temporally continuous, and cost-effective monitoring to support irrigation, drought early warning, and agricultural planning. Multi-year validation and field-based calibration are recommended for operational implementation. Full article
Show Figures

Figure 1

20 pages, 4132 KB  
Article
Synthesis and Characterization of Eco-Engineered Hollow Fe2O3/Carbon Nanocomposite Spheres: Evaluating Structural, Optical, Antibacterial, and Lead Adsorption Properties
by Islam Gomaa, Nikita Yushin, Mekki Bayachou, Vojislav Stanić and Inga Zinicovscaia
Nanomaterials 2025, 15(24), 1850; https://doi.org/10.3390/nano15241850 - 10 Dec 2025
Viewed by 215
Abstract
This work presents a facile mechano-thermal route for the synthesis of carbon-decorated, hollow, mesoporous α-Fe2O3 microspheres. Comprehensive characterization (XRD, XPS, FT-IR, SEM/EDX, TGA, zeta-potential) confirmed the formation of phase-pure hematite with nanoscale crystallites (~19 nm), substantial residual surface carbon (~40 [...] Read more.
This work presents a facile mechano-thermal route for the synthesis of carbon-decorated, hollow, mesoporous α-Fe2O3 microspheres. Comprehensive characterization (XRD, XPS, FT-IR, SEM/EDX, TGA, zeta-potential) confirmed the formation of phase-pure hematite with nanoscale crystallites (~19 nm), substantial residual surface carbon (~40 wt%) consistent with Fe–O–C linkages, and a positive surface charge (+15.9 mV). The hierarchical hollow/mesoporous architecture enables fast ion transport and provides extensive interior binding sites, resulting in rapid Pb(II) uptake that reaches 92% removal in ≈15 min at pH 5.0. The adsorption follows a Langmuir isotherm (qmax ≈ 70.6 mg/g) and pseudo-second-order kinetics, indicative of chemisorption coupled to efficient mass transfer into internal sites. The composite also exhibits antibacterial activity against Escherichia coli and Staphylococcus aureus, demonstrating its potential for simultaneous mitigation of heavy metal contaminants and pathogens. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

17 pages, 5084 KB  
Article
Influence of Multilayer Architecture on the Structural, Optical, and Photoluminescence Properties of ZnO Thin Films
by Neha N. Malpure, Sumit R. Patil, Jaydeep V. Sali, Diego Pugliese, Rakesh A. Afre and Rajendra S. Khadayate
Photonics 2025, 12(12), 1219; https://doi.org/10.3390/photonics12121219 - 9 Dec 2025
Viewed by 179
Abstract
The present work systematically investigates the impact of multilayer architecture—specifically 5, 10, and 15 layers—on the structural, morphological, optical, and dielectric properties of zinc oxide (ZnO) thin films, aiming to tailor their characteristics for optoelectronic applications. The films were characterized using a comprehensive [...] Read more.
The present work systematically investigates the impact of multilayer architecture—specifically 5, 10, and 15 layers—on the structural, morphological, optical, and dielectric properties of zinc oxide (ZnO) thin films, aiming to tailor their characteristics for optoelectronic applications. The films were characterized using a comprehensive suite of techniques. X-ray diffraction (XRD) analysis of the 15-layer sample confirmed the formation of polycrystalline ZnO with a hexagonal wurtzite crystal structure, showing prominent (100), (002), and (101) diffraction peaks. Measurements indicated that the film thickness progressively increased from 43.81 nm for 5 layers to 80.68 nm for 15 layers. Concurrently, the surface roughness significantly decreased from 5.54 nm (5 layers) to 2.00 nm (15 layers) with increasing layer count, suggesting enhanced film quality and densification. Optical studies using ultraviolet–visible (UV-Vis) spectroscopy revealed an increase in absorbance and a corresponding decrease in transmittance in the UV-Vis spectrum as the film thickness increased. The calculated optical band gap showed a slight redshift, decreasing from 3.26 eV for the 5-layer film to 3.23 eV for the 15-layer film. Photoluminescence (PL) spectra exhibited characteristic near-band-edge UV emission, with the 5-layer film demonstrating the highest PL intensity. Furthermore, analysis of optical constants revealed that the refractive index, extinction coefficient, optical conductivity, and both the real and imaginary parts of the dielectric constant generally increased with an increasing number of layers, particularly in the visible region, while more nuanced and non-monotonic trends were observed in the UV range. These results underscore the significant influence of layer number on the physical properties of ZnO thin films, providing valuable insights for optimizing their performance in various optoelectronic devices. Full article
(This article belongs to the Special Issue Optical Thin Films: From Materials to Applications)
Show Figures

Figure 1

24 pages, 16704 KB  
Article
TiO2, GO, and TiO2/GO Coatings by APPJ on Waste ABS/PMMA Composite Filaments Filled with Carbon Black, Graphene, and Graphene Foam: Morphology, Wettability, Thermal Stability, and 3D Printability
by Alejandra Xochitl Maldonado Pérez, Alma Delfina Arenas Flores, José de Jesús Pérez Bueno, Maria Luisa Mendoza López, Yolanda Casados Mexicano, José Luis Reyes Araiza, Alejandro Manzano-Ramírez, Salomón Ramiro Vásquez García, Nelly Flores-Ramírez, Carlos Montoya Suárez and Edain Belén Pérez Mendoza
Polymers 2025, 17(24), 3263; https://doi.org/10.3390/polym17243263 - 9 Dec 2025
Viewed by 287
Abstract
This work presents a multifactorial strategy for reusing waste thermoplastics and generating multifunctional filaments for additive manufacturing. Acrylonitrile–butadiene–styrene (ABS) waste and commercial poly(methyl methacrylate) (PMMA) were compounded with carbon black (CB), graphene (G), or graphene foam (GF) at different loadings and extruded into [...] Read more.
This work presents a multifactorial strategy for reusing waste thermoplastics and generating multifunctional filaments for additive manufacturing. Acrylonitrile–butadiene–styrene (ABS) waste and commercial poly(methyl methacrylate) (PMMA) were compounded with carbon black (CB), graphene (G), or graphene foam (GF) at different loadings and extruded into composite filaments. The aim is to couple filler-induced bulk modifications with atmospheric pressure plasma jet (APPJ) surface coatings of TiO2 and graphene oxide (GO) to obtain waste-derived filaments with tunable morphology, wettability, and thermal stability for advanced 3D-printed architectures. The filaments were subsequently coated with TiO2 and/or GO using an APPJ process, which tailored surface wettability and enabled the formation of photocatalytically relevant interfaces. Digital optical microscopy and SEM revealed that CB, G, and GF were reasonably well dispersed in both polymer matrices but induced distinct surface and cross-sectional morphologies, including a carbon-rich outer crust in ABS and filler-dependent porosity in PMMA. For ABS composites, static contact-angle measurements show that APPJ coatings broaden the apparent wettability window from ~60–80° for uncoated filaments to ~40–50° (TiO2/GO) up to >90° (GO), corresponding to a ≈150% increase in contact-angle span. For PMMA/CB composites, TiO2/GO coatings expand the accessible contact-angle range to ~15–125° while maintaining surface energies around 50 mN m−1. TGA/DSC analyses confirm that the composites and coatings remain thermally stable within typical extrusion and APPJ processing ranges, with graphene showing only ≈3% mass loss over the explored temperature range, compared with ≈65% for CB and ≈10% for GF. Fused deposition modeling trials verify the printability and dimensional fidelity of ABS-based composite filaments, whereas PMMA composites were too brittle for reliable FDM printing. Overall, combining waste polymer reuse, tailored carbonaceous fillers, and APPJ TiO2/GO coatings provides a versatile route to design surface-engineered filaments for applications such as photocatalysis, microfluidics, and soft robotics within a circular polymer manufacturing framework. Full article
Show Figures

Graphical abstract

22 pages, 14743 KB  
Article
Simulation and Reproduction of Direct Solar Radiation Utilizing Grating Anomalous Dispersion
by Junjie Yang, Jian Zhang, Bin Zhao, Lu Wang, Yu Zhang, Songzhou Yang, Da Xu, Taiyang Ren, Jingrui Sun and Guoyu Zhang
Sensors 2025, 25(24), 7474; https://doi.org/10.3390/s25247474 - 9 Dec 2025
Viewed by 258
Abstract
The technical challenge of balancing radiant illuminance and the angular diameter of the simulated sun remains unsolved, preventing the realization of a solar simulator with both a 32′ angular diameter and a solar constant irradiance. This paper proposes a direct solar radiation simulation [...] Read more.
The technical challenge of balancing radiant illuminance and the angular diameter of the simulated sun remains unsolved, preventing the realization of a solar simulator with both a 32′ angular diameter and a solar constant irradiance. This paper proposes a direct solar radiation simulation method using grating anomalous dispersion and a technological implementation scheme. This new architecture consists of a spectrally modulated optical engine, a diffractive combining system, and a multi-aperture imaging reconstruction system. We designed an optical system for simulating direct solar radiation, which achieves a high degree of reproducibility of natural direct solar radiation characteristics. The performance of this system was verified through simulation, with the results indicating that the solar direct radiation simulator achieves an angular diameter of 31.7′ while maintaining radiant illuminance above a solar constant. Additionally, the system spectral match to both the extraterrestrial (AM0G) and terrestrial global (AM1.5G) solar spectra, along with its uniformity, complies with an A+ grade. The studied direct solar radiation simulation is currently the only instrument capable of achieving a solar constant of an angular diameter less than 32′. This research revolutionizes the structure and principle of the traditional solar simulator, makes up for the deficiencies of the existing solar simulation technology, further improves the theoretical system of solar direct radiation simulation, and has far-reaching scientific significance for the development and application of solar simulation technology. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 1356 KB  
Article
OptiPerformer as a Platform for Optical Fiber System Simulation in Distance and In-Class Learning
by Seweryn Lipiński
Electronics 2025, 14(24), 4800; https://doi.org/10.3390/electronics14244800 - 5 Dec 2025
Viewed by 219
Abstract
Simulation-based laboratories have become an essential component of modern engineering education, particularly in courses where access to physical equipment is limited. This paper presents a structured methodology for teaching the fundamentals of optical fiber communication systems using OptiPerformer 18, i.e., a freely available [...] Read more.
Simulation-based laboratories have become an essential component of modern engineering education, particularly in courses where access to physical equipment is limited. This paper presents a structured methodology for teaching the fundamentals of optical fiber communication systems using OptiPerformer 18, i.e., a freely available optical communication simulation platform. The novelty of this work lies in integrating a complete set of parameter-driven laboratory exercises, covering eye-diagram analysis, chromatic dispersion and dispersion compensation, Gaussian pulse propagation, and BER/Q-factor evaluation, into both distance and face-to-face teaching, and validating their effectiveness across four academic years involving more than 200 students. Representative simulation results generated with OptiPerformer are provided to illustrate the learning process and to demonstrate how key transmission impairments and system-level behaviors can be visualized and quantitatively analyzed without specialized hardware. The pedagogical effectiveness of the approach is assessed through student surveys and final grades, showing consistently high learning outcomes and strong student engagement in both remote and in-person settings. These findings indicate that the proposed simulation-based laboratory framework offers a scalable, hardware-independent, and conceptually rich alternative to traditional fiber-optic laboratory classes, supporting deeper understanding of transmission physics and enhancing analytical and problem-solving skills essential in modern optical communication engineering. Full article
Show Figures

Figure 1

28 pages, 3383 KB  
Review
Evaluation of Biomass Softwood Composites: Structural Features and Functional Properties of Advanced Engineered Wood
by Ria Aniza, Anelie Petrissans, Mathieu Petrissans, Erlan Rosyadi, Hana Nabila Anindita, Tyas Puspita Rini, Zulaicha Dwi Hastuti, Nurdiah Rahmawati, Bralin Dwiratna, Ena Marlina, Akhmad Faruq Alhikami and I Dewa Ayu Agung Warmadewanthi
Forests 2025, 16(12), 1823; https://doi.org/10.3390/f16121823 - 5 Dec 2025
Viewed by 288
Abstract
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, [...] Read more.
Softwood-based composites are increasingly used in structural and nonstructural applications owing to their renewability, cost-effectiveness, and favorable strength-to-weight performance. This study applies a systematic literature review and comparative analysis, drawing on approximately 140 sources, to synthesize current knowledge on the physicochemical, mechanical, thermal, and environmental characteristics of engineered wood products derived from softwood species. The intrinsic lignocellulosic composition of softwood, comprising roughly 40%–45% cellulose, 25%–30% hemicelluloses (with mannose as the predominant sugar), and 27%–30% lignin, strongly influences hydrophilicity, stiffness, and thermal behavior. Mechanical properties vary across engineered wood product classes; for example, plywood exhibits a modulus of rupture of 33.72–42.61 MPa and a modulus of elasticity of 6.96–8.55 GPa. Microstructural and spectroscopic analyses highlight the importance of fiber–matrix interactions, chemical bonding, and surface modifications in determining composite performance. Emerging advanced materials, such as scrimber, with densities of 800–1390 kg/m3, and fluorescent transparent wood, achieving optical transmittance above 70%–85%, demonstrate the expanding functional potential of softwood-based composites. Sustainability assessments indicate that coatings, flame-retardants, and adhesives may contribute to volatile organic compound emissions, emphasizing the need for lower-emission, bio-based alternatives. Overall, the findings of this systematic review show that softwood-based composites deliver robust, quantifiable performance advantages and hold strong potential to meet the rising demand for sustainable, low-carbon engineered materials. Full article
(This article belongs to the Special Issue Wood Testing, Processing and Modification)
Show Figures

Graphical abstract

Back to TopTop