Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (403)

Search Parameters:
Keywords = open-chip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2497 KB  
Article
High-Performance Reservoir Simulation with Wafer-Scale Engine for Large-Scale Carbon Storage
by Mina Khalaf, Hyoungkeun Kim, Alexander Y. Sun, Dirk Van Essendelft, Chung Yan Shih, Guoxiang Liu and Hema Siriwardane
Energies 2025, 18(22), 5874; https://doi.org/10.3390/en18225874 - 7 Nov 2025
Viewed by 247
Abstract
Reservoir simulations are essential for subsurface energy applications, but remain constrained by the long runtimes of high-fidelity solvers and the limited generalizability of pretrained machine learning models. This study presents a multiphase reservoir simulator implemented on the Wafer Scale Engine (WSE), a new [...] Read more.
Reservoir simulations are essential for subsurface energy applications, but remain constrained by the long runtimes of high-fidelity solvers and the limited generalizability of pretrained machine learning models. This study presents a multiphase reservoir simulator implemented on the Wafer Scale Engine (WSE), a new hardware architecture that delivers supercomputer performance on a single chip. Application development on the WSE is still at a nascent stage, and this study is, to our knowledge, the first to implement a full-physics, two-phase CO2-brine reservoir simulator on WSE, achieving runtimes on the order of seconds for reservoir-scale simulations while preserving full numerical accuracy. The developed simulator incorporates detailed physics for simulating CO2 transport in geological formations. As a case study, we considered CO2 injection into a field-scale reservoir model consisting of over 1.7 million cells. The WSE solver achieves more than two orders of magnitude speedup compared to a conventional CPU-based parallel simulator, completing a 5-year simulation in just 2.8 s. The WSE performance remained nearly unchanged to a four-fold increase in grid resolution, in contrast to the strong slowdown observed with the CPU-based solver. These findings provide the first proof-of-concept of wafer-scale computing for enabling high-resolution, large-scale full-physics simulations in near-real-time, overcoming the tradeoff between speed and accuracy and opening a new paradigm for carbon storage and broader subsurface energy applications. Full article
(This article belongs to the Special Issue Advances in Carbon Capture, Utilization & Storage (CCUS))
Show Figures

Figure 1

13 pages, 1200 KB  
Article
Development of Lab-on-a-Chip LAMP and Real-Time PCR Assays to Detect Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus in Hazelnuts
by Slavica Matić, Livio Cognolato, Martina Sanna, Monica Mezzalama, Riccardo Laurenti and Davide Spadaro
Toxins 2025, 17(10), 510; https://doi.org/10.3390/toxins17100510 - 17 Oct 2025
Viewed by 488
Abstract
Aflatoxins, which are potentially genotoxic and carcinogenic substances, are mainly produced by the Aspergillus section Flavi, including Aspergillus flavus and A. parasiticus. Current Aspergillus spp. detection is often based on molecular methods, such as real-time PCR and loop-mediated isothermal amplification (LAMP), [...] Read more.
Aflatoxins, which are potentially genotoxic and carcinogenic substances, are mainly produced by the Aspergillus section Flavi, including Aspergillus flavus and A. parasiticus. Current Aspergillus spp. detection is often based on molecular methods, such as real-time PCR and loop-mediated isothermal amplification (LAMP), targeting genes of the aflatoxin biosynthetic cluster. In this study, we developed a Lab-on-a-Chip (LoC) method based on real-time PCR and on LAMP for the specific detection of aflatoxigenic strains of A. flavus and A. parasiticus from infected hazelnuts. LoC-LAMP and LoC-real-time PCR assays were tested in terms of specificity, sensitivity, speed, and repeatability. The microfluidic chip allowed quick, specific, sensitive, simple, automatized, cheap, and user-friendly detection of aflatoxigenic strains of A. flavus and A. parasiticus. The LoC-LAMP showed a limit of detection (LOD) of 10 fg of DNA, while the LoC-real-time PCR showed a LOD of 10 pg of DNA. Achieving comparable sensitivity to that of LAMP and real-time PCR techniques, both LoC methods developed in this work offer the advantages of automation, minimal sample requirements, reagent requirements, and cost-effectiveness. Overall, the developed methods open the perspective for alternative monitoring of aflatoxigenic fungi in the agri-food industry. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

12 pages, 1654 KB  
Article
Research on Open Magnetic Shielding Packaging for STT and SOT-MRAM
by Haibo Ye, Xiaofei Zhang, Nannan Lu, Jiawei Li, Jun Jia, Guilin Zhao, Jiejie Sun, Lei Zhang and Chao Wang
Micromachines 2025, 16(10), 1157; https://doi.org/10.3390/mi16101157 - 13 Oct 2025
Viewed by 553
Abstract
As an emerging type of non-volatile memory, magneto-resistive random access memory (MRAM) stands out for its exceptional reliability and rapid read–write speeds, thereby garnering considerable attention within the industry. The memory cell architecture of MRAM is centered around the magnetic tunnel junction (MTJ), [...] Read more.
As an emerging type of non-volatile memory, magneto-resistive random access memory (MRAM) stands out for its exceptional reliability and rapid read–write speeds, thereby garnering considerable attention within the industry. The memory cell architecture of MRAM is centered around the magnetic tunnel junction (MTJ), which, however, is prone to interference from external magnetic fields—a limitation that restricts its application in demanding environments. To address this challenge, we propose an innovative open magnetic shielding structure. This design demonstrates remarkable shielding efficacy against both in-plane and perpendicular magnetic fields, effectively catering to the magnetic shielding demands of both spin-transfer torque (STT) and spin–orbit torque (SOT) MRAM. Finite element magnetic simulations reveal that when subjected to an in-plane magnetic field of 40 mT, the magnetic field intensity at the chip level is reduced to nearly 1‰ of its original value. Similarly, under a perpendicular magnetic field of 40 mT, the magnetic field at the chip is reduced to 2‰ of its initial strength. Such reductions significantly enhance the anti-magnetic capabilities of MRAM. Moreover, the magnetic shielding performance remains unaffected by the height of the packaging structure, ensuring compatibility with various chip stack packaging requirements across different layers. The research presented in this paper holds immense significance for the realization of highly reliable magnetic shielding packaging solutions for MRAM. Full article
Show Figures

Figure 1

27 pages, 7591 KB  
Article
Switching Frequency Figure of Merit for GaN FETs in Converter-on-Chip Power Conversion
by Liron Cohen, Joseph B. Bernstein, Roni Zakay, Aaron Shmaryahu and Ilan Aharon
Electronics 2025, 14(19), 3909; https://doi.org/10.3390/electronics14193909 - 30 Sep 2025
Cited by 1 | Viewed by 654
Abstract
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon [...] Read more.
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon devices. Despite this promise, the potential of GaN technology remains underutilized. This paper explores the feasibility of achieving sub-gigahertz switching frequencies using GaN-based switch-mode power converters, a regime currently inaccessible to silicon-based counterparts. To reach such operating speeds, it is essential to understand and quantify the intrinsic frequency limitations imposed by GaN device physics and associated parasitics. Existing power conversion topologies and control techniques are unsuitable at these frequencies due to excessive switching losses and inadequate drive capability. This work presents a detailed, systematic study of GaN transistor behavior at high frequencies, aiming to identify both fundamental and practical switching limits. A compact analytical model is developed to estimate the maximum soft-switching frequency, considering only intrinsic device parameters. Under idealized converter conditions, this upper bound is derived as a function of internal losses and the system’s target efficiency. From this, a soft-switching figure of merit is proposed to guide the design and layout of GaN field-effect transistors for highly integrated power systems. The key contribution of this study lies in its analytical insight into the performance boundaries of GaN transistors, highlighting the roles of parasitic elements and loss mechanisms. These findings provide a foundation for developing next-generation, high-frequency, chip-scale power converters. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Graphical abstract

26 pages, 9948 KB  
Article
Comprehensive RTL-to-GDSII Workflow for Custom Embedded FPGA Architectures Using Open-Source Tools
by Emilio Isaac Baungarten-Leon, Susana Ortega-Cisneros, Gerardo Leyva, Héctor Emmanuel Muñoz Zapata, Erick Guzmán-Quezada, Francisco J. Alvarado-Rodríguez and Juan Jose Raygoza-Panduro
Electronics 2025, 14(19), 3866; https://doi.org/10.3390/electronics14193866 - 29 Sep 2025
Viewed by 1594
Abstract
The main objective of this work is to provide a comprehensive explanation of the Register Transfer Level (RTL) to Graphic Data System II (GDSII) flow for designing custom Field-Programmable Gate Array (FPGA) architectures at the 130 nm technology node using the SKY130 Process [...] Read more.
The main objective of this work is to provide a comprehensive explanation of the Register Transfer Level (RTL) to Graphic Data System II (GDSII) flow for designing custom Field-Programmable Gate Array (FPGA) architectures at the 130 nm technology node using the SKY130 Process Design Kit (PDK). By leveraging open-source tools—specifically OpenLane and OpenFPGA—this study details the methodology and implementation steps required to generate a GDSII layout of a custom FPGA. OpenLane offers an integrated RTL-to-GDSII flow by combining multiple Electronic Design Automation (EDA) tools, while OpenFPGA enables the construction of flexible and customizable FPGA architectures. The article covers key aspects of the RTL-to-GDSII workflow, including RTL file configuration, the utilization of configuration variables for physical design, hierarchical chip design, macro and core implementation, chip-level integration, and gate-level simulation. Experimental results validate the proposed workflow, showcasing the successful transformation from RTL to GDSII. The findings of this research provide valuable insights for researchers and engineers in the FPGA design field, advancing the state of the art in FPGA architecture development. Full article
(This article belongs to the Special Issue FPGAs and Reconfigurable Systems: Theory, Methods and Applications)
Show Figures

Figure 1

20 pages, 2506 KB  
Article
Design of an RRAM-Based Joint Model for Embedded Cellular Smartphone Self-Charging Device
by Abhinav Vishwakarma, Anubhav Vishwakarma, Matej Komelj, Santosh Kumar Vishvakarma and Michael Hübner
Micromachines 2025, 16(10), 1101; https://doi.org/10.3390/mi16101101 - 28 Sep 2025
Viewed by 970
Abstract
With the development of embedded electronic devices, energy consumption has become a significant design issue in modern systems-on-a-chip. Conventional SRAMs cannot maintain data after powering turned off, limiting their use in applications such as battery-powered smartphone devices that require non-volatility and no leakage [...] Read more.
With the development of embedded electronic devices, energy consumption has become a significant design issue in modern systems-on-a-chip. Conventional SRAMs cannot maintain data after powering turned off, limiting their use in applications such as battery-powered smartphone devices that require non-volatility and no leakage current. RRAM devices are recently used extensively in applications such as self-charging wireless sensor networks and storage elements, owing to their intrinsic non-volatility and multi-bit capabilities, making them a potential candidate for mitigating the von Neumann bottleneck. We propose a new RRAM-based hybrid memristor model incorporated with a permanent magnet. The proposed design (1T2R) was simulated in Cadence Virtuoso with a 1.5 V power supply, and the finite-element approach was adopted to simulate magnetization. This model can retain the data after the power is off and provides fast power on/off transitions. It is possible to charge a smartphone battery without an external power source by utilizing a portable charger that uses magnetic induction to convert mechanical energy into electrical energy. In an embedded smartphone self-charging device this addresses eco-friendly concerns and lowers environmental effects. It would lead to the development of magnetic field-assisted embedded portable electronic devices and open the door to new types of energy harvesting for RRAM devices. Our proposed design and simulation results reveal that, under usual conditions, the magnet-based device provide a high voltage to charge a smartphone battery. Full article
(This article belongs to the Special Issue Self-Tuning and Self-Powered Energy Harvesting Devices)
Show Figures

Figure 1

25 pages, 1772 KB  
Review
Microfluidic-Based Technologies for Crossing the Blood–Brain Barrier Against Alzheimer’s Disease: Novel Strategies and Challenges
by Irene Ferrari, Emanuele Limiti, Sara Maria Giannitelli, Marcella Trombetta, Alberto Rainer, Marcello D’Amelio, Livia La Barbera and Manuele Gori
Int. J. Mol. Sci. 2025, 26(19), 9478; https://doi.org/10.3390/ijms26199478 - 27 Sep 2025
Viewed by 1350
Abstract
Alzheimer’s disease (AD) represents the major cause of dementia worldwide, involving different etiopathogenetic mechanisms, but with no definitive cure. The efficacy of new AD drugs is limited by the multifactorial disease nature that involves several targets, but also by the difficult penetration across [...] Read more.
Alzheimer’s disease (AD) represents the major cause of dementia worldwide, involving different etiopathogenetic mechanisms, but with no definitive cure. The efficacy of new AD drugs is limited by the multifactorial disease nature that involves several targets, but also by the difficult penetration across the blood–brain barrier (BBB) for reaching the target area at therapeutic doses. Thus, the inability of many compounds to efficiently bypass the BBB makes it arduous to treat the disease. Furthermore, the lack of more representative BBB in vitro models than conventional 2D cultures, and xenogeneic animal models that recapitulate AD pathogenesis, makes it even more difficult to develop definitive cures. In this context, microfluidics has emerged as a promising tool, offering advanced strategies for simulating the BBB, investigating its crossing mechanisms, and developing nanocarriers that successfully pass the BBB for brain-targeting, with particular interest in pathological states. The advantages of microfluidic platforms for studying the BBB role in pathophysiological conditions might herald more tailored and effective approaches based on functionalized nanosystems for treating AD. Here, we provide an overview of the latest advances in microfluidic-based technologies both for the synthesis of nanodrug delivery systems, and for developing advanced models of the BBB-on-a-chip to simulate this biological barrier, facing open challenges in AD, and improving our understanding of the disease. Full article
Show Figures

Figure 1

33 pages, 2564 KB  
Review
Between Air and Artery: A History of Cardiopulmonary Bypass and the Rise of Modern Cardiac Surgery
by Vasileios Leivaditis, Andreas Maniatopoulos, Francesk Mulita, Paraskevi Katsakiori, Nikolaos G. Baikoussis, Sofoklis Mitsos, Elias Liolis, Vasiliki Garantzioti, Konstantinos Tasios, Panagiotis Leventis, Nikolaos Kornaros, Andreas Antzoulas, Dimitrios Litsas, Levan Tchabashvili, Konstantinos Nikolakopoulos and Manfred Dahm
J. Cardiovasc. Dev. Dis. 2025, 12(9), 365; https://doi.org/10.3390/jcdd12090365 - 18 Sep 2025
Cited by 2 | Viewed by 1331
Abstract
Cardiopulmonary bypass (CPB) is one of the most groundbreaking medical innovations in history, enabling safe and effective heart surgery by temporarily replacing the function of the heart and lungs. This review starts with ancient concepts of cardiopulmonary function and then traces the evolution [...] Read more.
Cardiopulmonary bypass (CPB) is one of the most groundbreaking medical innovations in history, enabling safe and effective heart surgery by temporarily replacing the function of the heart and lungs. This review starts with ancient concepts of cardiopulmonary function and then traces the evolution of CPB through important physiological and anatomical discoveries, culminating in the development of the modern heart–lung machine. In addition to examining the contributions of significant figures like Galen, Ibn al-Nafis, William Harvey, and John Gibbon, we also examine the ethical and technical challenges faced in the early days of open heart surgery. Modern developments are also discussed, such as miniature extracorporeal systems, off-pump surgical techniques, and the increasing importance of extracorporeal membrane oxygenation (ECMO) and extracorporeal life support (ECLS), while the evolving role of perfusionists in diverse cardiac teams and the variations in global access to CPB technology are also given special attention. We look at recent advancements in CPB, including customized methods, nanotechnology, artificial intelligence-guided perfusion, and organ-on-chip testing, emphasizing CPB’s enduring significance as a technological milestone and a living example of the cooperation of science, medicine, and human inventiveness because it bridges the gap between the past and the future. Full article
Show Figures

Figure 1

16 pages, 1847 KB  
Article
The Fluidic Shear Stress Loading Method Enables Mechanobiological Stimulation in an On-Chip Pump-Integrated Microphysiological System
by Jin Hong Yap, Satoshi Ishizaki, Hiroko Nakamura, Kenta Shinha and Hiroshi Kimura
Micromachines 2025, 16(9), 1051; https://doi.org/10.3390/mi16091051 - 15 Sep 2025
Viewed by 770
Abstract
Microphysiological systems (MPSs), such as organ-on-a-chip platforms, are promising alternatives to animal testing for drug development and physiological research. The BioStellar™ Plate is a commercial MPS platform featuring an open-top culture chamber design with on-chip stirrer pumps that circulate culture medium through six [...] Read more.
Microphysiological systems (MPSs), such as organ-on-a-chip platforms, are promising alternatives to animal testing for drug development and physiological research. The BioStellar™ Plate is a commercial MPS platform featuring an open-top culture chamber design with on-chip stirrer pumps that circulate culture medium through six independent, dual microchannel-connected chamber multiorgan units. Although this design enables a circular flow, the open-top culture chamber format prevents the application of fluidic shear stress, a force that cells experience in vivo, which affects their behavior and function. To address this, we developed two fluidic shear stress attachments for the BioStellar™ Plate. These attachment channel fluids provide controlled mechanical stimulation to cultured cells. The flow dynamics were simulated using COMSOL Multiphysics to estimate shear stress levels. The attachments were fabricated and validated through fluorescent bead tracking and biological assays. The FSSA-D is designed for flat-bottom standard cell cultures, while the FSSA-I is designed for epithelial monolayers, enabling the application of fluidic shear stress across the basal membrane. Experiments with intestinal epithelial cells (Caco-2) demonstrated that both attachments enhanced cell barrier function under a fluidic environment, as indicated by higher transepithelial electrical resistance (TEER). These findings demonstrate that the attachments are practical tools for mechanobiology research with MPS platforms. Full article
Show Figures

Figure 1

11 pages, 1192 KB  
Brief Report
Saving the Near Extinct Harbison Hawthorn (Crataegus harbisonii): An Ex Situ Approach for Woody Plant Species Conservation
by Jesse B. Parker, Mike Hansbrough, Ron Lance and Scott E. Schlarbaum
Forests 2025, 16(9), 1394; https://doi.org/10.3390/f16091394 - 1 Sep 2025
Viewed by 658
Abstract
Crataegus harbisonii Beadle (Harbison’s or Harbison hawthorn) is a Tennessee (USA) endemic tree of the Rosaceae family, currently considered “critically imperiled” at the state, national, and global levels. It is known from only two extant wild locations, one in Davidson County, Tennessee consisting [...] Read more.
Crataegus harbisonii Beadle (Harbison’s or Harbison hawthorn) is a Tennessee (USA) endemic tree of the Rosaceae family, currently considered “critically imperiled” at the state, national, and global levels. It is known from only two extant wild locations, one in Davidson County, Tennessee consisting of a single living individual and a population of less than 100 individuals in Obion County, Tennessee. Key ex situ conservation efforts undertaken over the last three years with this critically imperiled species are reported here. The Obion County population was intensively surveyed and all C. harbisonii individuals documented. Over three seasons, seeds were collected and propagated, and clones were generated via chip-budding and grafting. Conservation seed orchards were planned and established to provide a stable, long-term source of genetically robust seed for reforestation and research. To date, 19 sources from the Obion County location as well as the single Davidson County genotype have been successfully preserved through clonal propagation, and open-pollinated seedlings produced from 12 unique mother trees. Additional material is being added annually. We report lessons learned as well as key future research directions, now enabled through the establishment of germplasm resources. Full article
(This article belongs to the Special Issue Genetic Resources and Prebreeding)
Show Figures

Figure 1

35 pages, 21105 KB  
Review
A Review: The Beauty of Serendipity Between Integrated Circuit Security and Artificial Intelligence
by Chen Dong, Decheng Qiu, Bolun Li, Yang Yang, Chenxi Lyu, Dong Cheng, Hao Zhang and Zhenyi Chen
Sensors 2025, 25(15), 4880; https://doi.org/10.3390/s25154880 - 7 Aug 2025
Viewed by 1122
Abstract
Integrated circuits are the core of a cyber-physical system, where tens of billions of components are integrated into a tiny silicon chip to conduct complex functions. To maximize utilities, the design and manufacturing life cycle of integrated circuits rely on numerous untrustworthy third [...] Read more.
Integrated circuits are the core of a cyber-physical system, where tens of billions of components are integrated into a tiny silicon chip to conduct complex functions. To maximize utilities, the design and manufacturing life cycle of integrated circuits rely on numerous untrustworthy third parties, forming a global supply chain model. At the same time, this model produces unpredictable and catastrophic issues, threatening the security of individuals and countries. As for guaranteeing the security of ultra-highly integrated chips, detecting slight abnormalities caused by malicious behavior in the current and voltage is challenging, as is achieving computability within a reasonable time and obtaining a golden reference chip; however, artificial intelligence can make everything possible. For the first time, this paper presents a systematic review of artificial-intelligence-based integrated circuit security approaches, focusing on the latest attack and defense strategies. First, the security threats of integrated circuits are analyzed. For one of several key threats to integrated circuits, hardware Trojans, existing attack models are divided into several categories and discussed in detail. Then, for summarizing and comparing the numerous existing artificial-intelligence-based defense strategies, traditional and advanced artificial-intelligence-based approaches are listed. Finally, open issues on artificial-intelligence-based integrated circuit security are discussed from three perspectives: in-depth exploration of hardware Trojans, combination of artificial intelligence, and security strategies involving the entire life cycle. Based on the rapid development of artificial intelligence and the initial successful combination with integrated circuit security, this paper offers a glimpse into their intriguing intersection, aiming to draw greater attention to these issues. Full article
(This article belongs to the Collection Integrated Circuits and Systems for Smart Sensor Applications)
Show Figures

Figure 1

16 pages, 2779 KB  
Article
Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator
by Martin Millicovsky, Luis Schierloh, Pablo Kler, Gabriel Muñoz, Juan Cerrudo, Albano Peñalva, Juan Reta and Martin Zalazar
Hardware 2025, 3(3), 9; https://doi.org/10.3390/hardware3030009 - 7 Aug 2025
Viewed by 853
Abstract
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making [...] Read more.
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making accessibility a significant challenge. Additionally, their use requires specialized systems, and with only a few manufacturers dominating the market, most available solutions are proprietary, limiting customization and adaptability for specific research needs. In this work, a low-cost open-source LSAW biosensing system prototype was developed based on a commercially acquired resonator. The development integrates microfluidics through a polydimethylsiloxane (PDMS) chip, low-cost electronics, and both 3D printed ultraviolet (UV) resin and polylactic acid (PLA) parts. The instrument used for measurements was a vector network analyzer (VNA) that features open-source software. The code was customized for this study to enable real-time, label-free biosensing. Experimental validation consisted of evaluating the sensitivity and repeatability of the system, from the setup to its use with different fluids. Results demonstrated that the development is able to advance to more complex applications. Full article
Show Figures

Graphical abstract

45 pages, 3787 KB  
Review
Electromigration Failures in Integrated Circuits: A Review of Physics-Based Models and Analytical Methods
by Ping Cheng, Ling-Feng Mao, Wen-Hao Shen and Yu-Ling Yan
Electronics 2025, 14(15), 3151; https://doi.org/10.3390/electronics14153151 - 7 Aug 2025
Viewed by 4473
Abstract
Electromigration (EM), current-driven atomic diffusion in interconnect metals, critically threatens integrated circuit (IC) reliability via void-induced open circuits and hillock-induced short circuits. This review examines EM’s physical mechanisms, influencing factors, and advanced models, synthesizing seven primary determinants: current density, temperature, material properties, microstructure, [...] Read more.
Electromigration (EM), current-driven atomic diffusion in interconnect metals, critically threatens integrated circuit (IC) reliability via void-induced open circuits and hillock-induced short circuits. This review examines EM’s physical mechanisms, influencing factors, and advanced models, synthesizing seven primary determinants: current density, temperature, material properties, microstructure, geometry, pulsed current, and mechanical stress. It dissects the coupled contributions of electron wind force (dominant EM driver), thermomigration (TM), and stress migration (SM). The review assesses four foundational modeling frameworks: Black’s model, Blech’s criterion, atomic flux divergence (AFD), and Korhonen’s theory. Despite advances in multi-physics simulation and statistical EM analysis, achieving predictive full-chip assessment remains computationally challenging. Emerging research prioritizes the following: (i) model order reduction methods and machine-learning solvers for verification of EM in billion-scale interconnect networks; and (ii) physics-informed routing optimization to inherently eliminate EM violations during physical design. Both are crucial for addressing reliability barriers in IC technologies and 3D heterogeneous integration. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

21 pages, 736 KB  
Article
RiscADA: RISC-V Extension for Optimized Control of External D/A and A/D Converters
by Cosmin-Andrei Popovici, Andrei Stan, Nicolae-Alexandru Botezatu and Vasile-Ion Manta
Electronics 2025, 14(15), 3152; https://doi.org/10.3390/electronics14153152 - 7 Aug 2025
Viewed by 877
Abstract
The increasing interest shared by academia and industry in the development of RISC-V cores, extensions and accelerators becomes fructified by collaborative efforts, like the EU’s ChipsJU, which leverages the design of building blocks, IPs and cores based on RISC-V architecture. A domain capable [...] Read more.
The increasing interest shared by academia and industry in the development of RISC-V cores, extensions and accelerators becomes fructified by collaborative efforts, like the EU’s ChipsJU, which leverages the design of building blocks, IPs and cores based on RISC-V architecture. A domain capable of benefiting from the RISC-V extensibility is the control of external DACs and ADCs. The proposed solution is an open-source RISC-V extension for optimized control of external DACs and ADCs called RiscADA. The extension supports a parametrizable number of DACs and ADCs, is integrated as a coprocessor beside CVA6 in a SoC by using the CV-X-IF interface, deployed on a Kintex UltraScale+ FPGA and implements ISA extension instructions. After benchmarks with commercial solutions, the results show that CVA6 using RiscADA extension configures external DACs 38.6× and 10.9× times faster than MicroBlaze V and simple CVA6, both using AXI SPI peripherals. The proposed extension achieves 5.35× and 3.05× times higher sample rates of external ADCs than the two configurations mentioned above. RiscADA extension performs digital signal conditioning 4.52× and 3.1× times faster than the MicroBlaze V and CVA6, both using AXI SPI peripherals. It computes statistics for external ADC readings (minimum, maximum, simple-moving average and over-threshold duration). Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

19 pages, 5548 KB  
Article
Predicting Asphalt Pavement Friction by Using a Texture-Based Image Indicator
by Bingjie Lu, Zhengyang Lu, Yijiashun Qi, Hanzhe Guo, Tianyao Sun and Zunduo Zhao
Lubricants 2025, 13(8), 341; https://doi.org/10.3390/lubricants13080341 - 31 Jul 2025
Viewed by 881
Abstract
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with [...] Read more.
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with predictions correlated to Dynamic Friction Tester (DFT) measurements. Three different types of asphalt surfaces (Dense-Grade Asphalt Concrete, Open-Grade Friction Course, and Chip Seal) were evaluated subject to various tire polishing cycles. Images were taken with corresponding friction coefficients obtained using DFT in the laboratory. The aggregate protrusion area is proposed as the indicator. Statistical models are established for each asphalt surface type to correlate the proposed indicator with friction coefficients. The results show that the adjusted R-squared values of all relationships are above 0.90. Compared to other image-based indicators in the literature, the proposed image indicator more accurately reflects the changes in pavement friction with the number of polishing cycles, proving its cost-effective use for considering pavement friction in the mix design stage. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

Back to TopTop