Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = open-cell foams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1493 KB  
Article
Toward Fully Bio-Based Polyurethane Foams: Effects of Radish Seed and Tall Oil Polyols on Biofoam Properties
by Mikelis Kirpluks, Maria Kurańska, Elżbieta Malewska, Łukasz Bonder, Nanija Dambe, Dominika Grucela and Stanisław Kuciel
Materials 2025, 18(24), 5692; https://doi.org/10.3390/ma18245692 - 18 Dec 2025
Viewed by 248
Abstract
The development of bio-based polyurethane foams has become a key direction in polymer materials research, driven by the need to replace petrochemical raw materials with renewable alternatives. This study investigates the synthesis and characterization of open-cell polyurethane foams produced using mixed bio-polyols derived [...] Read more.
The development of bio-based polyurethane foams has become a key direction in polymer materials research, driven by the need to replace petrochemical raw materials with renewable alternatives. This study investigates the synthesis and characterization of open-cell polyurethane foams produced using mixed bio-polyols derived from radish seed oil and tall oil in various mass ratios. For comparison, reference foams based on a radish seed oil polyol, tall oil-based polyol and a petrochemical polyol were also prepared. The influence of the polyol composition on the foaming behavior, cell structure, apparent density, mechanical properties, and thermal conductivity of the resulting foams was analyzed. Full article
Show Figures

Graphical abstract

20 pages, 6027 KB  
Article
Production and Characterization of Ti-6Al-4V Foams Produced by the Replica Impregnation Method
by Aynur İnan Üstün and Hasan Okuyucu
Metals 2025, 15(12), 1354; https://doi.org/10.3390/met15121354 - 9 Dec 2025
Viewed by 364
Abstract
Porous Ti-6Al-4V foams are excellent materials due to their low density, high specific strength, and excellent biocompatibility. This study investigates the fabrication of open-cell Ti-6Al-4V foams using the replica impregnation method with polyurethane templates of varying pore sizes (20, 25, and 30 ppi) [...] Read more.
Porous Ti-6Al-4V foams are excellent materials due to their low density, high specific strength, and excellent biocompatibility. This study investigates the fabrication of open-cell Ti-6Al-4V foams using the replica impregnation method with polyurethane templates of varying pore sizes (20, 25, and 30 ppi) and sintering temperatures (1170 °C, 1200 °C, 1250 °C, and 1280 °C). The effects of these parameters on microstructural evolution, phase composition, and mechanical properties were examined. Microstructural analysis showed that optimum densification occurred at 1250 °C. However, at 1280 °C, excessive grain growth and pore coarsening were observed. XRD, SEM, and EDS analyses confirmed that α-Ti was the matrix phase, while titanium carbide formed in situ as a result of the carbon residues released from the decomposed polyurethane template. With the development of the TiC phase and enhanced interparticle bonding due to sintering, the compressive strength progressively increased up to 1250 °C. At 1280 °C, strength decreased due to excessive TiC growth, causing brittleness and pore coarsening, reducing structural integrity. Maximum compressive strength of 40.2 MPa and elastic modulus of 858.9 MPa were achieved at 1250 °C with balanced TiC dispersion and pore structure. Max density of 1.234 g/cm3 was obtained at 1250 °C. Gibson-Ashby analysis and the fracture surfaces confirmed the brittle behavior of the foams, which is attributed to the presence of TiC particles and microcracks in the structure. The study concludes that 1250 °C provides an ideal balance between densification and structural integrity, offering valuable insights for biomedical and structural applications. Full article
Show Figures

Graphical abstract

22 pages, 8864 KB  
Article
Enhanced Sound Absorption of Aluminum Foam Composites by Introducing Pore-Penetrating Fibers
by Bei Huang, Shuang Xiong, Xin Wang, Longyue Qin, Xiaoqing Zuo and Hui Wang
Materials 2025, 18(24), 5515; https://doi.org/10.3390/ma18245515 - 8 Dec 2025
Viewed by 359
Abstract
To address the issue of sound absorption valleys in open-cell aluminum foam and enhance mid-to-high frequency (800–6300 Hz) performance, we developed a novel pore-penetrating 316L stainless steel fiber–aluminum foam (PPFCAF) composite using an infiltration method. The formation mechanism of the pore-penetrating fibers, the [...] Read more.
To address the issue of sound absorption valleys in open-cell aluminum foam and enhance mid-to-high frequency (800–6300 Hz) performance, we developed a novel pore-penetrating 316L stainless steel fiber–aluminum foam (PPFCAF) composite using an infiltration method. The formation mechanism of the pore-penetrating fibers, the resultant pore-structure, and the accompanying sound absorption properties were investigated systematically. The PPFCAF was fabricated using 316L stainless steel fiber–NaCl composites created by an evaporation crystallization process, which ensured the full embedding of fibers within the pore-forming agent, resulting in a three-dimensional fiber-pore interpenetrating network after infiltration and desalination. Experimental results demonstrate that the PPFCAF with a porosity of 82.8% and a main pore size of 0.5 mm achieves a sound absorption valley value of 0.861. An average sound absorption coefficient is 0.880 in the target frequency range, representing significant improvements of 9.8% and 9.9%, respectively, higher than that of the conventional infiltration aluminum foam (CIAF). Acoustic impedance reveal that the incorporated fibers improve the impedance matching between the composite material and air, thereby reducing sound reflection. Finite element simulations further elucidate the underlying mechanisms: the pore-penetrating fibers influence the paths followed by air particles and the internal surface area, thereby increasing the interaction between sound waves and the solid framework. A reduction in the main pore size intensifies the interaction between sound waves and pore walls, resulting in a lower overall reflection coefficient and a decreased reflected sound pressure amplitude (0.502 Pa). In terms of energy dissipation, the combined effects of the fibers and refinement increase the specific surface area, thereby strengthening viscous effects (instantaneous sound velocity up to 46.1 m/s) and thermal effects (temperature field increases to 0.735 K). This synergy leads to a notable rise in the total plane wave power dissipation density, reaching 0.0609 W/m3. Our work provides an effective strategy for designing high-performance composite metal foams for noise control applications. Full article
Show Figures

Figure 1

15 pages, 4410 KB  
Article
Closed Loop of Polyurethanes: Effect of Isocyanate Index on the Properties of Repolyols and Rebiopolyols Obtained by Glycolysis
by Maria Kurańska, Elżbieta Malewska, Julia Sędzimir, Hubert Ożóg, Aleksandra Put, Natalia Kowalik and Michał Kucała
Materials 2025, 18(24), 5503; https://doi.org/10.3390/ma18245503 - 7 Dec 2025
Viewed by 403
Abstract
This paper presents the effect of the isocyanate index of polyurethane foams on the properties of repolyols and rebiopolyols obtained through glycolysis and on the foaming process of the new polyurethane systems. An FTIR spectral analysis confirmed that as the isocyanate index decreased, [...] Read more.
This paper presents the effect of the isocyanate index of polyurethane foams on the properties of repolyols and rebiopolyols obtained through glycolysis and on the foaming process of the new polyurethane systems. An FTIR spectral analysis confirmed that as the isocyanate index decreased, the intensity of the bands’ characteristic of urethane and urea bonds also decreased, indicating a lower proportion of carbonyl groups and hard segments in the polymer structure. Simultaneously, an increase in the hydroxyl number of the repolyols and the rebiopolyols was observed, along with a decrease in their viscosity and average molar masses. Both effects are consequences of a lower degree of cross-linking in the parent foams. An analysis of the foaming process using a Foamat apparatus revealed that the viscosity and the molar mass of the repolyols and the rebiopolyols significantly affected the system’s reactivity, maximum reaction temperature, and the time required to reach it. Differences in foaming dynamics resulted in different cellular structures of the foams, their apparent density, and mechanical properties. The foams obtained from the repolyols derived from foams with a lower isocyanate index exhibited a lower degree of cross-linking and a lower strength, while the foams with the rebiopolyols tended to shrink. The intensity of the shrinkage was limited by a higher degree of cell openness. These results confirm the crucial role of the properties of repolyol and rebiopolyol in shaping the reactivity, morphology, and properties of final polyurethane foams, providing a basis for designing new, sustainable polyurethane systems. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

17 pages, 1939 KB  
Article
Turning Fruit Seed Oils into High-Performance Open-Cell Polyurethane Foams: A Green Route to Petrochemical Polyol-Free Insulation
by Maria Kurańska, Elżbieta Malewska, Mateusz Barczewski, Joanna Banaś, Aleksandra Put, Julia Sędzimir, Hubert Ożóg, Natalia Kowalik, Marcin Zemła and Michał Kucała
Materials 2025, 18(23), 5387; https://doi.org/10.3390/ma18235387 - 29 Nov 2025
Viewed by 831
Abstract
Five types of fruit seed oils have been described from the perspective of their potential use in the synthesis of biopolyols. The overall goal is to increase the participation of biopolyurethanes in polymer production, aligning with the European Green Deal. Blackcurrant, cherry, grape, [...] Read more.
Five types of fruit seed oils have been described from the perspective of their potential use in the synthesis of biopolyols. The overall goal is to increase the participation of biopolyurethanes in polymer production, aligning with the European Green Deal. Blackcurrant, cherry, grape, pomegranate, and watermelon seed oils were characterized by iodine value, acid value, density, average molecular weight, viscosity, and fatty acid profile. The thermal properties of the oils were also determined using thermogravimetry (TGA) and differential scanning calorimetry (DSC). In order to obtain reactive compounds for the synthesis of biopolyols, the vegetable oils were modified using the transesterification reaction with triethanolamine. The resulting biopolyols were characterized by their hydroxyl number, acid number, density, average molar mass, and viscosity. The biopolyols were then used to produce thermal-insulating polyurethane foams by completely replacing petrochemical polyols with counterparts derived from fruit seeds. The obtained foams were described by their closed cell content, apparent density, thermal conductivity coefficient, dimensional stability, maximum stress at 10% deformation, thermal stability, oxygen index, and water absorption. In addition, an analysis of the foaming process revealed that the properties of fruit seed oil after chemical modification had an impact on the properties of the open-cell polyurethane foams and the foaming process itself. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

43 pages, 3654 KB  
Article
A Block-Coupled Finite Volume Method for Incompressible Hyperelastic Solids
by Anja Horvat, Philipp Milović, Igor Karšaj and Željko Tuković
Appl. Sci. 2025, 15(23), 12660; https://doi.org/10.3390/app152312660 - 28 Nov 2025
Viewed by 442
Abstract
This work introduces a block-coupled finite volume method for simulating the large-strain deformation of incompressible hyperelastic solids. Conventional displacement-based finite-volume solvers for incompressible materials often exhibit stability and convergence issues, particularly on unstructured meshes and in finite-strain regimes typical of biological tissues. To [...] Read more.
This work introduces a block-coupled finite volume method for simulating the large-strain deformation of incompressible hyperelastic solids. Conventional displacement-based finite-volume solvers for incompressible materials often exhibit stability and convergence issues, particularly on unstructured meshes and in finite-strain regimes typical of biological tissues. To address these issues, a mixed displacement–pressure formulation is adopted and solved using a block-coupled strategy, enabling simultaneous solution of displacement and pressure increments. This eliminates the need for under-relaxation and improves robustness compared to segregated approaches. The method incorporates several enhancements, including temporally consistent Rhie–Chow interpolation, accurate treatment of traction boundary conditions, and compatibility with a wide range of constitutive models, from linear elasticity to advanced hyperelastic laws such as Holzapfel–Gasser–Ogden and Guccione. Implemented within the solids4Foam toolbox for OpenFOAM, the solver is validated against analytical and finite-element benchmarks across diverse test cases, including uniaxial extension, simple shear, pressurised cylinders, arterial wall, and idealised ventricle inflation. Results demonstrate second-order spatial and temporal accuracy, excellent agreement with reference solutions, and reliable performance in three-dimensional scenarios. The proposed approach establishes a robust foundation for fluid–structure interaction simulations in vascular and soft tissue biomechanics. Full article
(This article belongs to the Special Issue Applied Numerical Analysis and Computing in Mechanical Engineering)
Show Figures

Figure 1

23 pages, 4409 KB  
Article
Effect of Corn Starch as Stabilizer Particle in Combination with Egg White Proteins in Natural Rubber Latex Biofoams Produced by Microwave Foaming
by Clara Amezúa-Arranz, Leandra Oliveira Salmazo, Alberto López-Gil and Miguel-Ángel Rodríguez-Pérez
Polymers 2025, 17(22), 3057; https://doi.org/10.3390/polym17223057 - 18 Nov 2025
Cited by 1 | Viewed by 2284
Abstract
Current ecological and environmental concerns have led to a rapid increase in social interest in research and innovation in the field of sustainable plastics, which directly affects foamed plastic products. In this study, we present our contribution by investigating the effects of egg [...] Read more.
Current ecological and environmental concerns have led to a rapid increase in social interest in research and innovation in the field of sustainable plastics, which directly affects foamed plastic products. In this study, we present our contribution by investigating the effects of egg white protein and corn starch particles on open-cell biofoams produced from natural rubber latex in a two-step process based on an initial aeration that leads to a liquid foam precursor and its dehydration by microwave radiation. By incorporating corn starch and either replacing or maintaining the levels of egg white protein, two independent series of foams were examined. We observed how the reduction in egg white led to bigger and heterogeneous cells, although the density values were practically maintained around 100 kg/m3. In contrast, the formulations with corn starch at a fixed level of egg white protein created foams with homogeneous structures and smaller cells (≤120 µm). In addition, in terms of density, both series present values around 100 kg/m3 for the final solid foams, indicating that the addition of starch does not involve density increments. On the contrary, densities are still low, and the cellular structure homogeneity improves, confirming that starch is a very promising stabilizer bio-particle in the development of biofoams from liquids. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 5113 KB  
Article
Theoretical Analysis and Experiments on the Sound Absorption Properties of Foam Sound Absorbers with Thin Membranes Naturally Present in Foams Using Nano-Computed Tomography Scan Images
by Shuichi Sakamoto, Takamasa Satoh, Kaito Tanabe, Koki Maruyama and Yusei Himori
Appl. Sci. 2025, 15(20), 11079; https://doi.org/10.3390/app152011079 - 16 Oct 2025
Viewed by 551
Abstract
Foam sound-absorbing materials develop a fine cellular structure during manufacturing, resulting in variations in porosity, cell size, and the proportion of naturally occurring thin membranes that obstruct skeletal openings. This membrane proportion significantly affects sound absorption. In this study, we utilized cross-sectional images [...] Read more.
Foam sound-absorbing materials develop a fine cellular structure during manufacturing, resulting in variations in porosity, cell size, and the proportion of naturally occurring thin membranes that obstruct skeletal openings. This membrane proportion significantly affects sound absorption. In this study, we utilized cross-sectional images obtained from a submicron resolution computer tomography (CT) scanner (nano-CT) that can capture membrane structures to theoretically assess the sound absorption of foam materials with membranes. We processed these cross-sectional images using techniques, including binarization, to extract the contours of the foam skeletons and the cross-sectional areas of the voids. By modeling the foam’s cross-section as the clearance between two planes, we were able to determine the propagation constant and characteristic impedance within this clearance. The effective density was adjusted based on measured tortuosity. The normal-incidence sound absorption coefficient (SAC), derived from the transfer matrix method, was then compared with experimental values obtained from a two-microphone impedance tube. Image processing techniques helped extract the skeleton cross-section and reduce residual noise, thereby minimizing the effect of variations in the binarization threshold on theoretical values. The accuracy of the theoretical model was enhanced by incorporating a correction factor for the skeleton surface area. Full article
(This article belongs to the Special Issue Advances in Architectural Acoustics and Vibration)
Show Figures

Figure 1

39 pages, 1469 KB  
Review
Catalytic Combustion of Fugitive Methane: Challenges and Current State of the Technology
by Robert E. Hayes, Joanna Profic-Paczkowska, Roman Jędrzejczyk and Joseph P. Mmbaga
Appl. Sci. 2025, 15(18), 10269; https://doi.org/10.3390/app151810269 - 21 Sep 2025
Viewed by 1732
Abstract
This review covers the current state, challenges, and future directions of catalytic combustion technologies for mitigating fugitive methane emissions from the fossil fuel industry. Methane, a potent greenhouse gas, is released from diverse sources, including natural gas production, oil operations, coal mining, and [...] Read more.
This review covers the current state, challenges, and future directions of catalytic combustion technologies for mitigating fugitive methane emissions from the fossil fuel industry. Methane, a potent greenhouse gas, is released from diverse sources, including natural gas production, oil operations, coal mining, and natural gas engines. The paper details the primary emission sources, and addresses the technical difficulties associated with dilute and variable methane streams such as ventilation air methane (VAM) from underground coal mines and low-concentration leaks from oil and gas infrastructure. Catalytic combustion is a useful abatement solution due to its ability to destruct methane in lean and challenging conditions at lower temperatures than conventional combustion, thereby minimizing secondary pollutant formation such as NOX. The review surveys the key catalyst classes, including precious metals, transition metal oxides, hexa-aluminates, and perovskites, and underscores the crucial role of reactor internals, comparing packed beds, monoliths, and open-cell foams in terms of activity, mass transfer, and pressure drop. The paper discusses advanced reactor designs, including flow-reversal and other recuperative systems, modelling approaches, and the promise of advanced manufacturing for next-generation catalytic devices. The review highlights the research needs for catalyst durability, reactor integration, and real-world deployment to enable reliable methane abatement. Full article
(This article belongs to the Special Issue Applied Research in Combustion Technology and Heat Transfer)
Show Figures

Figure 1

23 pages, 4127 KB  
Article
Further Development of an OpenFOAM LT-PEMFC Toolbox and Its Validation on an Automotive Fuel Cell Design
by Sabina Schneider, Florian Wilhelm, Joachim Scholta, Miriam Schüttoff and Ludwig Jörissen
Energies 2025, 18(18), 4793; https://doi.org/10.3390/en18184793 - 9 Sep 2025
Viewed by 1110
Abstract
Over the past two decades, several add-on modules for computational fluid dynamics (CFD) software focusing on modelling electrochemical processes and two-phase effects within fuel cells have been described in the literature. Most of these models are based on custom-written code that is not [...] Read more.
Over the past two decades, several add-on modules for computational fluid dynamics (CFD) software focusing on modelling electrochemical processes and two-phase effects within fuel cells have been described in the literature. Most of these models are based on custom-written code that is not openly accessible to everyone. Furthermore, several commercial CFD codes offer specific modules for modelling fuel cells. Here, code modification is difficult to achieve. This work analyses and further develops the PEMFC toolbox of Kone et al. for use in OpenFOAM to simulate low temperature (LT-)PEM fuel cells. This model is freely available under the GNU GPLv3 licence. The present work focuses on enhanced physical and electrochemical modelling and improved user-friendliness. The major improvements compared to the original toolbox will be detailed in the article, together with the first results obtained. The improved PEMFC toolbox is validated using experimental data from an automotive fuel cell stack design. Furthermore, these results are compared to the original Kone model, and a commercially available CFD model. The improved toolbox reproduces both the experimentally measured polarisation curve and the current density distribution quite accurately, producing results that are fairly comparable to the more sophisticated commercial model. Full article
(This article belongs to the Special Issue Hydrogen Production and Utilization: Challenges and Opportunities)
Show Figures

Figure 1

32 pages, 6751 KB  
Article
Investigation of the Effectiveness of a Compact Heat Exchanger with Metal Foam in Supercritical Carbon Dioxide Cooling
by Roman Dyga
Energies 2025, 18(17), 4736; https://doi.org/10.3390/en18174736 - 5 Sep 2025
Viewed by 1689
Abstract
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described [...] Read more.
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described work was to evaluate the potential for improving the performance of printed circuit heat exchangers by incorporating open-cell metal foam as the heat exchanger packing material. The evaluation was conducted based on the results of numerical simulation of supercritical carbon dioxide cooling flowing through printed circuit heat exchanger channels filled with 40 PPI copper foam with 90% porosity. A unit periodic region of the heat exchanger comprising two adjacent straight channels for cold and hot fluid was analyzed. The channels had a semicircular cross-section and a length of 200 mm. Studies were conducted for three different channel diameters—2, 3, and 4 mm. The range of mass flux variations for cold fluid (water) and hot fluid (sCO2) were 300–1500 kg/(m2·s) and 200–800 kg/(m2·s), respectively. It was found that in channels filled with metal foam, carbon dioxide cooling is characterized by a higher heat transfer coefficient than in channels without metal foam. In channels of the same diameter, heat flux was 33–63% higher in favor of the channel with metal foam. Thermal effectiveness of the heat exchanger with metal foam can be up to 20% higher than in the case of a heat exchanger without foam. Despite very high pressure drop through channels filled with metal foam, thermal–hydraulic performance can also be higher—even 4.7 in the case of a 2 mm channel. However, both these parameters depend on flow conditions and channel diameter, and under certain conditions may be lower than in a heat exchanger without metal foam. The results of the presented work indicate a new direction for the development of PCHE heat exchangers and confirm that the use of metal foams in the construction of PCHE heat exchangers can contribute to increasing the efficiency and effectiveness of the processes in which they are used. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 9891 KB  
Article
3D-Printed Poly (l-lactic acid) Scaffolds for Bone Repair with Oriented Hierarchical Microcellular Foam Structure and Biocompatibility
by Cenyi Luo, Juan Xue, Qingyi Huang, Yuxiang Deng, Zhixin Zhao, Jiafeng Li, Xiaoyan Gao and Zhengqiu Li
Biomolecules 2025, 15(8), 1075; https://doi.org/10.3390/biom15081075 - 25 Jul 2025
Viewed by 969
Abstract
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a [...] Read more.
This study proposes a continuous preparation strategy for poly (l-lactic acid) (PLLA) scaffolds with oriented hierarchical microporous structures for bone repair. A PLLA-oriented multi-stage microporous bone repair scaffold (hereafter referred to as the oriented multi-stage microporous scaffold) was designed using a novel extrusion foaming technology that integrates fused deposition modeling (FDM) 3D printing with supercritical carbon dioxide (SC-CO2) microcellular foaming technology. The influence of the 3D-printed structure on the microcellular morphology of the oriented multi-stage microporous scaffold was investigated and optimized. The combination of FDM and SC-CO2 foaming technology enables a continuous extrusion foaming process for preparing oriented multi-stage microporous scaffolds. The mechanical strength of the scaffold reached 15.27 MPa, meeting the requirements for bone repair in a low-load environment. Notably, the formation of open pores on the surface of the oriented multi-stage microporous scaffold positively affected cell proliferation, differentiation, and activity, as well as the expression of anti-inflammatory and pro-inflammatory factors. In vitro cell experiments (such as CCK-8) showed that the cell proliferation rate in the oriented multi-stage microporous scaffold reached 100–300% after many days of cultivation. This work provides a strategy for the design and manufacture of PLLA scaffolds with hierarchical microcellular structures and biocompatibility for bone repair. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

11 pages, 1940 KB  
Article
Hydroxyl Derivatives of Oils from Solid Fats as Components for Production of Polyurethane Foams
by Elżbieta Malewska, Maria Kurańska, Klara Grelowska, Aleksandra Put, Hubert Ożóg, Julia Sędzimir, Natalia Kowalik, Michał Kucała and Aleksander Prociak
Molecules 2025, 30(13), 2703; https://doi.org/10.3390/molecules30132703 - 23 Jun 2025
Viewed by 799
Abstract
Biopolyols derived from solid fats of both vegetable origin (coconut oil (P/CO) and palm oil (P/PA)) and animal origin (pork fat (P/PO) and duck fat (P/DU)) were used to produce thermal insulation polyurethane foams. The biopolyols were characterized by hydroxyl numbers in the [...] Read more.
Biopolyols derived from solid fats of both vegetable origin (coconut oil (P/CO) and palm oil (P/PA)) and animal origin (pork fat (P/PO) and duck fat (P/DU)) were used to produce thermal insulation polyurethane foams. The biopolyols were characterized by hydroxyl numbers in the range of 341–396 mgKOH/g, a viscosity of 60–88 mPa·s, and a functionality of 2.3–3.4. Open-cell polyurethane foams were obtained by replacing from 50 to 100 wt.% of a petrochemical polyol with the biopolyols from solid fats. The most advantageous properties were found for the materials modified with the biopolyol based on pork fat, which was attributed to its high degree of cell openness. At a low apparent density, the foam materials were characterized by good dimensional stability. The use of solid fats offers new possibilities for modifying thermal insulation polyurethane foams. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

13 pages, 2729 KB  
Article
Influence of Unidirectional Vacuum Application on Bone Healing in Maxillofacial Surgery
by Tom Alexander Schröder, Athanasios Karasavvas, Maximilian Bauckloh, Matthias C. Schulz, Günter Lauer and Lysann Michaela Kroschwald
Cells 2025, 14(10), 751; https://doi.org/10.3390/cells14100751 - 21 May 2025
Viewed by 2847
Abstract
Negative-pressure wound therapy (NPWT) using vacuum-assisted closure (VAC) is a well known tissue defect bridging method that applies a vacuum pump to sterile, open-cell foam dressings via suction tubes. Although it has mostly been described for soft tissue use, there are also a [...] Read more.
Negative-pressure wound therapy (NPWT) using vacuum-assisted closure (VAC) is a well known tissue defect bridging method that applies a vacuum pump to sterile, open-cell foam dressings via suction tubes. Although it has mostly been described for soft tissue use, there are also a few studies concerning its use on hard tissue. However, as oral and maxillofacial surgery has to deal with both soft and hard tissue, which lie next to each other in these regions, there is a particular need to assess the influence of negative pressure on bone. Therefore, the effects of different negative pressure levels (530 mbar and 725 mbar) and atmospheric pressure (1013 mbar) on bone tissue cultures and osteoblast cell cultures were investigated over periods of 1, 3, and 6 weeks. During the culture period, osteoblast growth and the tissue regeneration of bone defects were studied in vitro using tissue cultures that were histologically supplemented by cytological investigations and quantitative RNA expression studies. In the bone defect model, there was a faster defect reduction using NPWT; the effect was especially strong for 530 mbar. Compared to the control group, up to 30% more newly generated bone tissue was detected. This effect on the mineralization capacity was assessed by the mRNA expression of osteogenic marker genes, as well as the receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG), two multifaceted cytokines that regulate bone metabolism. The influence of negative pressure consequently resulted in a decreased RANKL/OPG ratio in osteoblasts. Associated with the upregulation of marker genes to up to 400%, including Col1, BMP4, OCN, and RUNX2, the decrease in the RANKL/OPG ratio to 41% indicates the stimulation of osteogenesis. Since VAC has been shown to be a safe and effective method to close wounds in general, these data suggest that patients suffering from compound bone and soft tissue defects in the maxillofacial area may benefit from an adapted therapy approach accelerating both soft and hard tissue regeneration. Full article
Show Figures

Figure 1

10 pages, 3871 KB  
Article
Effect of the Addition of Al-5Ti-0.25C and Annealing on the Mechanical Properties of Open-Cell Al Foams
by Omar Novelo-Peralta, Manuel Farid Azamar, Julio Esteban Méndez Durán, Yessica Lizbeth Ávila, Antonio Enrique Salas Reyes, Ramiro Bazáez, Ignacio Alejandro Figueroa and Gabriel Ángel Lara Rodríguez
Materials 2025, 18(9), 2147; https://doi.org/10.3390/ma18092147 - 7 May 2025
Cited by 1 | Viewed by 791
Abstract
Commercially pure aluminum (Al) was refined through the addition of the Al-5Ti-0.25C master alloy, resulting in the formation of Al3Ti and TiC phases, which serve as refining agents. Open-cell metallic foams were successfully produced using the replication casting technique, with pore [...] Read more.
Commercially pure aluminum (Al) was refined through the addition of the Al-5Ti-0.25C master alloy, resulting in the formation of Al3Ti and TiC phases, which serve as refining agents. Open-cell metallic foams were successfully produced using the replication casting technique, with pore sizes ranging from 1.00 to 3.35 mm. For the infiltration process, refined aluminum was used, while unrefined aluminum served as a baseline reference. The resultant foams underwent multiple annealing cycles at 480 °C, with the most refined and homogeneous microstructure observed after 504 h. Comprehensive microstructural characterization was conducted utilizing scanning electron microscopy and optical microscopy. Additionally, uniaxial compression tests were performed to generate stress–strain profiles for the foams, facilitating an assessment of their energy absorption capacity. The findings indicated an enhancement in energy absorption capacity by a factor of 2.4 to 3, which can be attributed to the incorporation of Al-5Ti-0.25C and the subsequent annealing process. Full article
Show Figures

Figure 1

Back to TopTop