Catalytic Combustion of Fugitive Methane: Challenges and Current State of the Technology
Abstract
1. Introduction
2. Sources of Fugitive Methane
2.1. Overview of Emission Sources
2.2. Natural Gas Production and Transportation
2.3. Oil Production, Storage, and Transportation
2.4. Ventilation Air Methane (VAM)
2.5. Natural Gas Engines
2.6. Summary of Emission Sources
3. Mitigation Strategies for Fugitive Methane
4. Combustion of Methane
4.1. Conventional and Catalytic Combustion
4.2. History and Applications of Catalytic Combustion
5. Catalysts for Methane Combustion
5.1. Overview of Catalysts Used
5.2. Catalysts Based on the Precious Group Metals (PGMs)
5.3. Deactivation of PGM-Based Catalysts
5.4. Catalysts Based on Transition Metal Oxides
5.5. Catalysts Based on Hexa-Aluminates
5.6. Catalysts Based on Perovskites
5.7. Catalyst Supports and Promotors
6. Reactor Internal Support Systems
6.1. Unconsolidated Packed Beds
6.2. Monoliths
6.3. Foams
6.4. Comparison of Packed Beds, Monoliths, and Foams
7. Autogenous Reactor Operation
7.1. Steady-State Systems with Unidirectional Flow
7.2. Steady-State Systems with Internal Recuperation
7.3. The Catalytic Flow-Reversal Reactor
7.4. Counter-Diffusion Reactors
8. Mathematical Modelling of Catalytic Combustion Systems
8.1. Modelling Overview
8.2. Continuum Reactor Model
8.3. Discreet Reactor Models
8.4. The Multi-Scale Problem and Model Reduction
9. Future Directions in Catalytic Combustion
9.1. Future Directions for Advanced Modelling
9.2. Advanced Manufacturing in Catalytic Combustion
9.3. Challenges in Catalyst Development
10. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moore, S.; Freund, P.; Riemer, P.; Smith, A. Abatement of Methane Emissions; IEQ Greenhouse Gas R&D Programme: Cheltenham, NSW, Australia, 1998; ISBN 1898373167. [Google Scholar]
- Danny Harvey, L.D. A guide to global warming potentials (GWPs). Energy Policy 1993, 21, 24–34. [Google Scholar] [CrossRef]
- O’Connor, F.M. Why Methane Matters. Front. Sci. 2024, 29, 1462198. [Google Scholar] [CrossRef]
- Mokhatab, S.; Poe, W.A.; Speight, J.G. Handbook of Natural Gas Transmission and Processing, 2nd ed.; Gulf Professional Publishing: Houston, TX, USA, 2015. [Google Scholar]
- IEA. Global Methane Tracker 2024; IEA: Paris, France, 2024; Licence: CC BY 4.0; Available online: https://www.iea.org/reports/global-methane-tracker-2024 (accessed on 16 September 2025).
- Hayes, R.E. Catalytic solutions for fugitive methane emissions in the oil and gas sector. Chem. Eng. Sci. 2004, 59, 4073–4080. [Google Scholar] [CrossRef]
- International Energy Agency. Global Gas Security Review 2024; IEA: Paris, France, 2024. [Google Scholar]
- Litto, R.; Liu, B.; Hayes, R.E. Capturing fugitive methane emissions in natural gas compressor buildings. J. Environ. Manag. 2007, 84, 347–361. [Google Scholar] [CrossRef]
- Jodeiri, N.; Wu, L.; Mmbaga, J.P.; Hayes, R.E.; Wanke, S.E. Catalytic Combustion of VOC in a Counter-diffusive Reactor. Catal. Today 2010, 155, 147–153. [Google Scholar] [CrossRef]
- Karacan, C.Ö.; Field, R.A.; Olczak, M.; Kasprzak, M.; Ruiz, F.A.; Schwietzke, S. Mitigating climate change by abating coal mine methane: A critical review of status and opportunities. Int. J. Coal Geol. 2024, 295, 104623. [Google Scholar] [CrossRef]
- Schatzel, S.J.; Krog, R.B.; Dougherty, H. Methane emissions and airflow patterns on a longwall face: Potential influences from longwall gob permeability distributions on a bleederless longwall panel. Trans. Soc. Min. Metall. Explor. 2017, 342, 51–61. [Google Scholar] [CrossRef]
- Swolkien, J.; Fix, A.; Gałkowski, M. Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesian coal mines. Atmos. Chem. Phys. 2022, 22, 16031–16052. [Google Scholar] [CrossRef]
- Sakai, T.; Chol, B.C.; Osuga, R.; Ko, Y. Purification Characteristics of Catalytic Converters for Natural Gas Fuelled Automotive Engine 912599; SAE: Warrendale, PA, USA, 1991. [Google Scholar]
- Weaver, C.S. Natural Gas Vehicles-A Review of the State of the Art 892133; SAE: Warrendale, PA, USA, 1989. [Google Scholar]
- Gambino, M.; Cericola, R.; Corbo, P.; Iannaccone, S. Carbonyl compounds and PAH emissions from CNG heavy-duty engine. ASME J. Eng. Gas. Turbines Power 1993, 115, 747–749. [Google Scholar] [CrossRef]
- Corbo, P.; Gambino, M.; Iannaccone, S.; Unich, A. Comparison Between Lean-Burn and Stoichiometric Technologies for CNG Heavy-Duty Engines 950057; SAE: Warrendale, PA, USA, 1995. [Google Scholar]
- Edwards, M.R.; Giang, A.; Macey, G.P.; Magavi, Z.; Nicholas, D.; Ackley, R.; Schulman, A. Repair Failures Call for New Policies to Tackle Leaky Natural Gas Distribution Systems. Environ. Sci. Technol. 2021, 55, 6561–6570. [Google Scholar] [CrossRef]
- Alvarez, R.A.; Zavala-Araiza, D.; Lyon, D.R.; Allen, D.T.; Barkley, Z.R.; Brandt, A.R.; Davis, K.J.; Hendon, S.C.; Jacob, D.J.; Hamburg, S.P. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 2018, 361, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Hristov, N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef]
- Hristov, N.; Ott, T.; Tricarico, J.M.; Rotz, A.; Waghorn, G.; Adesogan, A.T.; Dijkstra, J.; Montes, F.; Oh, J.; Kebreab, E.; et al. SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J. Anim. Sci. 2013, 91, 5095–5113. [Google Scholar] [CrossRef]
- Crowley, S.B.; Purfield, D.C.; Conroy, S.B.; Kelly, D.N.; Evans, R.D.; Ryan, C.V.; Berry, D.P. Associations between a range of enteric methane emission traits and performance traits in indoor-fed growing cattle. J. Anim. Sci. 2024, 102, skae346. [Google Scholar] [CrossRef]
- Hayes, R.E.; Kolaczkowski, S.T. Introduction to Catalytic Combustion; Routledge: London, UK, 1998. [Google Scholar]
- Kesselring, J.P. Catalytic Combustion. In Advanced Combustion Methods; Weinberg, J.F., Ed.; Academic Press: London, UK, 1986; pp. 237–275. [Google Scholar]
- Cottilard, S.A. (Ed.) Catalytic Combustion; Nova Science Publishers: Hauppauge, NY, USA, 2011. [Google Scholar]
- Pfefferle, L.D.; Pfefferle, W.C. Catalysis in Combustion. Catal. Rev. Sci. Eng. 1987, 29, 219–267. [Google Scholar] [CrossRef]
- Davy, H. Some new experiments and observations on the combustion of gaseous mixtures. In The Collected Works of Sir Humphrey Davy; Davy, J., Ed.; Elder and Co., Cornhill: London, UK, 1839; Volume 6. [Google Scholar]
- Kesselring, J.P.; Brown, R.A.; Schreiber, R.J.; Moyer, C.B. Catalytic Oxidation of Fuels for NOX Control from Area Sources; Environmental Protection Technology Series; EPA: Washington, DC, USA, 1976; EPA-600/2-76-037. [Google Scholar]
- Emonts, B. Catalytic radiant burner for stationary and mobile applications. Catal. Today 1999, 47, 407–414. [Google Scholar] [CrossRef]
- Specchia, S.; Toniato, G. Natural Gas Combustion Catalysts for Environmental-Friendly Domestic Burners. Catal. Today 2009, 147, S99–S106. [Google Scholar] [CrossRef]
- Ergen, T.; Tunçer, O.; Baytas, A.C. Numerical Investigation of a 5 kW Porous Medium Burner with an Integrated Heat Exchanger. J. Therm. Sci. Technol. 2016, 36, 61–68. [Google Scholar]
- Etemad, S.; Karim, H.; Smith, L.L.; Pfefferle, W.C. Advanced Technology Catalytic Combustor for High Temperature Ground Power Gas Turbine Applications. Catal. Today 1999, 47, 305–313. [Google Scholar] [CrossRef]
- Kajita, S.; Betta, R.D. Achieving Ultra Low Emissions in a Commercial 1.4 MW Gas Turbine Utilizing Catalytic Combustion. Catal. Today 2003, 83, 279–288. [Google Scholar] [CrossRef]
- Cutrone, M.B.; Beebe, K.W.; Dalla Betta, R.A.; Schlatter, J.C.; Nickolas, S.G.; Tsuchiya, T. Development of a Catalytic Combustor for a Heavy-duty Utility Gas Turbine. Catal. Today 1999, 47, 391–398. [Google Scholar] [CrossRef]
- Kolaczkowski, S.T. Catalytic Stationary Gas-turbine Combustors—A Review of the Challenges Faced to Clear the Next Set of Hurdles. Chem. Eng. Res. Design. 1995, 73, 168–190. [Google Scholar]
- Forzatti, P. Status and perspectives of catalytic combustion for gas turbines. Catal. Today 2003, 83, 3–18. [Google Scholar] [CrossRef]
- Heck, R.M.; Robert, J.; Farrauto, R.J.; Oyama, S.T. Catalytic Air Pollution Control: Commercial Technology, 4th ed.; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Huonder, A.; Olsen, D. Methane Emission Reduction Technologies for Natural Gas Engines: A Review. Energies 2023, 16, 7054. [Google Scholar] [CrossRef]
- Chen, J.; Arandiyan, H.; Gao, X.; Li, J. Recent advances in catalysts for methane combustion. Catal. Surv. Asia 2015, 19, 140–171. [Google Scholar] [CrossRef]
- Cullis, C.F.; Willatt, B.M. Oxidation of methane over supported precious metal catalysts. J. Catal. 1983, 83, 267–285. [Google Scholar] [CrossRef]
- Choudhary, T.; Banerjee, S.; Choudhary, V. Catalysts for combustion of methane and lower alkanes. Appl. Catal. A Gen. 2002, 234, 1–23. [Google Scholar] [CrossRef]
- Monai, M.; Montini, T.; Gorte, R.; Fornasiero, P. Catalytic Oxidation of Methane: Pd and Beyond. Eur. J. Inorg. Chem. 2018, 25, 2884–2893. [Google Scholar] [CrossRef]
- Gélin, P.; Primet, M. Complete oxidation of methane at low temperature over noble metal based catalysts: A review. App. Cat. B Environ. 2002, 39, 1–37. [Google Scholar] [CrossRef]
- Ciuparu, D.; Lyubovsky, M.; Altman, E.; Pfefferle, L.; Datye, A. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev.-Sci. Eng. 2002, 44, 593–649. [Google Scholar] [CrossRef]
- Gélin, P.; Urfels, L.; Primet, M.; Tena, E. Complete oxidation of methane at low temperature over Pt and Pd catalysts for the abatement of lean-burn natural gas fuelled vehicles emissions: Influence of water and sulphur containing compounds. Catal. Today 2003, 83, 45–57. [Google Scholar] [CrossRef]
- Burch, R. Low NOx options in catalytic combustion and emission control. Catal. Today 1997, 35, 27–36. [Google Scholar] [CrossRef]
- Schwartz, W.R.; Pfefferle, L.D. Combustion of methane over palladium-based catalysts: Support interactions. J. Phys. Chem. C 2012, 116, 8571–8578. [Google Scholar] [CrossRef]
- Schwartz, W.R.; Ciuparu, D.; Pfefferle, L.D. Combustion of methane over palladium-based catalysts: Catalytic deactivation and role of the Support. J. Phys. Chem. C 2012, 116, 8587–8593. [Google Scholar] [CrossRef]
- Becker, E.; Carlsson, P.; Grönbeck, H.; Skoglundh, M. Methane oxidation over alumina supported platinum investigated by time-resolved in situ XANES spectroscopy. J. Catal. 2007, 252, 11–17. [Google Scholar] [CrossRef]
- Deutschmann, O.; Maier, L.; Riedel, U.; Stroemman, A.; Dibble, R. Hydrogen assisted catalytic combustion of methane on platinum. Catal. Today 2000, 59, 141–150. [Google Scholar] [CrossRef]
- Bui, P.; Vlachos, D.; Westmoreland, P. Catalytic ignition of methane/oxygen mixtures over platinum surfaces: Comparison of detailed simulations and experiments. Surf. Sci. 1997, 385, L1029–LI034. [Google Scholar] [CrossRef]
- Deutschmann, O.; Behrendt, F.; Warnatz, J. Modeling and simulation of heterogeneous oxidation of methane on a platinum foil. Catal. Today 1994, 21, 461–470. [Google Scholar] [CrossRef]
- Reinke, M.; Mantzaras, J.; Bombach, R.; Schenker, S.; Yylli, N. Effects of H2O and CO2 Dilution on the Catalytic and Gas-Phase Combustion of Methane, over Platinum at Elevated Pressures. Combust. Sci. Tech. 2006, 179, 553–600. [Google Scholar] [CrossRef]
- Niwa, M.; Awano, K.; Murakami, Y. Activity of supported platinum catalysts for methane oxidation. Appl. Catal. 1983, 7, 317–325. [Google Scholar] [CrossRef]
- Wang, M.; Eggenschwiler, P.D.; Tanja Franken, T.; Davide Ferri, D.; Oliver Kröcher, O. Investigation on the Role of Pd, Pt, Rh in Methane Abatement for Heavy Duty Applications. Catalysts 2022, 12, 373. [Google Scholar] [CrossRef]
- Bounechada, D.; Groppi, G.; Forzatti, P.; Kallinen, K.; Kinnunen, T. Effect of periodic lean/rich switch on methane conversion over a Ce–Zr promoted Pd-Rh/Al2O3 catalyst in the exhausts of natural gas vehicles. Appl. Catal. B Environ. 2012, 119–120, 91–99. [Google Scholar] [CrossRef]
- Ersson, A.; Kušar, H.; Carroni, R.; Griffin, T.; Järås, S. Catalytic combustion of methane over bimetallic catalysts a comparison between a novel annular reactor and a high-pressure reactor. Catal. Today 2003, 83, 265–277. [Google Scholar] [CrossRef]
- Ryu, C.K.; Ryoo, M.W.; Ryu, I.S.; Kang, S.K. Catalytic combustion of methane over supported bimetallic Pd catalysts: Effects of Ru or Rh addition. Catal. Today 1999, 47, 141–147. [Google Scholar] [CrossRef]
- Lyubovsky, M.; Smith, L.; Castaldi, M.; Karim, H.; Nentwick, B.; Etemad, S.; LaPierre, R.; Pfefferle, W. Catalytic combustion over platinum group catalysts: Fuel-lean versus fuel-rich operation. Catal. Today 2003, 83, 71–84. [Google Scholar] [CrossRef]
- Oh, S.; Mitchell, P. Effects of rhodium addition on methane oxidation behavior of alumina-supported noble metal catalysts. Appl. Catal. B Environ. 1994, 5, 165–179. [Google Scholar] [CrossRef]
- Yang, N.; Liu, J.; Sun, Y.; Zhu, Y. Au@PdOx with a PdOx-rich shell and Au-rich core embedded in Co3O4 nanorods for catalytic combustion of methane. Nanoscale 2019, 9, 4108–4109. [Google Scholar] [CrossRef]
- Venezia, A.; Murania, R.; Pantaleo, G.; Deganello, G. Pd and PdAu on mesoporous silica for methane oxidation: Effect of SO2. J. Catal. 2007, 251, 94–102. [Google Scholar] [CrossRef]
- Miao, S.; Deng, Y. Au-Pt/Co3O4 catalyst for methane combustion. Appl. Catal. B: Environ. 2001, 31, 11–14. [Google Scholar] [CrossRef]
- Lapisardi, G.; Urfels, L.; Gelin, P.; Primet, M.; Kaddouri, A.; Garbowski, E.; Toppi, S.; Tena, E. Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature. Catal. Today 2006, 117, 564–568. [Google Scholar] [CrossRef]
- Larpisardi, G.; Gélin, P.; Kaddouri, A.; Garbowski, E.; Da Costa, S. Pt-Pd bimetallic catalysts for methane emissions abatement. Top. Catal. 2007, 42–43, 461–464. [Google Scholar] [CrossRef]
- Kinnunen, N.; Hirvi, J.; Suvanto, M.; Pakkanen, T. Methane combustion activity of Pd–PdOx–Pt/Al2O3 catalyst: The role of platinum promoter. J. Mol. Catal. A Chem. 2012, 356, 20–28. [Google Scholar] [CrossRef]
- Bugosh, G.; Easterling, V.; Rusakova, I.; Harold, M. Anomalous steady-state and spatio-temporal features of methane oxidation on Pt/Pd/Al2O3 monolith spanning lean and rich condition. Appl. Catal. B Environ. 2015, 165, 68–78. [Google Scholar] [CrossRef]
- Watanabe, T.; Kawashima, K.; Tagawa, Y.; Tashiro, K.; Anoda, H.; Ichioka, K.; Sumiya, S.; Zhang, G. New DOC for Light Duty Diesel DPF System; SAE Technical Paper; SAE: Warrendale, PA, USA, 2007; 2007-01-1920. [Google Scholar]
- Nomura, K.; Noro, K.; Nakamura, Y.; Yazawa, Y.; Yoshida, H.; Satsuma, A.; Hattori, T. Pd–Pt bimetallic catalyst supported on SAPO-5 for catalytic combustion of diluted methane in the presence of water vapor. Catal. Lett. 1998, 53, 167–169. [Google Scholar] [CrossRef]
- Persson, K.; Jansson, K.; Järås, S. Characterisation and microstructure of Pd and bimetallic Pd–Pt catalysts during methane oxidation. J. Catal. 2007, 245, 401–414. [Google Scholar] [CrossRef]
- Nassiri, H.; Hayes, R.E.; Semagina, N. Stability of Pd-Pt catalysts in low-temperature wet methane combustion: Metal ratio and particle reconstruction. Chem. Eng. Sci. 2018, 186, 44–51. [Google Scholar] [CrossRef]
- Goodman, E.; Dai, S.; Yang, A.; Wrasman, C.; Gallo, A.; Bare, S.; Hoffman, A.; Jaramillo, T.; Graham, G.; Pan, X.; et al. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability. ACS Catal. 2017, 7, 4372–4380. [Google Scholar] [CrossRef]
- Persson, K.; Ersson, A.; Jansson, K.; Fierro, J.; Jaras, S. Influence of molar ratio on Pd–Pt catalysts for methane combustion. J. Catal. 2006, 243, 14–24. [Google Scholar] [CrossRef]
- Yamamoto, H.; Uchida, H. Oxidation of methane over Pt and Pd supported on alumina in lean-burn natural-gas engine exhaust. Catal. Today 1998, 45, 147–151. [Google Scholar] [CrossRef]
- Semagina, N.; Nassiri, H.; Lee, K.; Hu, Y.; Hayes, R.E.; Scott, R.W.J. Water shifts PdO-catalyzed lean methane combustion to Pt-catalyzed rich combustion in Pd-Pt catalysts: In-situ X-ray absorption spectroscopy. J. Catal. 2017, 352, 649–656. [Google Scholar]
- Nassiri, H.; Lee, K.; Hu, Y.; Hayes, R.E.; Scott, R.W.J.; Semagina, N. Platinum inhibits low-temperature dry lean methane combustion via palladium reduction in Pd-Pt/Al2O3: An in-situ X-ray absorption study. ChemPhysChem 2017, 18, 238–244. [Google Scholar] [CrossRef]
- Chen, M.; Schmidt, L.D. Morphology and composition of Pt-Pd alloy crystallites on SiO2 in reactive atmospheres. J. Catal. 1979, 56, 198–218. [Google Scholar] [CrossRef]
- Abbasi, R.; Huang, G.; Istratescu, G.M.; Wu, L.; Hayes, R.E. Methane oxidation over Pt, Pt: Pd and Pd based catalysts: Effects of pre-treatment. Can. J. Chem. Eng. 2015, 93, 1474–1482. [Google Scholar] [CrossRef]
- Park, S.; Hwang, H.; Moon, J. Catalytic combustion of methane over rare earth stannate pyrochlore. Catal. Lett. 2003, 87, 219–223. [Google Scholar] [CrossRef]
- Feng, S.; Wang, Z.; Yang, P. Effect of Substitution of Cobalt for Iron in Sr4Fe6O13-delta on the Catalytic Activity for Methane Combustion. Chin. J. Chem. 2011, 29, 451–454. [Google Scholar] [CrossRef]
- Zhu, W.; Jin, J.; Chen, X.; Li, C.; Wang, T.; Tsang, C.; Liang, C. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion. Environ. Sci. Pollut. Res. 2018, 25, 5643–5654. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Z.; Du, W.; Zhu, G. Morphological effect of CeO2 catalysts on their catalytic performance in lean methane combustion. Chem. Lett. 2020, 49, 461–464. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Arandiyan, H.; Peng, Y.; Chang, H.; Li, J. Low temperature complete combustion of methane over cobalt chromium oxides catalysts. Catal. Today 2013, 201, 12–18. [Google Scholar] [CrossRef]
- Choya, A.; de Rivas, B.; González-Velasco, J.; Gutiérrez-Ortiz, J.; López-Fonseca, R. Oxidation of residual methane from VNG vehicles over Co3O4-based catalysts: Comparison among bulk, Al2O3-supported and Ce-doped catalysts. Appl. Catal. B Environ. 2018, 237, 844–854. [Google Scholar] [CrossRef]
- Liotta, L.; Di Carlo, G.; Pantaleo, G.; Deganello, G. Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity. Catal. Commun. 2005, 6, 329–336. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, M.; Yang, L.; Li, Z.; Tian, F.X.; He, Y. Recent progress of catalytic methane combustion over transition metal oxide catalysts. Front. Chem. 2022, 10, 959422. [Google Scholar] [CrossRef]
- Arai, H.; Machida, M. Recent progress in high-temperature catalytic combustion. Catal. Today 1991, 10, 81–95. [Google Scholar] [CrossRef]
- Arai, H.; Machida, M. Thermal stabilization of catalyst supports and their application to high-temperature catalytic combustion. Appl. Catal. A Gen. 1996, 138, 161–176. [Google Scholar] [CrossRef]
- Prasad, R.; Kennedy, L.; Ruckenstein, E. Catalytic combustion. Catal. Rev.-Sci. Eng. 1984, 29, 219–267. [Google Scholar] [CrossRef]
- Zwinkels, M.; Jaras, S.; Menon, P.; Griffin, T. Catalytic materials for high-temperature combustion. Catal. Rev.-Sci. Eng. 1993, 35, 319–358. [Google Scholar] [CrossRef]
- Cimino, S.; Di Benedetto, A.; Pirone, R.; Russo, G. Transient behaviour of perovskite-based monolithic reactors in the catalytic combustion of methane. Catal. Today 2001, 69, 95–103. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y. Nanostructured perovskite oxides as promising substitutes of noble metals catalysts for catalytic combustion of methane. Chin. Chem. Lett. 2018, 29, 252–260. [Google Scholar] [CrossRef]
- Lu, Y.; Michalow, K.; Matam, S.; Winkler, A.; Maeglia, A.; Yoona, S.; Heele, A.; Weidenkaffa, A.; Ferri, D. Methane abatement under stoichiometric conditions on perovskite-supported palladium catalysts prepared by flame spray synthesis. Appl. Catal. B Environ. 2014, 144, 631–643. [Google Scholar] [CrossRef]
- Lu, Y.; Eyssler, A.; Otala, E.; Matam, S.; Brunko, O.; Weidenkaff, A.; Ferri, D. Influence of the synthesis method on the structure of Pd-substituted perovskite catalysts for methane oxidation. Catal. Today 2013, 208, 42–47. [Google Scholar] [CrossRef]
- Cullis, C.; Nevell, T.; Trimm, D. Role of the catalyst support in the oxidation of methane over palladium. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1972, 68, 1406–1412. [Google Scholar] [CrossRef]
- Ribeiro, F.H.; Chow, M.; Dalla Betta, R.A. Kinetics of the complete oxidation of methane over supported palladium catalysts. J. Catal 1994, 146, 537–544. [Google Scholar]
- Barrett, W.; Shen, J.; Hu, Y.; Hayes, R.E.; Scott, R.W.J.; Semagina, N. Understanding the Role of SnO 2 Support in Water-Wolerant Methane Combustion: In situ Observation of Pd(OH) 2 and Comparison with Pd/Al2O3. ChemCatChem 2020, 12, 944–952. [Google Scholar] [CrossRef]
- Escandon, L.; Ordonez, S.; Vega, A.; Diez, F. Oxidation of methane over palladium catalysts: Effect of the support. Chemosphere 2005, 58, 9–17. [Google Scholar] [CrossRef]
- Kumar, R.; Hayes, R.; Semagina, N. Effect of support on Pd-catalyzed methane-lean combustion in the presence of water: Review. Catal. Today 2021, 382, 82–95. [Google Scholar] [CrossRef]
- Garbowski, E.; Feumi-Jantou, C.; Mouaddib, N.; Primet, M. Catalytic combustion of methane over palladium supported on alumina catalysts: Evidence for reconstruction of particles. Appl. Catal. A Gen. 1994, 109, 277–292. [Google Scholar] [CrossRef]
- Friberg, I.; Sadokhina, N.; Olsson, L. Complete methane oxidation over Ba modified Pd/Al2O3: The effect of water vapour. Appl. Catal. B. Environ. 2018, 231, 242–250. [Google Scholar] [CrossRef]
- Demoulin, O.; Navez, M.; Ruiz, P. Investigation of the behavior of a Pd/-Al2O3 catalyst during methane combustion reaction using in situ DRIFT spectroscopy. Appl. Catal. A Gen. 2005, 295, 59–70. [Google Scholar] [CrossRef]
- Demoulin, O.; Navez, M.; Gaigneaux, E.; Ruiz, P.; Mamede, A.; Granger, P.; Payen, E. Operando resonance Raman spectroscopic characterisation of the oxidation state of palladium in Pd/g-Al2O3 catalysts during the combustion of methane. Phys. Chem. Chem. Phys. 2003, 5, 4394–4401. [Google Scholar] [CrossRef]
- Datye, A.; Bravo, J.; Nelson, T.; Atanasova, P.; Lyubovsky, M.; Pfefferle, L. Catalyst microstructure and methane oxidation reactivity during the Pd-PdO transformation on alumina supports. Appl. Catal. A Gen. 2000, 198, 179–196. [Google Scholar] [CrossRef]
- Ciuparu, D.; Perkins, E.; Pfefferle, L. In situ DR-FTIR investigation of surface hydroxyls on -Al2O3 supported PdO catalysts during methane combustion. Appl. Catal. A Gen. 2004, 263, 145–153. [Google Scholar] [CrossRef]
- Castellazzi, P.; Groppi, G.; Forzatti, P.; Baylet, A.; Marecot, P.; Duprez, D. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts. Catal. Today 2010, 155, 18–26. [Google Scholar] [CrossRef]
- Hicks, R.; Qi, H.; Young, M.; Lee, R. Effect of catalyst structure on methane oxidation over palladium on alumina. J. Catal. 1990, 122, 295–306. [Google Scholar] [CrossRef]
- Hong, E.; Kim, C.; Lim, D.; Cho, H.; Shin, C. Catalytic methane combustion over Pd/ZrO2 catalysts: Effects of crystalline structure and textural properties. Appl. Catal. B Environ. 2018, 232, 544–552. [Google Scholar] [CrossRef]
- Guerrero, S.; Araya, P.; Wolf, E. Methane oxidation on Pd supported on high area zirconia catalysts. Appl. Catal. A Gen. 2006, 298, 243–253. [Google Scholar] [CrossRef]
- Fujimoto, F.; Ribiero, R.; Avalos Borja, A.; Iglesia, E. Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J. Catal. 1998, 179, 431–442. [Google Scholar] [CrossRef]
- Carstens, J.; Su, S.; Bell, A. Factors Affecting the Catalytic Activity of Pd/ZrO2 for the Combustion of Methane. J. Catal. 1998, 176, 136–142. [Google Scholar] [CrossRef]
- Ibashi, W.; Groppi, G.; Forzatti, P. Kinetic measurement of CH4 combustion over a 10% PdO/ZrO2 catalyst using an annular flow micro reactor. Catal. Today 2003, 83, 115–129. [Google Scholar] [CrossRef]
- Araya, P.; Guerrero, S.; Robertson, J.; Gracia, F. Methane combustion over Pd/SiO2 catalysts with different degrees of hydrophobicity. Appl. Catal. A Gen. 2005, 283, 225–233. [Google Scholar] [CrossRef]
- Bassil, J.; Al Barazi, A.; Da Costa, P.; Boutros, M. Catalytic combustion of methane over mesoporous silica supported palladium. Catal. Today 2011, 176, 36–40. [Google Scholar] [CrossRef]
- Hoyos, L.; Praliaud, H.; Primet, M. Catalytic combustion of methane over palladium supported on alumina and silica in presence of hydrogen sulfide. Appl. Catal. A Gen. 1993, 98, 125–138. [Google Scholar] [CrossRef]
- Gannouni, A.; Albela, B.; Said Zina, M.; Bonneviot, L. Metal dispersion, accessibility and catalytic activity in methane oxidation of mesoporous templated aluminosilica supported palladium. Appl. Catal. A Gen. 2013, 464–465, 116–127. [Google Scholar] [CrossRef]
- Ercolino, G.; Grzybek, G.; Stelmachowski, P.; Specchia, S.; Kotarba, A.; Specchia, V. Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal. Today 2015, 257, 66–71. [Google Scholar] [CrossRef]
- Li, Z.; Xu, G.; Hoflund, G. In situ IR studies on the mechanism of methane oxidation over Pd/Al2O3 and Pd/Co3O4 catalysts. Fuel Process. Technol. 2003, 84, 1–11. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kreft, S.; Georgi, G.; Fulda, G.; Pohla, M.; Seeburg, D.; Berger-Karin, C.; Kondratenko, E.; Wohlrab, S. Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration. Appl. Catal. B Environ. 2015, 179, 313–320. [Google Scholar] [CrossRef]
- Lei, Y.; Li, W.; Liu, Q.; Lin, Q.; Zhenga, X.; Huanga, Q.; Guan, S.; Wanga, X.; Wang, C.; Li, F. Typical crystal face effects of different morphology ceria on the activity of Pd/CeO2 catalysts for lean methane combustion. Fuel 2018, 233, 10–20. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Lei, Y.; Guan, S.; Zheng, X.; Pan, Y.; Wen, W.; Zhu, J.; Zhang, H.; Lin, Q. Catalytic Performance of Novel Hierarchical Porous Flower-Like NiCo2O4 Supported Pd in Lean Methane Oxidation. Catal. Lett. 2018, 148, 2799–2811. [Google Scholar] [CrossRef]
- Roth, D.; Gelin, P.; Tena, E.; Primet, M. Combustion of methane at low temperature over Pd and Pt catalysts supported on Al2O3, SnO2 and Al2O3-grafted SnO2. Top. Catal. 2001, 16–17, 77–82. [Google Scholar] [CrossRef]
- Urfels, L.; Gelin, P.; Primet, M.; Tena, E. Complete oxidation of methane at low temperature over Pt catalysts supported on high surface area SnO2. Top. Catal. 2004, 30–31, 427–432. [Google Scholar] [CrossRef]
- Kinnunen, N.; Suvanto, M.; Moreno, M.; Savimaki, A.; Kallinen, K.; Kinnunen, T.; Pakkanen, T. Methane oxidation on alumina supported palladium catalysts: Effect of Pd precursor and solvent. Appl. Catal. A Gen. 2009, 370, 78–87. [Google Scholar] [CrossRef]
- Auvray, X.; Lindholm, A.; Milh, M.; Olsson, L. The addition of alkali and alkaline earth metals to Pd/Al2O3 to promote methane combustion. Effect of Pd and Ca loading. Catal. Today 2018, 299, 212–218. [Google Scholar] [CrossRef]
- Colussi, S.; Trovarelli, A.; Cristiani, C.; Lietti, L.; Groppi, G. The influence of ceria and other rare earth promoters on palladium-based methane combustion catalysts. Catal. Today 2012, 180, 124–130. [Google Scholar] [CrossRef]
- Kang, T.; Kim, J.; Kang, S.; Seo, G. Promotion of methane combustion activity of Pd catalyst by titania loading. Catal. Today 2000, 59, 87–93. [Google Scholar] [CrossRef]
- Ismagilov, Z.R.; Kerzhentsev, M.A. Fluidized Bed Catalytic Combustion. Catal. Today 1999, 47, 339–346. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Froment, G.B.; Bischoff, K.B.; De Wilde, J. Chemical Reactor Analysis and Design, 3rd ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Hayes, R.E.; Mmbaga, J.P. Introduction to Chemical Reactor Analysis, 2nd ed.; CRC Press: Baton Roca, FL, USA, 2011. [Google Scholar]
- Aubé, F.; Sapoundjiev, H. Mathematical model and numerical simulations of catalytic flow reversal reactors for industrial applications. Comput. Chem. Eng. 2000, 24, 2623–2632. [Google Scholar] [CrossRef]
- Hayes, R.E.; Kolaczkowski, S.T. Mass and Heat Transfer Effects in Catalytic Monolith Reactors. Chem. Eng. Sci. 1994, 49, 3587–3599. [Google Scholar] [CrossRef]
- Carty, W.M.; Lednor, P.W. Monolithic ceramics and heterogeneous catalysts: Honeycombs and foams. Curr. Opin. Solid State Mater. Sci. 1996, 1, 88–95. [Google Scholar] [CrossRef]
- Visconti, C.G.; Groppi, G.; Tronconi, E. Highly conductive “packed foams”: A new concept for the intensification of strongly endo- and exothermic catalytic processes in compact tubular reactors. Catal. Today 2016, 273, 178–186. [Google Scholar] [CrossRef]
- Pestryakov, A.N.; Fyodorov, A.A.; Gaisinovich, M.S.; Shurov, V.P.; Fyodorova, I.V.; Gubaydulina, T.A. Metal-form catalysts with supported active phase for deep oxidation of hydrocarbons. React. Kinet. Catal. Lett. 1995, 54, 167–172. [Google Scholar] [CrossRef]
- Banhart, J. Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2002, 46, 559–632. [Google Scholar] [CrossRef]
- Ismagilov, Z.R.; Pushkarev, V.V.; Podyacheva, O.Y.; Koryabkina, N.A.; Veringa, H. A catalytic heat-exchanging tubular reactor for combining of high temperature exothermic and endothermic reactions. Chem. Eng. J. 2001, 82, 355–360. [Google Scholar] [CrossRef]
- Scheffler, M.; Colombo, P. Cellular Ceramics: Structure, Manufacturing, Properties, Applications; Wiley-VCH Verlag GmbH &Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Gancarczyk, A.; Sindera, K.; Iwaniszyn, M.; Piatek, M.; Macek, W.; Jodłowski, P.J.; Wroński, S.; Sitarz, M.; Łojewska, J.; Kołodziej, A. Metal Foams as Novel Catalyst Support in Environmental Processes. Catalysts 2019, 9, 587. [Google Scholar] [CrossRef]
- Patcas, F.C.; Garrido, G.I.; Kraushaar-Czarnetzki, B. CO oxidation over structured carriers:A comparison of ceramic foams, honeycombs and beads. Chem. Eng. Sci. 2007, 62, 3984–3990. [Google Scholar] [CrossRef]
- Giani, L.; Groppi, G.; Tronconi, E. Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts. Ind. Eng. Chem. Res. 2005, 44, 4993–5002. [Google Scholar] [CrossRef]
- Gancarczyk, A.; Iwaniszyn, M.; Piatek, M.; Korpyś, M.; Sindera, K.; Jodłowski, P.J.; Łojewska, J.; Kołodziej, A. Catalytic Combustion of Low-Concentration Methane on Structured Catalyst Supports. Ind. Eng. Chem. Res. 2018, 57, 10281–10291. [Google Scholar] [CrossRef]
- Sirijaruphan, A.; Goodwin, J.G.; Rice, R.W.; Wei, D.; Butcher, K.R.; Roberts, G.W.; Spivey, J.J. Metal foam supported Pt catalysts for the selective oxidation of CO in hydrogen. Appl. Catal. A Gen. 2005, 281, 1–9. [Google Scholar] [CrossRef]
- Garrido, G.I.; Patcas, F.C.; Lang, S.; Kraushaar-Czarnetzki, B. Mass transfer and pressure drop in ceramic foams: Adescription for different pore sizes and porosities. Chem. Eng. Sci. 2008, 63, 5202–5217. [Google Scholar] [CrossRef]
- Lacroix, M.; Dreibine, L.; de Tymowski, B.; Vigneron, F.; Edouard, D.; Begin, D.; Nguyen, P.; Pham, C.; Savin-Poncet, S.; Luck, F.; et al. Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer–Tropsch synthesis catalyst. Appl. Catal. A Gen. 2011, 397, 62–72. [Google Scholar] [CrossRef]
- Fratalocchi, L.; Visconti, C.G.; Groppi, G.; Lietti, L.; Tronconi, E. Intensifying heat transfer in Fischer-Tropsch tubular reactors through the adoption of conductive packed foams. Chem. Eng. J. 2018, 349, 829–837. [Google Scholar] [CrossRef]
- Meloni, E.; Saraceno, E.; Martino, M.; Corrado, A.; Iervolino, G.; Palma, V. SiC-based structured catalysts for a high-efficiency electrified dry reforming of methane. Renew. Energy 2023, 211, 336–346. [Google Scholar] [CrossRef]
- Balzarotti, R.; Beretta, A.; Groppi, G.; Tronconi, E. A comparison between washcoated and packed copper foams for the intensification of methane steam reforming. React. Chem. Eng. 2019, 4, 1387–1392. [Google Scholar] [CrossRef]
- Ercolino, G.; Karimi, S.; Stelmachowski, P.; Specchia, S. Catalytic combustion of residual methane on alumina monoliths and open cell foams coated with Pd/Co3O4. Chem. Eng. J. 2017, 326, 339–349. [Google Scholar] [CrossRef]
- Moncada Quintero, C.W.; Mazzei, H.G.; Servel, M.; Augier, F.; Haroun, Y.; Joly, J.F.; Specchia, S. Investigating mass transfer coefficients in lean methane combustion reaction through the morphological and geometric analysis of structured open cell foam catalysts. Chem. Eng. Sci. 2023, 281, 119138. [Google Scholar] [CrossRef]
- Choya, A.; Gudyka, S.; de Rivas, B.; Gutiérrez-Ortiz, J.I.; Kotarba, A.; López-Fonseca, R. Novel Ce-modified cobalt catalysts supported over α-Al2O3 open cell foams for lean methane oxidation. Appl. Catal. A Gen. 2022, 632, 118511. [Google Scholar] [CrossRef]
- Korpyś, M.; Iwaniszyn, M.; Sindera, K.; Kołodziej, A.; Rotkegel, A.; Profic-Paczkowska, J.; Sitarz, M.; Gancarczyk, A. Simplified modelling of a fixed bed reactor for catalytic methane combustion. Chem. Process Eng. New Front. 2023, 44, e27. [Google Scholar] [CrossRef]
- Moskalewicz, T.; Fiołek, A.; Sitarz, M.; Kopia, A. Effect of the Processing and Heat Treatment Route on the Microstructure of MoS2/Polyetheretherketone Coatings Obtained by Electrophoretic Deposition. J. Electrochem. Soc. 2019, 166, 151–161. [Google Scholar] [CrossRef]
- Amin, A. Review of autothermal reactors: Catalysis, reactor design, and processes. Int. J. Hydrog. Energy 2024, 65, 271–291. [Google Scholar] [CrossRef]
- Churchill, S.W. The Interaction of Reactions and Transport Part II: Combined Reactors and Exchangers. Int. J. Chem. React. Eng. 2007, 5, A55. [Google Scholar] [CrossRef]
- Kolios, G.; Frauhammer, J.; Eigenberger, G. Autothermal fixed-bed reactor concepts. Chem. Eng. Sci. 2000, 55, 5945–5967. [Google Scholar] [CrossRef]
- Litto, R.; Nien, T.; Hayes, R.E.; Mmbaga, J.P.; Votsmeier, M. Parametric Study of a Recuperative Catalytic Converter. Catalysis Today 2012, 188, 106–112. [Google Scholar] [CrossRef]
- Bernnat, J.; Rink, M.; Tuttlies, U.; Danner, T.; Nieken, U.; Eigenberger, G. Heat-integrated concepts for automotive exhaust purification. Top. Catal. 2009, 52, 2052–2057. [Google Scholar] [CrossRef]
- Kolios, G.; Gritsch, A.; Morillo, A.; Tuttlies, U.; Bernnat, J.; Opferkuch, F.; Eigenberger, G. Heat-integrated reactor concepts for catalytic reforming and automotive exhaust purification. Appl. Catal. B Environ. 2007, 70, 16–30. [Google Scholar] [CrossRef]
- Dobrego, K.V.; Gnesdilov, N.N.; Kozlov, I.M.; Bubnovich, V.I.; Gonzalez, H.A. Numerical investigation of the new regenerator–recuperator scheme of VOC oxidizer. Int. J. Heat. Mass. Transf. 2005, 48, 4695–4703. [Google Scholar] [CrossRef]
- Rebrov, E.V.; de Croon, M.H.J.M.; Schouten, J.C. Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction. Catal. Today 2001, 69, 183–192. [Google Scholar] [CrossRef]
- Salamon, E.; Cornejo, I.; Mmbaga, J.P.; Kołodziej, A.; Lojewska, J.; Hayes, R.E. Investigations of a three-channel autogenous reactor for lean methane combustion. Chem. Eng. Process. Process Intensif. 2020, 153, 107956. [Google Scholar] [CrossRef]
- Strenger, M.R.; Churchill, S.W.; Retallick, W.B. Operational Characteristics of a Double-Spiral Heat Exchanger for the Catalytic Incineration of Contaminated Air. Ind. Eng. Chem. Res. 1990, 29, 1977–1984. [Google Scholar] [CrossRef]
- Mmbaga, J.P.; Hayes, R.E.; Profic-Paczkowska, J.; Jędrzejczyk, R.; Chlebda, D.K.; Dańczak, J.; Hilderbrandt, R. Energy Recuperation in a Spiral Reactor for Lean Methane Combustion: Heat Transfer Efficiency and Design Guidelines. Processes 2025, 13, 1168. [Google Scholar] [CrossRef]
- Matros, Y.S.; Bunimovich, G.A. Reverse-flow operation in fixed bed catalytic reactors. Catal. Rev. Sci. Eng. 1996, 38, 1–68. [Google Scholar] [CrossRef]
- Strots, V.O.; Bunimovich, G.A.; Matros, Y.S.; Zheng, M.; Mirosh, E.A. Advanced catalytic converter system for natural gas-powered diesel engines. Stud. Surf. Sci. Catal. 1998, 119, 907–912. [Google Scholar]
- Hanamura, K.; Echigo, R.; Zhdanok, S.A. Superadiabatic combustion in a porous medium. Int. J. Heat Mass Transf. 1993, 36, 3201–3209. [Google Scholar] [CrossRef]
- Cottrell, F.G. Purifying Gases and Apparatus Therefor. U.S. Patent 2,121,723, 21 June 1938. [Google Scholar]
- Gilbert, N.; Daniels, K. Fixation of atmospheric nitrogen in a gas heated furnace. Ind. Eng. Chem. 1948, 40, 1719–1723. [Google Scholar] [CrossRef]
- Frank-Kamenetski, D.A. Diffusion and Heat Exchange in Chemical Kinetics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Boreskov, G.K.; Bunimovich, G.A.; Matros, Y.S.; Ivanov, A.A. Catalytic processes carried out under non-stationary conditions: II. Switching the direction for the feed of the reaction mixture to the catalyst bed. Experimental results. Kinet. Katal. 1982, 23, 402–406. [Google Scholar]
- Matros, Y.S. Catalytic Processes Under Unsteady State Conditions; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Bunivovich, G.A.; Strots, V.O.; Goldman, O.V. Theory and industrial application of SO2 oxidation reverse-process for sulfur acid production. In Unsteady State Processes in Catalysis; Matros, Y.S., Ed.; VPS BV: Ultrecht, The Netherlands, 1990. [Google Scholar]
- Van den Bussche, K.M.; Neophytides, S.N.; Zolotarskii, I.A.; Froment, G.F. Modelling and simulation of a reversed flow operation of a fixed-bed reactor for methanol synthesis. Chem. Eng. Sci. 1993, 48, 3335–3345. [Google Scholar] [CrossRef]
- Neophytides, S.N.; Froment, G.F. A bench scale study of reversed flow methanol synthesis. Ind. Eng. Chem. Res. 1992, 31, 1583–1589. [Google Scholar] [CrossRef]
- Guit, R.P.M. The Selective Catalytic Reduction of NOx in a Reverse Flow Reactor: A Quick Design Procedure. In Precision Process Technology; Weijnen, M.P.C., Drinkenburg, A.A.H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 453–461. [Google Scholar]
- Snyder, J.D.; Subramaniam, B. Numerical simulation of a reverse-flow NOX-SCR reactor with side-stream ammonia addition. Chem. Eng. Sci. 1998, 53, 727–734. [Google Scholar] [CrossRef]
- Bobrova, L.N.; Slavinskaya, E.M.; Noskov, A.S.; Matros, Y.S. Unsteady-state performance of NOx catalytic reduction by NH3. React. Kinet. Catal. Lett. 1988, 37, 267–272. [Google Scholar] [CrossRef]
- Noskov, A.S.; Bobrova, L.M.; Matros, Y.S. Reverse-process for NOx-off gases decontamination. Catal. Today 1993, 17, 293–300. [Google Scholar] [CrossRef]
- Grozev, G.; Sapundzhiev, C.G. Modelling of the reversed flow fixed bed reactor for catalytic decontamination of waste gases. Chem. Eng. Technol. 1997, 20, 378–383. [Google Scholar] [CrossRef]
- Eigenberger, G.; Nieken, U. Catalytic combustion with periodic flow reversal. Chem. Eng. Sci. 1988, 43, 2109–2115. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hayes, R.E.; Poirier, M.; Sapoundjiev, H. Heat extraction from a flow reversal reactor in lean methane combustion. Chem. Eng. Res. Des. 2005, 83, 205–213. [Google Scholar] [CrossRef]
- Boreskov, G.K.; Matros, Y.S. Fixed catalyst bed reactors operated in steady and unsteady-state conditions. In Recent Advances in the Engineering of Chemically Reacting Systems; Doraiswamy, L.K., Ed.; Wiley: New Delhi, India, 1984; pp. 142–155. [Google Scholar]
- Matros, Y.S.; Noskov, A.S.; Chumachenko, V.A. Progress in reverse-process application to catalytic incineration problems. Chem. Eng. Process. 1993, 32, 89–98. [Google Scholar] [CrossRef]
- Sapundzhiev, C.; Chaouki, J.; Guy, C.; Klvana, D. Catalytic combustion of natural gas in a fixed bed reactor with flow reversal. Chem. Eng. Comm. 1993, 125, 171–186. [Google Scholar] [CrossRef]
- van de Beld, L.; Borman, R.A.; Derkx, O.R.; van Woezik, B.A.; Westerterp, K.R. Removal of volatile organic-compounds from polluted air in a reverse flow reactor–an experimental-study. Ind. Eng. Chem. Res. 1994, 33, 2946–2956. [Google Scholar] [CrossRef]
- Purwano, S.; Budman, H.; Silveston, R.R.; Matros, Y.S. Runaway in packed bed reactors operating with periodic flow reversal. Chem. Eng. Sci. 1994, 49, 5473–5487. [Google Scholar] [CrossRef]
- Jia, Z.; Hayes, R.E. An efficient computational scheme for building operating maps for a flow reversal reactor. Chem. Eng. Sci. 2015, 134, 423–432. [Google Scholar] [CrossRef]
- Salomons, S.; Hayes, R.E.; Poirier, M.; Sapoundjiev, H. Modelling a reverse flow reactor for the catalytic combustion of fugitive methane emissions. Comput. Chem. Eng. 2004, 28, 1599–1610. [Google Scholar] [CrossRef]
- Salomons, S.; Hayes, R.E.; Poirier, M.; Sapoundjiev, H. Flow reversal reactor for the catalytic combustion of lean methane mixtures. Catal. Today 2003, 83, 59–69. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hayes, R.E.; Poirier, M.; Sapoundjiev, H. Effect of reactor internal properties on the performance of a flow reversal catalytic reactor for methane combustion. Chem. Eng. Sci. 2004, 59, 4081–4093. [Google Scholar] [CrossRef]
- Litto, R.; Hayes, R.E.; Sapoundjiev, H.; Fuxman, A.; Forbes, F.; Liu, B.; Bertrand, F. Optimization of a flow reversal reactor for the catalytic combustion of lean methane mixtures. Catal. Today 2006, 117, 536–542. [Google Scholar] [CrossRef]
- Matros, Y.S.; Bunimovich, G.A.; Strots, V.O.; Mirosh, E.A. Reversed flow converter for emission control after automotive engines. Chem. Eng. Sci. 1999, 54, 2889–2898. [Google Scholar] [CrossRef]
- Liu, B.; Checkel, M.D.; Hayes, R.E.; Zheng, M.; Mirosh, E.A. Transient Simulation of a Catalytic Converter for a Dual Fuel Engine. Can. J. Chem. Eng. 2000, 78, 557–568. [Google Scholar] [CrossRef]
- Liu, B.; Checkel, M.D.; Hayes, R.E. Experimental study of a reverse flow catalytic converter for a dual fuel engine. Can. J. Chem. Eng. 2001, 79, 491–506. [Google Scholar] [CrossRef]
- Liu, B.; Hayes, R.E.; Checkel, M.D.; Zheng, M.; Mirosh, E.A. Reversing flow catalytic converter for a natural gas/diesel dual fuel engine. Chem. Eng. Sci. 2001, 56, 2641–2658. [Google Scholar] [CrossRef]
- Liu, B.; Checkel, M.D.; Hayes, R.E.; Zheng, M.; Mirosh, E.A. Experimental and Modelling Study of Variable Cycle Time of a Reverse Flow Catalytic Converter for Natural Gas/Diesel Dual Fuel Engines. In Proceedings of the SAE Technical Paper 2000-01-0213, Detroit, MI, USA, 6–9 March 2000. [Google Scholar] [CrossRef]
- Özgülsen, F.; Cinar, A. Forced periodic operation of tubular reactors. Chem. Eng. Sci. 1994, 49, 3409–3419. [Google Scholar] [CrossRef]
- Fabian Ramos, H.S.; Mmbaga, J.P.; Hayes, R.E. Catalyst Optimization in a Catalytic Flow Reversal Reactor for Lean Methane Combustion. Catal. Today 2023, 407, 182–193. [Google Scholar] [CrossRef]
- Fuxman, A.M.; Aksikas, I.; Forbes, J.F.; Hayes, R.E. LQ-Feedback control of a reverse flow reactor. J. Process Control 2008, 18, 654–662. [Google Scholar] [CrossRef]
- Fuxman, A.M.; Forbes, J.F.; Hayes, R.E. Characteristics-based model predictive control of a catalytic flow reversal reactor. Can. J. Chem. Eng. 2007, 84, 424–432. [Google Scholar] [CrossRef]
- Balaji, S.; Fuxman, A.; Lakshminarayanan, S.; Forbes, J.F.; Hayes, R.E. Repetitive model predictive control of a reverse flow reactor. Chem. Eng. Sci. 2007, 62, 2154–2167. [Google Scholar] [CrossRef]
- Devals, C.; Fuxman, A.M.; Bertrand, F.; Forbes, J.F.; Perrier, M.; Hayes, R.E. Enhanced model predictive control of a catalytic flow reversal reactor. Can. J. Chem. Eng. 2009, 87, 620–631. [Google Scholar] [CrossRef]
- Dongworth, M.R.; Melvin, A. Diffusive catalytic combustion. Sixt. Int. Symp. Combust. 1977, 16, 255–264. [Google Scholar] [CrossRef]
- Radcliffe, S.W.; Hickman, R.G. Diffusive catalytic combustors. J. Inst. Fuel 1975, 48, 208–214. [Google Scholar]
- Trimm, D.L.; Lam, C. The combustion of methane on platinum—Alumina fibre catalysts—I: Kinetics and mechanism. Chem. Eng. Sci. 1980, 35, 1405–1413. [Google Scholar] [CrossRef]
- Trimm, D.L.; Lam, C. The combustion of methane on platinum—Alumina fibre catalysts—II design and testing of a convective-diffusive type catalytic combustor. Chem. Eng. Sci. 1980, 35, 1731–1739. [Google Scholar] [CrossRef]
- Kiwi-Minsker, L.; Yuranov, I.; Slavinskaia, E.; Zaikovskii, V.; Renken, A. Pt and Pd supported on glass fibers as effective combustion catalysts. Catal. Today 2000, 59, 61–68. [Google Scholar] [CrossRef]
- Saracco, G.; Cerri, I.; Specchia, V.; Accornero, R. Catalytic pre-mixed fibre burners. Chem. Eng. Sci. 1999, 54, 3599–3608. [Google Scholar] [CrossRef]
- Specchia, V.; Sicardi, S.; Gianetto, A. Methane combustion with catalytic panels: Interpretation of the internal profiles of a longitudinal dispersion model. Chem. Eng. Commun. 1981, 10, 189–203. [Google Scholar] [CrossRef]
- Jodeiri, N.; Mmbaga, J.P.; Wu, L.; Wanke, S.E.; Hayes, R.E. Modelling a counter-diffusive reactor for methane combustion. Comput. Chem. Eng. 2012, 39, 47–56. [Google Scholar] [CrossRef]
- Partopour, B.; Dixon, A.G. An Integrated Workflow for Resolved-Particle Packed Bed Models with Complex Particle Shapes. Powder Technol. 2017, 322, 70–85. [Google Scholar] [CrossRef]
- Dixon, A.G. CFD as a Design Tool for Fixed-Bed Reactors. Ind. Eng. Chem. Res. 2001, 40, 5246–5254. [Google Scholar] [CrossRef]
- Reddy, K.B.V.; Dixon, A.G. Multi-scale Two-dimensional Packed Bed Reactor Model for Industrial Steam Methane Reforming. Chem. Eng. Sci. 2020, 215, 115421. [Google Scholar]
- Boigné, E.; Zirwes, T.; Parkinson, D.Y.; Vignat, G.; Muhunthan, P.; Barnard, H.S.; MacDowell, A.A.; Ihme, M.M. Integrated experimental and computational analysis of porous media combustion by combining gas-phase synchrotron CT, IR-imaging, and pore-resolved simulations. Combust. Flame 2024, 259, 113132. [Google Scholar] [CrossRef]
- Khatoonabadi, M.; Prasianakis, N.I.; Mantzaras, J. A pore-level 3D lattice Boltzmann simulation of mass transport and reaction in catalytic particles used for methane synthesis. Int. J. Heat Mass Transf. 2014, 221, 125025. [Google Scholar] [CrossRef]
- Young, L.C.; Finlayson, B.A. Mathematical Models of the Monolith Catalytic Converter: Part I. Development of Model and Application of Orthogonal Collocation. AIChE J. 1976, 22, 331–343. [Google Scholar] [CrossRef]
- Young, L.C.; Finlayson, B.A. Mathematical Models of the Monolith Catalytic Converter: Part II. Application to Automobile Exhaust. AIChE J. 1976, 22, 343–353. [Google Scholar] [CrossRef]
- Groppi, G.; Belloli, A.; Tronconi, E.; Forzatti, P. A Comparison of Lumped and Distributed Models of Monolith Catalytic Combustors. Chem. Eng. Sci. 1995, 50, 2705–2714. [Google Scholar] [CrossRef]
- Tronconi, E.; Forzatti, P. Adequacy of Lumped Parameter Models for SCR Reactors with Monolith Structure. AIChE J. 1992, 38, 201–210. [Google Scholar] [CrossRef]
- Groppi, G.; Belloli, A.; Tronconi, E.; Forzatti, P. Analysis of Multidimensional Models of Monolith Catalysts for Hybrid Combustors. AIChE J. 1995, 41, 2250–2262. [Google Scholar] [CrossRef]
- Groppi, G.; Tronconi, E. Theoretical analysis of mass and heat transfer in monolith catalysts with triangular channels. Chem. Eng. Sci. 1997, 52, 3521–3526. [Google Scholar] [CrossRef]
- Groppi, G.; Tronconi, E.; Forzatti, P. Mathematical Models of Catalytic Combustors. Catal. Rev.-Sci. Eng. 1999, 41, 227–254. [Google Scholar] [CrossRef]
- Hayes, R.E.; Cornejo, I. Multi-scale Modelling of Monolith Reactors: A Thirty-year Perspective from 1990 to 2020. Can. J. Chem. Eng. 2021, 99, 2589–2606. [Google Scholar] [CrossRef]
- Nien, T.; Mmbaga, J.P.; Hayes, R.E.; Votsmeier, M. Hierarchical multi-scale model reduction in the simulation of catalytic converters. Chem. Eng. Sci. 2013, 93, 362–375. [Google Scholar] [CrossRef]
- Meisel, W.S.; Collins, D.C. Repro-modeling: An approach to efficient model utilization and interpretation. Syst. Man Cybern. IEEE Trans. Syst. Man Cybern. SMC-3 1973, 3, 349–358. [Google Scholar] [CrossRef]
- Turányi, T. Application of repro-modeling for the reduction of combustion mechanisms. Symp. (Int.) Combust. 1994, 25, 949–955. [Google Scholar] [CrossRef]
- Turányi, T. Parameterization of reaction mechanisms using orthonormal polynomials. Comput. Chem. 1994, 18, 45–54. [Google Scholar] [CrossRef]
- Votsmeier, M. Efficient implementation of detailed surface chemistry into reactor models using mapped rate data. Chem. Eng. Sci. 2009, 64, 1384–1389. [Google Scholar] [CrossRef]
- Pope, S.B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1997, 1, 41–63. [Google Scholar] [CrossRef]
- Kumar, A.; Mazumder, S. Adaptation and application of the In Situ Adaptive Tabulation (ISAT) procedure to reacting flow calculations with complex surface chemistry. Comput. Chem. Eng. 2010, 35, 1317–1327. [Google Scholar] [CrossRef]
- Yan, X.; Maas, U. Intrinsic low-dimensional manifolds of heterogeneous combustion processes. Proc. Combust. Inst. 2000, 28, 1615–1621. [Google Scholar] [CrossRef]
- Diaz-Ibarra, O.; Kim, K.; Safta, C.; Zador, J.; Najm, H.N. Using computational singular perturbation as a diagnostic tool in ODE and DAE systems: A case study in heterogeneous catalysis. Combust. Theory Model. 2022, 26, 201–227. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z. Towards foundation model for chemical reactor modeling: Meta-learning with physics-informed adaptation. Chem. Eng. Res. Des. 2025, 218, 839–853. [Google Scholar] [CrossRef]
- Mowbray, M.; Vallerio, M.; Perez-Galvan, C.; Zhang, D.; Del Rio Chanona, A.; Navarro-Brull, F.J. Industrial data science—A review of machine learning applications for chemical and process industries. React. Chem. Eng. 2022, 7, 1471–1509. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, X.; Ouyang, B.; Yan, W.; Lei, H.; Chen, Z.; Luo, Z. Review of Machine Learning for Hydrodynamics, Transport, and Reactions in Multiphase Flows and Reactors. Ind. Eng. Chem. Res. 2022, 61, 9901–9949. [Google Scholar] [CrossRef]
- Babanezhad, M.; Behroyan, I.; Nakhjiri, A.T.; Marjani, A.; Rezakazemi, M.; Shirazian, S. High-performance hybrid modeling chemical reactors using differential evolution based fuzzy inference system. Sci. Rep. 2020, 10, 21304. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Ghaemi, A.; Kelishami, A.R.; Movahedirad, S. Predictive modeling of membrane reactor efficiency using advanced artificial neural networks for green hydrogen production. Sci. Rep. 2024, 14, 24211. [Google Scholar] [CrossRef]
- Shettigar, P.; Kumbhare, J.; Yadav, E.S.; Indiran, T. Wiener-Neural-Network-Based Modeling and Validation of Generalized Predictive Control on a Laboratory-Scale Batch Reactor. ACS Omega 2022, 7, 16341–16351. [Google Scholar] [CrossRef]
- Thajudeen, K.Y.; Ahmed, M.M.; Alshehri, S.A. Development of hybrid computational model for simulation of heat transfer and temperature prediction in chemical reactors. Sci. Rep. 2025, 15, 14628. [Google Scholar] [CrossRef] [PubMed]
- Tom Savage, T.; Basha, N.; McDonough, J.; Krassowski, J.; Matar, O.; del Rio Chanona, E.A. Machine learning-assisted discovery of flow reactor designs. Nat. Chem. Eng. 2024, 1, 522–531. [Google Scholar] [CrossRef]
- Weckhuysen, B.M. Chemical Imaging of Spatial Heterogeneities in Catalytic Solids at Different Length and Time Scales. Angew. Chem. Int. Ed. 2009, 48, 4910–4943. [Google Scholar] [CrossRef]
- Mantzaras, J. Progress in non-intrusive laser-based measurements of gas-phase thermoscalars and supporting modeling near catalytic interfaces. Prog. Energy Combust. Sci. 2019, 70, 169–211. [Google Scholar] [CrossRef]
- Kanitkar, S.R.; Dutta, B.; Md Abedin, A.; Bai, X.; Haynes, D.J. Advanced Manufacturing in Heterogeneous Catalysis; RCS SPR–Catalysis; SPR: Putrajaya, Malaysia, 2024; pp. 1–41. [Google Scholar]
- Rosseau, L.R.S.; Middelkoop, V.; Willemsen, H.A.M.; Roghai, I.; van Sint Annaland, M. Review on Additive Manufacturing of Catalysts and Sorbents and the Potential for Process Intensification. Front. Chem. Eng. 2022, 4, 8–26. [Google Scholar] [CrossRef]
- Reinao, C.; Diaz, P.; Cornejo, I. A new model for the pressure drop in dual-cell density monoliths: Experimental validation and CFD. Chem. Eng. J. 2025, 516, 163599. [Google Scholar] [CrossRef]
- Mackiewicz, E.; Wejrzanowski, T.; Nowacki, R.; Jaroszewicz, J.; Marchewka, J.; Wilk, L.; Bezkosty, P.; Sitarz, M. 3D hierarchical porous structures printed from a silica-nickel composite paste. Appl. Mater. Today 2023, 33, 101859. [Google Scholar] [CrossRef]
- Bazte, O.; Botana, F.J.; Calvino, J.J.; Cauqui, M.A.; Gatica, J.M.; Vidal, H.; Gonzalez-Rovira, L.; Lopez-Castro, J.; Yeste, M.P.; Blanco, G.; et al. Novel combination of 3D printing and electrochemical deposition to design and prepare metallic honeycomb supported catalysts for dry reforming of methane. Chem. Eng. J. 2025, 506, 159939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayes, R.E.; Profic-Paczkowska, J.; Jędrzejczyk, R.; Mmbaga, J.P. Catalytic Combustion of Fugitive Methane: Challenges and Current State of the Technology. Appl. Sci. 2025, 15, 10269. https://doi.org/10.3390/app151810269
Hayes RE, Profic-Paczkowska J, Jędrzejczyk R, Mmbaga JP. Catalytic Combustion of Fugitive Methane: Challenges and Current State of the Technology. Applied Sciences. 2025; 15(18):10269. https://doi.org/10.3390/app151810269
Chicago/Turabian StyleHayes, Robert E., Joanna Profic-Paczkowska, Roman Jędrzejczyk, and Joseph P. Mmbaga. 2025. "Catalytic Combustion of Fugitive Methane: Challenges and Current State of the Technology" Applied Sciences 15, no. 18: 10269. https://doi.org/10.3390/app151810269
APA StyleHayes, R. E., Profic-Paczkowska, J., Jędrzejczyk, R., & Mmbaga, J. P. (2025). Catalytic Combustion of Fugitive Methane: Challenges and Current State of the Technology. Applied Sciences, 15(18), 10269. https://doi.org/10.3390/app151810269