Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = on-demand production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1643 KiB  
Article
Mechanical Properties of Fully Recyclable 3D-Printable Materials Used for Application in Patient-Specific Devices in Radiotherapy
by Antonio Jreije, Paulius Griškevičius, Neringa Keršienė, Jurgita Laurikaitienė, Rūta Nedzinskienė and Diana Adlienė
Polymers 2025, 17(14), 1946; https://doi.org/10.3390/polym17141946 - 16 Jul 2025
Viewed by 369
Abstract
The exponential growth of plastic production in the healthcare sector and the limited capacity of conventional recycling systems have created a global environmental challenge. Latest 3D printing technologies have the potential to solve this problem by enabling on-demand, localized manufacturing. This study aimed [...] Read more.
The exponential growth of plastic production in the healthcare sector and the limited capacity of conventional recycling systems have created a global environmental challenge. Latest 3D printing technologies have the potential to solve this problem by enabling on-demand, localized manufacturing. This study aimed to investigate the mechanical properties of 3D-printed ABS composites with Bi2O3 fillers after multiple recycling and irradiation cycles to assess their suitability for creating robust, reusable supporting devices for radiotherapy. Filaments of PLA, ABS, and ABS composites enriched with 5 wt% and 10 wt% Bi2O3 were extruded, repeatedly recycled through shredding and re-extrusion up to ten times and irradiated to 70 Gy using a 6 MeV photon beam to simulate clinical radiotherapy conditions. In contrast to PLA, ABS demonstrated better recyclability; however, after ten recycling cycles, its tensile strength declined from 25.1 MPa to 20.9 MPa, and its Young’s modulus decreased from 2503.5 MPa to 1410.4 MPa. Incorporation of 5 wt% Bi2O3 into ABS significantly improved recyclability and mechanical retention. After ten recycling rounds, an ABS composite containing 5 wt% Bi2O3 retained tensile strength of 22.2 MPa, modulus of 1553.9 MPa, and strain at break of 14.4%. In contrast, the composite enforced with 10 wt% Bi2O3 showed slightly lower performance, likely due to filler agglomeration. Under irradiation, the ABS–5 wt% Bi2O3 composite exhibited minimal additional degradation, maintaining mechanical integrity superior to other materials. These results indicate that ABS–5 wt% Bi2O3 is a promising, recyclable material for durable, patient-specific devices in radiotherapy, supporting sustainability in medical manufacturing. Full article
Show Figures

Figure 1

20 pages, 1271 KiB  
Review
Energy Efficiency and Sustainability of Additive Manufacturing as a Mass-Personalized Production Mode in Industry 5.0/6.0
by Izabela Rojek, Dariusz Mikołajewski, Jakub Kopowski, Tomasz Bednarek and Krzysztof Tyburek
Energies 2025, 18(13), 3413; https://doi.org/10.3390/en18133413 - 28 Jun 2025
Viewed by 703
Abstract
This review article examines the role of additive manufacturing (AM) in increasing energy efficiency and sustainability within the evolving framework of Industry 5.0 and 6.0. This review highlights the unique ability of additive manufacturing to deliver mass-customized products while minimizing material waste and [...] Read more.
This review article examines the role of additive manufacturing (AM) in increasing energy efficiency and sustainability within the evolving framework of Industry 5.0 and 6.0. This review highlights the unique ability of additive manufacturing to deliver mass-customized products while minimizing material waste and reducing energy consumption. The integration of smart technologies such as AI and IoT is explored to optimize AM processes and support decentralized, on-demand manufacturing. Thisarticle discusses different AM techniques and materials from an environmental and life-cycle perspective, identifying key benefits and constraints. This review also examines the potential of AM to support circular economy practices through local repair, remanufacturing, and material recycling. The net energy efficiency of AM depends on the type of process, part complexity, and production scale, but the energy savings per component can be significant if implemented strategically.AM significantly improves energy efficiency in certain manufacturing contexts, often reducing energy consumption by 25–50% compared to traditional subtractive methods. The results emphasize the importance of innovation in both hardware and software to overcome current energy and sustainability challenges. This review highlights AM as a key tool in achieving a human-centric, intelligent, and ecological manufacturing paradigm. Full article
Show Figures

Figure 1

16 pages, 764 KiB  
Review
3D Printing in Oral Drug Delivery: Technologies, Clinical Applications and Future Perspectives in Precision Medicine
by Zeena Saleh-Bey-Kinj, Yael Heller, Giannis Socratous and Panayiota Christodoulou
Pharmaceuticals 2025, 18(7), 973; https://doi.org/10.3390/ph18070973 - 28 Jun 2025
Viewed by 1423
Abstract
The recent advancement of 3D-printed drugs is an emerging technology that has the potential for effective and safe oral delivery of personalized treatment regimens to patients, replacing the current “one size fits all” philosophy. The objective of this literature review is to highlight [...] Read more.
The recent advancement of 3D-printed drugs is an emerging technology that has the potential for effective and safe oral delivery of personalized treatment regimens to patients, replacing the current “one size fits all” philosophy. The objective of this literature review is to highlight the importance of 3D-printing technology in the development of personalized treatments, focusing on Levetiracetam, the first FDA-approved 3D-printed drug, for the treatment of epilepsy. Levetiracetam serves as an ideal paradigm for exploring how precision medicine and 3D printing can be applied to improve treatment outcomes for other complex diseases such as diabetes, cardiovascular diseases, and cancer. 3D printing enables precise dosage and time-release profiles by modifying factors such as shape and size, and the combination of active pharmaceutical ingredients (APIs) and excipients, ensuring consistent therapeutic levels over the treatment period. Design of oral tablets with multiple compartments allows for simultaneous treatment with multiple APIs, each one with a different release profile, minimizing drug–drug interactions and side effects. This technology also supports on-demand production, making it particularly beneficial in resource-limited or urgent situations, and offers the flexibility to customize dosage forms. Additive manufacturing could be an important tool for developing personalized treatments to address the diverse medical needs of patients with complex diseases. Therefore, there is a need for more 3D-printed FDA-approved drugs in the biopharmaceutical industry to enable personalized treatment, improved patient compliance, and precise drug release control. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

11 pages, 363 KiB  
Proceeding Paper
Decentralized Supply Chains Using Fused Disposition Modeling as a Framework: Optimization Using a Machine Learning Approach
by Yassine Abika, Abdelkabir Bacha, Mustapha Ahlaqqach and Jamal Benhra
Eng. Proc. 2025, 97(1), 30; https://doi.org/10.3390/engproc2025097030 - 16 Jun 2025
Viewed by 525
Abstract
The globally used additive manufacturing technique called Fused Deposition Modeling plays a central role in advancing dematerialized logistics by enabling on-demand production and minimizing material waste. The integration of Artificial Intelligence (AI) into FDM processes has introduced promising avenues to improve efficiency, accuracy, [...] Read more.
The globally used additive manufacturing technique called Fused Deposition Modeling plays a central role in advancing dematerialized logistics by enabling on-demand production and minimizing material waste. The integration of Artificial Intelligence (AI) into FDM processes has introduced promising avenues to improve efficiency, accuracy, and sustainability. Expressly, researchers have proved in what ways machine learning algorithms can upgrade printing parameters, initiating enhanced product quality and lower defects. In the context of dematerialized logistics, the PRISMA methodology mentioned in this review is set to maintain a structured analysis of the junction between AI and FDM. Exhaustive research of analyzed studies issued from 2009 to 2024 through databases like Scopus, Web of Science, and IEEE Xplore demonstrate an expanding reliance on AI techniques like neural networks and genetic algorithms. All these mentioned methods are used to approach challenges such as print quality inconsistencies, material overuse, and structural weaknesses. The outcome shows the prospect of AI to reshape FDM, but major obstacles remain present: many problems, such as the scalability of models and their integration into existing logistical frameworks, need further studies and research. As demonstrated, this review gives an inclusive perspective on the actual progress and highlights the main directions for what lies ahead to improve FDM processes in logistics. Full article
Show Figures

Figure 1

7 pages, 167 KiB  
Editorial
Additive Manufacturing of Fibre-Reinforced Polymer Composites
by Chengxing Yang, Kui Wang, Jianxun Zhang and Andrea Codolini
Polymers 2025, 17(12), 1652; https://doi.org/10.3390/polym17121652 - 14 Jun 2025
Viewed by 607
Abstract
Additive manufacturing (AM) has emerged as a transformative approach to fabricating complex geometries with tailored architectures, offering significant advantages in terms of design freedom, material efficiency, and on-demand production [...] Full article
(This article belongs to the Special Issue Additive Manufacturing of Fibre Reinforced Polymer Composites)
27 pages, 3100 KiB  
Article
Reducing Delivery Times by Utilising On-Site Wire Arc Additive Manufacturing with Digital-Twin Methods
by Stefanie Sell, Kevin Villani and Marc Stautner
Computers 2025, 14(6), 221; https://doi.org/10.3390/computers14060221 - 6 Jun 2025
Viewed by 451
Abstract
The increasing demand for smaller batch sizes and mass customisation in production poses considerable challenges to logistics and manufacturing efficiency. Conventional methodologies are unable to address the need for expeditious, cost-effective distribution of premium-quality products tailored to individual specifications. Additionally, the reliability and [...] Read more.
The increasing demand for smaller batch sizes and mass customisation in production poses considerable challenges to logistics and manufacturing efficiency. Conventional methodologies are unable to address the need for expeditious, cost-effective distribution of premium-quality products tailored to individual specifications. Additionally, the reliability and resilience of global logistics chains are increasingly under pressure. Additive manufacturing is regarded as a potentially viable solution to these problems, as it enables on-demand, on-site production, with reduced resource usage in production. Nevertheless, there are still significant challenges to be addressed, including the assurance of product quality and the optimisation of production processes with respect to time and resource efficiency. This article examines the potential of integrating digital twin methodologies to establish a fully digital and efficient process chain for on-site additive manufacturing. This study focuses on wire arc additive manufacturing (WAAM), a technology that has been successfully implemented in the on-site production of naval ship propellers and excavator parts. The proposed approach aims to enhance process planning efficiency, reduce material and energy consumption, and minimise the expertise required for operational deployment by leveraging digital twin methodologies. The present paper details the current state of research in this domain and outlines a vision for a fully virtualised process chain, highlighting the transformative potential of digital twin technologies in advancing on-site additive manufacturing. In this context, various aspects and components of a digital twin framework for wire arc additive manufacturing are examined regarding their necessity and applicability. The overarching objective of this paper is to conduct a preliminary investigation for the implementation and further development of a comprehensive DT framework for WAAM. Utilising a real-world sample, current already available process steps are validated and actual missing technical solutions are pointed out. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

34 pages, 1192 KiB  
Review
Composite Filament Materials for 3D-Printed Drone Parts: Advancements in Mechanical Strength, Weight Optimization and Embedded Electronics
by Antreas Kantaros, Christos Drosos, Michail Papoutsidakis, Evangelos Pallis and Theodore Ganetsos
Materials 2025, 18(11), 2465; https://doi.org/10.3390/ma18112465 - 24 May 2025
Cited by 2 | Viewed by 1169
Abstract
The rapid advancement of 3D printing technologies has greatly assisted drone manufacturing, particularly through the use of composite filaments. This paper explores the impact of fiber-reinforced materials, such as carbon-fiber-infused PLA, PETG, and nylon, on the mechanical performance, weight optimization, and functionality of [...] Read more.
The rapid advancement of 3D printing technologies has greatly assisted drone manufacturing, particularly through the use of composite filaments. This paper explores the impact of fiber-reinforced materials, such as carbon-fiber-infused PLA, PETG, and nylon, on the mechanical performance, weight optimization, and functionality of unmanned aerial vehicles (UAVs). The study highlights how additive manufacturing enables the fabrication of lightweight yet structurally robust components, enhancing flight endurance, stability, and payload capacity. Key advancements in high-speed fused filament fabrication (FFF) printing, soluble support materials, and embedded electronics integration are examined, demonstrating their role in producing highly functional UAV parts. Furthermore, the challenges associated with material processing, cost, and scalability are discussed, along with solutions such as advanced extruder designs and hybrid manufacturing approaches that combine 3D printing with CNC machining. By utilizing composite filaments and innovative fabrication techniques, 3D printing continues to redefine drone production, enabling rapid prototyping and on-demand customization. The use of carbon-fiber-infused PLA, PETG, and nylon has demonstrated outstanding improvements in strength-to-weight performance, structural durability, and dimensional stability—key factors for enhancing flight endurance, maneuverability, and payload capacity in UAV applications. These composite materials also support the integration of embedded electronics and functional features, reinforcing their suitability for high-performance drone parts. Looking forward, future research should explore the potential of nanocomposite filaments not as a replacement but as a complementary advancement to existing composites. These materials offer opportunities for further enhancing multifunctionality, such as thermal/electrical conductivity and in situ sensing, which could expand UAV capabilities significantly. Full article
Show Figures

Figure 1

26 pages, 3061 KiB  
Article
Three-Dimensional-Printed Isoniazid Chewable Gels for On-Demand Latent Tuberculosis Treatment in Children
by Amanda de O. E. Moreira, Lêda Maria S. Azevedo Neta, Márcia Pietroluongo, Ana Paula dos S. Matos, Beatriz B. Correa, Beatriz H. Ortiz, André da S. Guimarães, Marcio Nele, Carollyne M. Santos, Ana Elizabeth C. Fai, Maria Helena Gonçalves, Flávio M. Shimizu, Monique S. Dos Santos, Rosemberg B. Moure, Diogo D. Nascimento, André Luis de A. Guimarães, Saint Clair dos S. G. Junior, Alessandra L. Vicosa and Lucio M. Cabral
Pharmaceutics 2025, 17(5), 658; https://doi.org/10.3390/pharmaceutics17050658 - 17 May 2025
Viewed by 829
Abstract
Background/Objectives: Pediatric drug administration is hindered by difficulties in swallowing conventional medications and the unpalatable taste of many drugs. Among diseases highlighting the need for improved pediatric delivery, tuberculosis (TB) stands out. One form of the disease is latent TB infection (LTBI), [...] Read more.
Background/Objectives: Pediatric drug administration is hindered by difficulties in swallowing conventional medications and the unpalatable taste of many drugs. Among diseases highlighting the need for improved pediatric delivery, tuberculosis (TB) stands out. One form of the disease is latent TB infection (LTBI), which is concerning in children. Effective LTBI treatment is crucial for prevention, with isoniazid (INH) widely used for its proven efficacy and safety. This study aims to develop innovative 3D-printed chewable gels containing INH for LTBI treatment. Methods: The gels were formulated using gelatin and carrageenan gum, sugar-free sweeteners, and flavoring. Two batches were prepared, and using 3D printing (3DP) with a semi-solid extrusion (SSE) module, chewable gels were produced. Rheological properties were measured to assess the feasibility of 3DP-SSE, evaluating the structural integrity and adequate fluidity of the formulation. The 3D-printed chewable gels were evaluated by visual, mass, and dimensional characteristics. In addition, the water activity, texture profile, INH and degradation product content, in vitro release, and taste-masking were investigated. Results: The optimized formulation maintained suitable rheological properties for 3DP-SSE, demonstrating consistent weight, dimensions, and stability after the process. The texture achieved a balance between printing parameters and shape maintenance, and the INH presented an immediate-release profile (>85% within 30 min). The chewable gels showed an improvement in palatability compared to conventional INH tablets. Conclusions: This innovative approach offers a promising solution for pediatric LTBI treatment, as it improves efficacy, medication acceptability, and on-demand access. Full article
(This article belongs to the Special Issue 3D Printing in Personalized Drug Delivery)
Show Figures

Graphical abstract

13 pages, 2419 KiB  
Article
Enhancement of Enzyme Activity by Alternating Magnetic Field and Near-Infrared Irradiation
by Fang Wang, Yuchen Liu, Qikai Dong, Zihan Li, Senrong Liang, Tianyi Zhang, Liangtao Xu and Renjun Gao
Catalysts 2025, 15(4), 386; https://doi.org/10.3390/catal15040386 - 16 Apr 2025
Viewed by 588
Abstract
The enhancement of enzyme activity has garnered significant attention in biotransformation processes and applications. This enhancement is achieved through the use of specific nanomaterials (NMs) with unique physicochemical characteristics responsive to external stimuli. In this study, an enzyme–Fe3O4 nano-biocatalytic system [...] Read more.
The enhancement of enzyme activity has garnered significant attention in biotransformation processes and applications. This enhancement is achieved through the use of specific nanomaterials (NMs) with unique physicochemical characteristics responsive to external stimuli. In this study, an enzyme–Fe3O4 nano-biocatalytic system (NBS) was developed to enable real-time activation of enzymatic catalysis under alternating magnetic field (AMF) and near-infrared (NIR) irradiation using dual-functional Fe3O4 magnetic nanoparticles (MNPs). When exposed to an AMF, Fe3O4 MNPs generate molecular vibrations through mechanisms such as Néel or Brown relaxation while acting as a photothermal agent in response to NIR irradiation. The synergistic effect of AMF and NIR irradiation significantly enhanced energy transfer between the enzyme and Fe3O4 MNPs, resulting in a maximum 4.3-fold increase in enzyme activity. Furthermore, the system reduced aldol reaction time by 66% (from 4 h to 1.5 h) while achieving 90% product yield. Additionally, factors such as nanoparticle size and NIR power were found to play a critical role in the efficiency of this real-time regulation strategy. The results also demonstrate that the enzyme–Fe3O4 nanocomposites (NCs) significantly enhanced catalytic efficiency and reduced the reaction time for aldol reactions. This study demonstrates an efficient NBS controlled via the synergistic effects of AMF and NIR irradiation, enabling spatiotemporal control of biochemical reactions. This work also provides a breakthrough strategy for dynamic biocatalysis, with potential applications in industrial biomanufacturing, on-demand drug synthesis, and precision nanomedicine. Full article
(This article belongs to the Special Issue Enzyme Catalysis and Enzyme Engineering)
Show Figures

Figure 1

21 pages, 2081 KiB  
Article
Translation of COVID-19 Serology Test on Foil-Based Lateral Flow Chips: A Journey from Injection Molding to Scalable Roll-to-Roll Nanoimprint Lithography
by Pakapreud Khumwan, Stephan Ruttloff, Johannes Götz, Dieter Nees, Conor O’Sullivan, Alvaro Conde, Mirko Lohse, Christian Wolf, Nastasia Okulova, Janine Brommert, Richard Benauer, Ingo Katzmayr, Nikolaus Ladenhauf, Wilfried Weigel, Maciej Skolimowski, Max Sonnleitner, Martin Smolka, Anja Haase, Barbara Stadlober and Jan Hesse
Biosensors 2025, 15(4), 229; https://doi.org/10.3390/bios15040229 - 4 Apr 2025
Viewed by 797
Abstract
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions [...] Read more.
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions of devices has already been extensively demonstrated. Nevertheless, the assay option in an LFT format is largely restricted to qualitative detection of the target antigens. In this research, we surveyed the potential of UV nanoimprint lithography (UV-NIL) and extrusion coating (EC) for the high-throughput production of disposable capillary-driven, foil-based tests that allow multistep assays to be implemented for quantitative readout to address the inherent lack of on-demand fluid control and sensitivity of paper-based devices. Both manufacturing technologies operate on the principle of imprinting that enables high-volume, continuous structuring of microfluidic patterns in a roll-to-roll (R2R) production scheme. To demonstrate the feasibility of R2R-fabricated foil chips in a point-of-care biosensing application, we adapted a commercial chemiluminescence multiplex test for COVID-19 antibody detection originally developed for a capillary-driven microfluidic chip manufactured with injection molding (IM). In an effort to build a complete ecosystem for the R2R manufacturing of foil chips, we also recruited additional processes to streamline chip production: R2R biofunctionalization and R2R lamination. Compared to conventional fabrication techniques for microfluidic devices, the R2R techniques highlighted in this work offer unparalleled advantages concerning improved scalability, dexterity of seamless handling, and significant cost reduction. Our preliminary evaluation indicated that the foil chips exhibited comparable performance characteristics to the original IM-fabricated devices. This early success in assay translation highlights the promise of implementing biochemical assays on R2R-manufactured foil chips. Most importantly, it underscores the potential utilization of UV-NIL and EC as an alternative to conventional technologies for the future development in vitro diagnostics (IVD) in response to emerging point-of-care testing demands. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Graphical abstract

23 pages, 1237 KiB  
Review
Risk of Permanent Corneal Injury in Microgravity: Spaceflight-Associated Hazards, Challenges to Vision Restoration, and Role of Biotechnology in Long-Term Planetary Missions
by Jainam Shah, Joshua Ong, Ryung Lee, Alex Suh, Ethan Waisberg, C. Robert Gibson, John Berdahl and Thomas H. Mader
Life 2025, 15(4), 602; https://doi.org/10.3390/life15040602 - 4 Apr 2025
Cited by 2 | Viewed by 1033
Abstract
Human space exploration presents an unparalleled opportunity to study life in extreme environments—but it also exposes astronauts to physiological stressors that jeopardize key systems like vision. Corneal health, essential for maintaining precise visual acuity, is threatened by microgravity-induced fluid shifts, cosmic radiation, and [...] Read more.
Human space exploration presents an unparalleled opportunity to study life in extreme environments—but it also exposes astronauts to physiological stressors that jeopardize key systems like vision. Corneal health, essential for maintaining precise visual acuity, is threatened by microgravity-induced fluid shifts, cosmic radiation, and the confined nature of spacecraft living environments. These conditions elevate the risk of corneal abrasions, infections, and structural damage. In addition, Spaceflight-Associated Neuro-Ocular Syndrome (SANS)—while primarily affecting the posterior segment—has also been potentially linked to anterior segment alterations such as corneal edema and tear film instability. This review examines these ocular challenges and assesses current mitigation strategies. Traditional approaches, such as terrestrial eye banking and corneal transplantation, are impractical for spaceflight due to the limited viability of preserved tissues, surgical complexities, anesthetic risks, infection potential, and logistical constraints. The paper explores emerging technologies like 3D bioprinting and stem cell-based tissue engineering, which offer promising solutions by enabling the on-demand production of personalized corneal constructs. Complementary advancements, including adaptive protective eyewear, bioengineered tear substitutes, telemedicine, and AI-driven diagnostic tools, also show potential in autonomously managing ocular health during long-duration missions. By addressing the complex interplay of environmental stressors and biological vulnerabilities, these innovations not only safeguard astronaut vision and mission performance but also catalyze new pathways for regenerative medicine on Earth. The evolution of space-based ophthalmic care underscores the dual impact of space medicine investments across planetary exploration and terrestrial health systems. Full article
Show Figures

Figure 1

44 pages, 3282 KiB  
Review
The Future of Medicine: How 3D Printing Is Transforming Pharmaceuticals
by Jurga Bernatoniene, Jolita Stabrauskiene, Jurga Andreja Kazlauskaite, Urte Bernatonyte and Dalia Marija Kopustinskiene
Pharmaceutics 2025, 17(3), 390; https://doi.org/10.3390/pharmaceutics17030390 - 19 Mar 2025
Cited by 3 | Viewed by 4110
Abstract
Three-dimensional printing technology is transforming pharmaceutical manufacturing by shifting from conventional mass production to additive manufacturing, with a strong emphasis on personalized medicine. The integration of bioinks and AI-driven optimization is further enhancing this innovation, enabling drug production with precise dosages, tailored drug-release [...] Read more.
Three-dimensional printing technology is transforming pharmaceutical manufacturing by shifting from conventional mass production to additive manufacturing, with a strong emphasis on personalized medicine. The integration of bioinks and AI-driven optimization is further enhancing this innovation, enabling drug production with precise dosages, tailored drug-release profiles, and unique multi-drug combinations that respond to individual patient needs. This advancement is significantly impacting healthcare by accelerating drug development, encouraging innovative pharmaceutical designs, and enhancing treatment efficacy. Traditional pharmaceutical manufacturing follows a one-size-fits-all approach, which often fails to meet the specific requirements of patients with unique medical conditions. In contrast, 3D printing, coupled with bioink formulations, allows for on-demand drug production, reducing dependency on large-scale manufacturing and storage. AI-powered design and process optimization further refine dosage forms, printability, and drug release mechanisms, ensuring precision and efficiency in drug manufacturing. These advancements have the potential to lower overall healthcare costs while improving patient adherence to medication regimens. This review explores the potential, challenges, and environmental benefits of 3D pharmaceutical printing, positioning it as a key driver of next-generation personalized medicine. Full article
(This article belongs to the Special Issue Customized Pharmaceutics: Innovations for Diverse Populations)
Show Figures

Figure 1

28 pages, 8294 KiB  
Review
Additive Manufacturing Applications in Mission-Critical Operations: A Review
by Arup Dey, Olusanmi Adeniran, Monsuru Ramoni, Nita Yodo and Weilong Cong
J. Manuf. Mater. Process. 2025, 9(3), 70; https://doi.org/10.3390/jmmp9030070 - 21 Feb 2025
Cited by 2 | Viewed by 2206
Abstract
Additive manufacturing (AM) is used to fabricate complex components from a wide variety of materials in an additive manner. AM brings several benefits, such as reduced lead times, on-demand production, creation of complex customized designs without tooling requirements, and remote design sharing. However, [...] Read more.
Additive manufacturing (AM) is used to fabricate complex components from a wide variety of materials in an additive manner. AM brings several benefits, such as reduced lead times, on-demand production, creation of complex customized designs without tooling requirements, and remote design sharing. However, the use of AM for critical components is limited in large missions due to quality and reliability concerns, as is the case with many manufacturing technologies. Enhancing the acceptance of AM-built parts for mission-critical components can be achieved by producing highly reliable parts, establishing robust quality standards, and continually improving part properties. This review article comprehensively explores the diverse potential applications of AM within mission-critical operations, along with its potential benefits and the advancements needed for broader acceptance. Delving into the intersection of AM technologies and mission-critical requirements, the paper examines possible challenges of utilizing AM techniques in mission-critical components. Through an in-depth analysis of relevant studies, the article aims to provide a nuanced understanding of the current state of AM applications in mission-critical operations, offering insights into the potential benefits, limitations, and future directions for this innovative technology. The findings presented in this review are valuable for researchers, academics, and industry professionals working to advance AM technologies for mission-critical applications. Full article
Show Figures

Figure 1

22 pages, 6661 KiB  
Article
Parametric Design of Easy-Connect Pipe Fitting Components Using Open-Source CAD and Fabrication Using 3D Printing
by Abolfazl Taherzadeh Fini, Cameron K. Brooks, Alessia Romani, Anthony G. Straatman and Joshua M. Pearce
J. Manuf. Mater. Process. 2025, 9(2), 65; https://doi.org/10.3390/jmmp9020065 - 19 Feb 2025
Viewed by 1804
Abstract
The amount of non-revenue water, mostly due to leakage, is around 126 billion cubic meters annually worldwide. A more efficient wastewater management strategy would use a parametric design for on-demand, customized pipe fittings, following the principles of distributed manufacturing. To fulfill this need, [...] Read more.
The amount of non-revenue water, mostly due to leakage, is around 126 billion cubic meters annually worldwide. A more efficient wastewater management strategy would use a parametric design for on-demand, customized pipe fittings, following the principles of distributed manufacturing. To fulfill this need, this study introduces an open-source parametric design of a 3D-printable easy-connect pipe fitting that offers compatibility with different dimensions and materials of pipes available on the market. Custom pipe fittings were 3D printed using a RepRap-class fused filament 3D printer, with polylactic acid (PLA), polyethylene terephthalate glycol (PETG), acrylonitrile styrene acrylate (ASA), and thermoplastic elastomer (TPE) as filament feedstocks for validation. The 3D-printed connectors underwent hydrostatic water pressure tests to ensure that they met the standards for residential, agricultural, and renewable energy production applications. All the printed parts passed numerous hydrostatic pressure tests. PETG couplings can tolerate up to 4.551 ± 0.138 MPa of hydrostatic pressure, which is eight times greater than the highest standard water pressure in the residential sector. Based on the economic analysis, the cost of 3D printing a pipe coupling is from three to seventeen times lower than purchasing a commercially available pipe fitting of a similar size. The new open-source couplings demonstrate particular potential for use in developing countries and remote areas. Full article
Show Figures

Graphical abstract

26 pages, 4274 KiB  
Article
Exploring Manipulated Prescribed Medicines for Novel Leads in 3D Printed Personalized Dosage Forms
by Wouter Pannekoek, Eveline E. M. van Kampen, Frank van Tienen, P. Hugo M. van der Kuy and Elisabeth J. Ruijgrok
Pharmaceutics 2025, 17(2), 271; https://doi.org/10.3390/pharmaceutics17020271 - 18 Feb 2025
Viewed by 1019
Abstract
Background: On-demand personalized drug production is currently not addressed with large-scale drug manufacturing. In our study, we focused primarily on identifying possible active pharmaceutical ingredients (APIs) for 3D Printing (3DP) in the current healthcare setting. Methods: We conducted a retrospective cross-sectional study [...] Read more.
Background: On-demand personalized drug production is currently not addressed with large-scale drug manufacturing. In our study, we focused primarily on identifying possible active pharmaceutical ingredients (APIs) for 3D Printing (3DP) in the current healthcare setting. Methods: We conducted a retrospective cross-sectional study in the Netherlands using three different sources; community pharmacies (n = 5), elderly care homes (n = 3), and the Erasmus MC Sophia Children’s Hospital. The primary endpoint was the percentage of prescriptions of medication manipulated before administration, thereby being a candidate for 3DP. Around a million prescriptions were analyzed in our study. Results: This study shows that around 3.0% of the prescribed drugs dispensed by Dutch community pharmacies were manipulated before administration, while around 10.5% of the prescribed drugs in the Erasmus MC Sophia Children’s Hospital were manipulated prior to administration. Conclusions: With our study, we show that the most manipulated drugs come from the groups of constipation, psychopharmaceutical, cardiovascular, and anti-infectant drugs. Successful introduction of a compounded API drug by 3DP does not only rely on the API, but it also comes with an optimal balance between technical, economic as well as societal impact factors. Our study gives direction for potential future research on the introduction of 3DP of medicine in the healthcare setting. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of 3D Printing)
Show Figures

Figure 1

Back to TopTop