Three-Dimensional-Printed Isoniazid Chewable Gels for On-Demand Latent Tuberculosis Treatment in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Intermediate Product
2.3. Rheological Analysis of the Intermediate Products
2.4. pH Determination of the Intermediate Product
2.5. FTIR Spectroscopy Characterization
2.6. Differential Scanning Calorimetry (DSC) Analysis
2.7. Preparation of 3D-Printed Chewable Gels
2.8. Visual, Sensory, Mass, and Dimensional Characterization of Chewable Gels
2.9. Measurement of Water Activity
2.10. Texture Profile Analysis (TPA) of Chewable Gels
2.11. Low-Vacuum Scanning Electron Microscopy (LVSEM)
2.12. Determination of the Isoniazid Content in the Chewable Gels
2.13. Determination of Degradation Products in the Chewable Gels
2.14. In Vitro Drug Release Study
2.15. Electronic Tongue—In Vitro Taste-Masking Test
2.16. Statistical Analysis
3. Results
3.1. Preparation of the Intermediate Product Formulation
3.2. Rheological Analysis of the Intermediate Products
3.2.1. Temperature Ramp and Shear Rate Sweep
3.2.2. Simulation of Printing
3.3. Physical, Chemical, and Thermal Properties of Intermediate Products
3.4. Preparation and Characterization of 3D-Printed Chewable Gels
3.4.1. Three-Dimensional Printing of Chewable Gels
3.4.2. Visual, Sensory, Mass, and Dimensional Characterization of Chewable Gels
3.4.3. Evaluation of Water Activity and Isoniazid and Degradation Product Contents in Chewable Gels
3.4.4. Evaluation of Texture Profile Analysis
3.4.5. Low-Vaccum Scanning Electron Microscopy
3.4.6. In Vitro Drug Release Study
3.4.7. Electronic Tongue—In Vitro Taste-Masking Test Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3DP | Three-dimensional printing |
SSE | Semi-solid extrusion |
TB | Tuberculosis |
LTBI | Latent tuberculosis infection |
INH | Isoniazida |
LVR | Linear viscoelastic range |
DSC | Differential scanning calorimetry |
PCA | Principal Component Analysis |
HPLC | High-performance liquid chromatography |
AW | Water activity |
LVSEM | Low-vacuum scanning electron microscopy |
USP | United States Pharmacopeia |
TPA | Texture profile analysis |
UV | Ultraviolet rays |
UV/VIS | Ultraviolet visible spectroscopy |
API | Active pharmaceutical ingredient |
SD | Standard deviation |
CAD | Computer-Aided Design |
ATR/FTIR | Attenuated total reflectance Fourier-transform infrared |
STL | Standard Tessellation Language |
G′ | Storage modulus |
G″ | Loss modulus |
References
- Nahata, M.C.; Allen, L.V. Extemporaneous Drug Formulations. Clin. Ther. 2008, 30, 2112–2119. [Google Scholar] [CrossRef]
- Strickley, R.G. Pediatric Oral Formulations: An Updated Review of Commercially Available Pediatric Oral Formulations Since 2007. J. Pharm. Sci. 2019, 108, 1335–1365. [Google Scholar] [CrossRef]
- Carmack, M.; Hwang, T.; Bourgeois, F.T. Pediatric Drug Policies Supporting Safe and Effective Use of Therapeutics in Children: A Systematic Analysis. Health Aff. 2020, 39, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, M.B.; Lindsay, H.; Allen-Rhoades, W.; Foster, J.H. The Best Pharmaceuticals for Children Act and Pediatric Research Equity Act Reach the Age of Majority—An Oncology Perspective. Pediatr. Blood Cancer 2021, 68, e28871. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shi, F.H.; Huang, S.Y.; Zhang, S.G.; Chen, H.W. The Best Pharmaceuticals for Children—What Can We Do? Transl. Pediatr. 2020, 9, 862–892. [Google Scholar] [CrossRef]
- Moreira, M.; Sarraguça, M. How Can Oral Paediatric Formulations Be Improved? A Challenge for the XXI Century. Int. J. Pharm. 2020, 590, 119905. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, V.; Reynier, J.P. La Galénique Au Service de La Sécurité Chez l’enfant. Therapies 2004, 59, 599–601. [Google Scholar] [CrossRef]
- World Health Ornanization. Global Tuberculosis Report 2024; World Health Organization: Geneva, Switzerland, 2024; Volume 2024, ISBN 978-92-4-010153-1. [Google Scholar]
- Tayal, A.; Kabra, S.K. Tuberculosis Preventive Treatment. Indian J. Pediatr. 2024, 91, 823–829. [Google Scholar] [CrossRef]
- Viswanathan, V.K. Latent TB Infection in Children and Adolescents: Scientific Rationale and Programmatic Management. Indian J. Tuberc. 2023, 70, S35–S38. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Programme (GTB). In Global Tuberculosis Report 2024; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Peck, G.M.; Staat, M.A.; Huang, F.S.; Khalil, N.; Boyce, C.; Kohlrieser, C.M.; Schlaudecker, E.P. Adverse Events Associated with Weekly Short Course Isoniazid and Rifapentine Therapy in Pediatric Patients with Latent Tuberculosis: A Chart and Literature Review. Pediatr. Pulmonol. 2021, 56, 2695–2699. [Google Scholar] [CrossRef]
- Denti, P.; Wasmann, R.E.; Van Rie, A.; Winckler, J.; Bekker, A.; Rabie, H.; Hesseling, A.C.; Van Der Laan, L.E.; Gonzalez-Martinez, C.; Zar, H.J.; et al. Optimizing Dosing and Fixed-Dose Combinations of Rifampicin, Isoniazid, and Pyrazinamide in Pediatric Patients With Tuberculosis: A Prospective Population Pharmacokinetic Study. Clin. Infect. Dis. 2022, 75, 141–151. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Program. In The End TB Strategy; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization. Innovative Delivery Systems for Technology Landscape; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Goyanes, A.; Madla, C.M.; Umerji, A.; Duran Piñeiro, G.; Giraldez Montero, J.M.; Lamas Diaz, M.J.; Gonzalez Barcia, M.; Taherali, F.; Sánchez-Pintos, P.; Couce, M.L.; et al. Automated Therapy Preparation of Isoleucine Formulations Using 3D Printing for the Treatment of MSUD: First Single-Centre, Prospective, Crossover Study in Patients. Int. J. Pharm. 2019, 567, 118497. [Google Scholar] [CrossRef]
- Gerrard, S.E.; Walsh, J.; Bowers, N.; Salunke, S.; Hershenson, S. Innovations in Pediatric Drug Formulations and Administration Technologies for Low Resource Settings. Pharmaceutics 2019, 11, 518. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; Müller, L.; Sarwinska, D.; Seidlitz, A.; Sznitowska, M.; Weitschies, W. 3D Printing of Mini Tablets for Pediatric Use. Pharmaceuticals 2021, 14, 143. [Google Scholar] [CrossRef]
- Herrada-Manchón, H.; Rodríguez-González, D.; Alejandro Fernández, M.; Suñé-Pou, M.; Pérez-Lozano, P.; García-Montoya, E.; Aguilar, E. 3D Printed Gummies: Personalized Drug Dosage in a Safe and Appealing Way. Int. J. Pharm. 2020, 587, 119687. [Google Scholar] [CrossRef]
- Parhi, R.; Jena, G.K. An Updated Review on Application of 3D Printing in Fabricating Pharmaceutical Dosage Forms. Drug Deliv. Transl. Res. 2021, 12, 2428–2462. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tian, Y.; Zhang, E.; Gao, X.; Zhang, H.; Liu, N.; Han, X.; Sun, Y.; Wang, Z.; Zheng, A. Semisolid Extrusion 3D Printing of Propranolol Hydrochloride Gummy Chewable Tablets: An Innovative Approach to Prepare Personalized Medicine for Pediatrics. AAPS PharmSciTech 2022, 23, 166. [Google Scholar] [CrossRef]
- Sierra-Vega, N.O.; Ashraf, M.; O’Connor, T.; Kopcha, M.; Prima, M.D.; Coburn, J.; Zidan, A. Emerging 3D Printing Technologies for Solid Oral Dosage Forms: Processes, Materials and Analytical Tools for Real-Time Assessment. Int. J. Pharm. 2025, 673, 125415. [Google Scholar] [CrossRef]
- Seoane-Viaño, I.; Trenfield, S.J.; Basit, A.W.; Goyanes, A. Translating 3D Printed Pharmaceuticals: From Hype to Real-World Clinical Applications. Adv. Drug Deliv. Rev. 2021, 174, 553–575. [Google Scholar] [CrossRef]
- Youssef, S.H.; Abdella, S.; Garg, S. Development and Validation of a Novel Tool for Assessing the Environmental Impact of 3D Printing Technologies: A Pharmaceutical Perspective. Pharmaceutics 2022, 14, 933. [Google Scholar] [CrossRef]
- Díaz-Torres, E.; Suárez-González, J.; Monzón-Rodríguez, C.N.; Santoveña-Estévez, A.; Fariña, J.B. Characterization and Validation of a New 3D Printing Ink for Reducing Therapeutic Gap in Pediatrics through Individualized Medicines. Pharmaceutics 2023, 15, 1642. [Google Scholar] [CrossRef] [PubMed]
- Eduardo, D.T.; Ana, S.E.; José, B.F. A Micro-Extrusion 3D Printing Platform for Fabrication of Orodispersible Printlets for Pediatric Use. Int. J. Pharm. 2021, 605, 120854. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Basit, A.W.; Gaisford, S. The Role of Semi-Solid Extrusion Printing in Clinical Practice. In AAPS Advances in the Pharmaceutical Sciences Series; Springer: Cham, Switzerland, 2018; Volume 31, pp. 133–151. [Google Scholar]
- Alvarado-Orozco, J.M.; Campanella, O.H. Evaluation of Rheology and Printability of 3D Printing Nutritious Food with Complex Formulations. Addit. Manuf. 2022, 58, 103030. [Google Scholar] [CrossRef]
- Bom, S.; Ribeiro, R.; Ribeiro, H.M.; Santos, C.; Marto, J. On the Progress of Hydrogel-Based 3D Printing: Correlating Rheological Properties with Printing Behaviour. Int. J. Pharm. 2022, 615, 121506. [Google Scholar] [CrossRef] [PubMed]
- Hartel, R.W.; Von Elbe, J.H.; Hofberger, R. Confectionery Science and Technology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Gunes, R.; Palabiyik, I.; Konar, N.; Said Toker, O. Soft Confectionery Products: Quality Parameters, Interactions with Processing and Ingredients. Food Chem. 2022, 385, 132735. [Google Scholar] [CrossRef]
- Mignon, A.; De Belie, N.; Dubruel, P.; Van Vlierberghe, S. Superabsorbent Polymers: A Review on the Characteristics and Applications of Synthetic, Polysaccharide-Based, Semi-Synthetic and ‘Smart’ Derivatives. Eur. Polym. J. 2019, 117, 165–178. [Google Scholar] [CrossRef]
- Huang, M.; Mao, Y.; Mao, Y.; Yang, H. Xylitol and Maltitol Improve the Rheological Property of Kappa-Carrageenan. Foods 2022, 11, 51. [Google Scholar] [CrossRef]
- United States Pharmacopeia. Dietary Supplement Monographs. Dietary Supplement Monographs, Ascorbic Acid Chewable Gels; United States Pharmacopeia: Rockville, MD, USA, 2024. [Google Scholar] [CrossRef]
- Islam, F.; Rahman, E.; Tarannum, T.; Islam, N. Assessment of Chitosan-PVA Hydrogels Infused with Marine Collagen Peptides for Potential Wound Healing Applications. Compos. Part C Open Access 2024, 15, 100528. [Google Scholar] [CrossRef]
- Figiel, A.; Tajner-Czopek, A. The Effect of Candy Moisture Content on Texture. J. Foodserv. 2006, 17, 189–195. [Google Scholar] [CrossRef]
- Abe, M.; Furuichi, M.; Ishimitsu, T.; Tojo, A. Analysis of Purple Urine Bag Syndrome by Low Vacuum Scanning Electron Microscopy. Med. Mol. Morphol. 2022, 55, 123–130. [Google Scholar] [CrossRef]
- United States Pharmacopeia and National Formulary (USP 43–NF 38). Isoniazid Tablets; United States Pharmacopeial Convention: Rockville, MD, USA, 2020. [Google Scholar] [CrossRef]
- Braunger, M.L.; Fier, I.; Shimizu, F.M.; de Barros, A.; Rodrigues, V.; Riul, A. Influence of the Flow Rate in an Automated Microfluidic Electronic Tongue Tested for Sucralose Differentiation. Sensors 2020, 20, 6194. [Google Scholar] [CrossRef]
- Machado, J.C.; Shimizu, F.M.; Ortiz, M.; Pinhatti, M.S.; Carr, O.; Guterres, S.S.; Oliveira, O.N.; Volpato, N.M. Efficient Praziquantel Encapsulation into Polymer Microcapsules and Taste Masking Evaluation Using an Electronic Tongue. Bull. Chem. Soc. Jpn. 2018, 91, 865–874. [Google Scholar] [CrossRef]
- Guimarães, T.F.; Vital, I.C.F.; de Sousa, E.G.R.; Boniatti, J.; Bandini, T.B.; Carr, O.; Oliveira, O.N.; Shimizu, F.M.; da Fonseca, L.B.; Viçosa, A.L. Investigation of Chloroquine Resinate Feasibility and In Vitro Taste Masking Evaluation for Pediatric Formulations. AAPS PharmSciTech 2022, 23, 69. [Google Scholar] [CrossRef]
- Shimizu, F.M.; de Barros, A.; Braunger, M.L.; Gaal, G.; Riul, A. Information Visualization and Machine Learning Driven Methods for Impedimetric Biosensing. TrAC Trends Anal. Chem. 2023, 165, 117115. [Google Scholar] [CrossRef]
- Pimparade, M.B.; Morott, J.T.; Park, J.B.; Kulkarni, V.I.; Majumdar, S.; Murthy, S.N.; Lian, Z.; Pinto, E.; Bi, V.; Durig, T.; et al. Development of Taste Masked Caffeine Citrate Formulations Utilizing Hot Melt Extrusion Technology and in Vitro-in Vivo Evaluations. Int. J. Pharm. 2015, 487, 167. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and Gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557. [Google Scholar] [CrossRef]
- Zambuto, S.G.; Kolluru, S.S.; Ferchichi, E.; Rudewick, H.F.; Fodera, D.M.; Myers, K.M.; Zustiak, S.P.; Oyen, M.L. Evaluation of Gelatin Bloom Strength on Gelatin Methacryloyl Hydrogel Properties. J. Mech. Behav. Biomed. Mater. 2024, 154, 106509. [Google Scholar] [CrossRef] [PubMed]
- Al-Nimry, S.; Dayah, A.A.; Hasan, I.; Daghmash, R. Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar. Drugs 2021, 19, 145. [Google Scholar] [CrossRef]
- Djagny, K.B.; Wang, Z.; Xu, S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Crit. Rev. Food Sci. Nutr. 2001, 41, 481–492. [Google Scholar] [CrossRef]
- Mooradian, A.D.; Smith, M.; Tokuda, M. The Role of Artificial and Natural Sweeteners in Reducing the Consumption of Table Sugar: A Narrative Review. Clin. Nutr. ESPEN 2017, 18, 1–8. [Google Scholar] [CrossRef]
- Rapaille, A.; Goosens, J.; Heume, M. Sugar Alcohols. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 5665–5671. [Google Scholar] [CrossRef]
- Liang, E.; Wang, Z.; Li, X.; Wang, S.; Han, X.; Chen, D.; Zheng, A. 3D Printing Technology Based on Versatile Gelatin-Carrageenan Gel System for Drug Formulations. Pharmaceutics 2023, 15, 1218. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.51; Li, L. Evaporation Behaviour of Water and Its Plasticizing Effect in Modified Poly(Vinyl Alcohol) Systems. Polym. Int. 2003, 52, 1820–1826. [Google Scholar] [CrossRef]
- Mugheirbi, N.A.; Mosquera-Giraldo, L.I.; Borca, C.H.; Slipchenko, L.V.; Taylor, L.S. Phase Behavior of Drug-Hydroxypropyl Methylcellulose Amorphous Solid Dispersions Produced from Various Solvent Systems: Mechanistic Understanding of the Role of Polymer Using Experimental and Theoretical Methods. Mol. Pharm. 2018, 15, 3236–3251. [Google Scholar] [CrossRef]
- Ge, H.; Wu, Y.; Woshnak, L.L.; Mitmesser, S.H. Effects of Hydrocolloids, Acids and Nutrients on Gelatin Network in Gummies. Food Hydrocoll. 2021, 113, 106549. [Google Scholar] [CrossRef]
- Schwab, A.; Levato, R.; D’Este, M.; Piluso, S.; Eglin, D.; Malda, J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem. Rev. 2020, 120, 10850. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lu, Y.; Zhang, J. A Comprehensive Investigation of the Viscoelasticity and Time-Dependent Yielding Transition of Waxy Crude Oils. J. Rheol. 2018, 62, 527–541. [Google Scholar] [CrossRef]
- Mashhadi, S.M.A.; Yufit, D.; Liu, H.; Hodgkinson, P.; Yunus, U. Synthesis and Structural Characterization of Cocrystals of Isoniazid and Cinnamic Acid Derivatives. J. Mol. Struct. 2020, 1219, 128621. [Google Scholar] [CrossRef]
- Pirayavaraporn, C.; Rades, T.; Tucker, I.G. Determination of Moisture Content in Relation to Thermal Behaviour and Plasticization of Eudragit RLPO. Int. J. Pharm. 2012, 422, 68–74. [Google Scholar] [CrossRef]
- Adam, M.; Dobiáš, P.; Bajerová, P.; Ventura, K. Comparison of Various Methods for Determination of Water in White Yoghurts. Food Chem. 2009, 115, 1069–1073. [Google Scholar] [CrossRef]
- Artiaga, R.; Naya, S.; García, A.; Barbadillo, F.; García, L. Subtracting the Water Effect from DSC Curves by Using Simultaneous TGA Data. Thermochim. Acta 2005, 428, 137–139. [Google Scholar] [CrossRef]
- Akalin, E.; Akyuz, S. Vibrational Structure of Free and Hydrogen Bonded Complexes of Isoniazid: FT-IR, FT-Raman and DFT Study. J. Mol. Struct. 2007, 834–836, 492–497. [Google Scholar] [CrossRef]
- Saifullah, B.; El Zowalaty, M.E.; Arulselvan, P.; Fakurazi, S.; Webster, T.J.; Geilich, B.M.; Hussein, M.Z. Synthesis, Characterization, and Efficacy of Antituberculosis Isoniazid Zinc Aluminum-Layered Double Hydroxide Based Nanocomposites. Int. J. Nanomed. 2016, 11, 3225–3237. [Google Scholar] [CrossRef]
- Isoniazid|C6H7N3O|CID 3767—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Isoniazid (accessed on 27 January 2025).
- Mushtaq, R.T.; Iqbal, A.; Wang, Y.; Rehman, M.; Petra, M.I. Investigation and Optimization of Effects of 3D Printer Process Parameters on Performance Parameters. Materials 2023, 16, 3392. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhao, H.; Wen, X.; Lin, L.; Schlarb, A.K.; Shi, X. Optimization of 3D Printing Parameters for High-Performance Biodegradable Materials. J. Appl. Polym. Sci. 2021, 138, 50782. [Google Scholar] [CrossRef]
- Zhang, J.; Thakkar, R.; Zhang, Y.; Maniruzzaman, M. Structure-Function Correlation and Personalized 3D Printed Tablets Using a Quality by Design (QbD) Approach. Int. J. Pharm. 2020, 590, 119945. [Google Scholar] [CrossRef]
- Milliken, R.L.; Quinten, T.; Andersen, S.K.; Lamprou, D.A. Application of 3D Printing in Early Phase Development of Pharmaceutical Solid Dosage Forms. Int. J. Pharm. 2024, 653, 123902. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Han, X.; Hong, X.; Li, X.; Zhang, H.; Li, M.; Wang, Z.; Zheng, A. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics 2023, 15, 416. [Google Scholar] [CrossRef]
- Ako, K. Influence of Elasticity on the Syneresis Properties of κ-Carrageenan Gels. Carbohydr. Polym. 2015, 115, 408–414. [Google Scholar] [CrossRef]
- Bagal-Kestwal, D.R.; Pan, M.H.; Chiang, B.H. Properties and Applications of Gelatin, Pectin, and Carrageenan Gels. In Bio Monomers for Green Polymeric Composite Materials; Wiley: Hoboken, NJ, USA, 2019; pp. 117–140. [Google Scholar] [CrossRef]
- United States Pharmacopeia (USP) and the National Formulary (NF). United States Pharmacopeia (2024) USP-NF; United States Pharmacopeia: Rockville, MD, USA, 2024. [Google Scholar]
- ICH Q8 (R2) Pharmaceutical Development—Scientific Guideline|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/ich-q8-r2-pharmaceutical-development-scientific-guideline (accessed on 27 January 2025).
- Palmeira, M.; Leticia, B.; Rodrigues, N.C. Quality by Design (Qbd) como Ferramenta para Otimização dos Processos Farmacêuticos. Infarma—Ciências Farm. 2017, 29, 5–12. [Google Scholar] [CrossRef]
- Favero, J.L.; Cardozo, N.S.M.; Secchi, A.R.; Jasak, H. Simulation of Free Surface Viscoelastic Fluid Flow Using the ViscoelasticInterFoam Solver. Comput. Aided Chem. Eng. 2010, 28, 31–36. [Google Scholar] [CrossRef]
- Periche, A.; Heredia, A.; Escriche, I.; Andrés, A.; Castelló, M.L. Optical, Mechanical and Sensory Properties of Based-Isomaltulose Gummy Confections. Food Biosci. 2014, 7, 37–44. [Google Scholar] [CrossRef]
- Allen, L. V Quality Control: Water Activity Considerations for Beyond-Use Dates. Int. J. Pharm. Compd. 2024, 28, 376–381. [Google Scholar] [PubMed]
- Palabiyik, I.; Güleri, T.; Gunes, R.; Öner, B.; Toker, O.S.; Konar, N. A Fundamental Optimization Study on Chewing Gum Textural and Sensorial Properties: The Effect of Ingredients. Food Struct. 2020, 26, 100155. [Google Scholar] [CrossRef]
- Rollas, S.; Küçükgüzel, Ş.G. Biological Activities of Hydrazone Derivatives. Molecules 2007, 12, 1910–1939. [Google Scholar] [CrossRef]
- Merritt, A.D.; Fetter, B.F. Toxic Hepatic Necrosis (Hepatitis) Due to Isoniazid: Report of a Case with Cirrhosis and Death Due to Hemorrhage from Esophageal Varices. Ann. Intern. Med. 1959, 50, 804–810. [Google Scholar] [CrossRef]
- Kabbara, W.K.; Sarkis, A.T.; Saroufim, P.G. Acute and Fatal Isoniazid-Induced Hepatotoxicity: A Case Report and Review of the Literature. Case Rep. Infect. Dis. 2016, 2016, 3617408. [Google Scholar] [CrossRef]
- Al Hagbani, T.; Nazzal, S. Development of Postcompressional Textural Tests to Evaluate the Mechanical Properties of Medicated Chewing Gum Tablets with High Drug Loadings. J. Texture Stud. 2018, 49, 30–37. [Google Scholar] [CrossRef]
- Adeleke, O.A.; Abedin, S. Characterization of Prototype Gummy Formulations Provides Insight into Setting Quality Standards. AAPS PharmSciTech 2024, 25, 155. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, F.B.; Li, Y.C.; Shi, X.D.; Yang, Y.W.; Wang, M. Effect of Peach Gum Polysaccharide on the Rheological and 3D Printing Properties of Gelatin-Based Functional Gummy Candy. Int. J. Biol. Macromol. 2023, 253, 127186. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Ghazal, A.F.; Chu, Z.; Luo, Z. Development of 3D Printed K-Carrageenan-Based Gummy Candies Modified by Fenugreek Gum: Correlating 3D Printing Performance with Sol-Gel Transition. Int. J. Biol. Macromol. 2024, 265, 130865. [Google Scholar] [CrossRef]
- Le, H.; Wang, X.; Wei, Y.; Zhao, Y.; Zhang, J.; Zhang, L. Making Polyol Gummies by 3D Printing: Effect of Polyols on 3D Printing Characteristics. Foods 2022, 11, 874. [Google Scholar] [CrossRef] [PubMed]
- Agência Nacional de Vigilância Sanitária—Anvisa INSTRUÇÃO NORMATIVA—IN No 10, DE 29 DE SETEMBRO DE 2016. Available online: http://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=30/09/2016&jornal=1&pagina=98&totalArquivos=200 (accessed on 29 January 2025).
- Rice, T.; Zannini, E.; Arendt, E.K.; Coffey, A. A Review of Polyols–Biotechnological Production, Food Applications, Regulation, Labeling and Health Effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef] [PubMed]
- Keating, A.V.; Soto, J.; Tuleu, C.; Forbes, C.; Zhao, M.; Craig, D.Q.M. Solid State Characterisation and Taste Masking Efficiency Evaluation of Polymer Based Extrudates of Isoniazid for Paediatric Administration. Int. J. Pharm. 2018, 536, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Keating, A.V.; Soto, J.; Forbes, C.; Zhao, M.; Craig, D.Q.M.; Tuleu, C. Multi-Methodological Quantitative Taste Assessment of Anti-Tuberculosis Drugs to Support the Development of Palatable Paediatric Dosage Forms. Pharmaceutics 2020, 12, 369. [Google Scholar] [CrossRef]
- Rodríguez-Pombo:, L.; Awad, A.; Basit, A.W.; Alvarez-Lorenzo, C.; Goyanes, A. Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design. Pharmaceutics 2022, 14, 1732. [Google Scholar] [CrossRef]
Materials | Placebo (%) | INH (%) |
---|---|---|
INH | - | 5.00 |
Carrageenan gum | 1.00 | 1.00 |
Gelatin | 3.00 | 3.00 |
Xylitol 1 a | 3.00 | 3.00 |
Xylitol 2 | 23.50 | 18.50 |
Maltitol syrup | 46.50 | 46.50 |
Strawberry flavor | 0.50 | 0.50 |
Purified water | 22.50 | 22.50 |
Parameter | Value |
---|---|
Model | Cylinder (selected STL file) |
Speed | 10 mm·s−1 |
Virtual size | 12 × 12 × 5.6 mm |
Nozzle diameter | 1.2 mm |
Layer height | 0.8 mm |
Number of layers | 7 |
Fill density | 40% |
Fill pattern | Rectilinear |
Batch | Width Average (mm) | Width SD (mm) | Height Average (mm) | Height SD (mm) |
---|---|---|---|---|
INH batch 1 | 11.22 | ±0.51 | 6.62 | ±0.43 |
INH batch 2 | 11.39 | ±0.37 | 6.64 | ±0.28 |
Parameter | Placebo | INH Batches |
---|---|---|
Hardness (N) | 2.870 ± 0.68 | 2.200 ± 0.46 |
Adhesiveness (mJ) | 0.426 ± 0.06 | 0.426 ± 0.06 |
Cohesiveness | 0.196 ± 0.01 | 0.195 ± 0.01 |
Elasticity | 4.554 ± 0.39 | 5.029 ± 0.53 |
Chewiness | 2.595 ± 0.75 | 2.153 ± 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, A.d.O.E.; Neta, L.M.S.A.; Pietroluongo, M.; Matos, A.P.d.S.; Correa, B.B.; Ortiz, B.H.; Guimarães, A.d.S.; Nele, M.; Santos, C.M.; Fai, A.E.C.; et al. Three-Dimensional-Printed Isoniazid Chewable Gels for On-Demand Latent Tuberculosis Treatment in Children. Pharmaceutics 2025, 17, 658. https://doi.org/10.3390/pharmaceutics17050658
Moreira AdOE, Neta LMSA, Pietroluongo M, Matos APdS, Correa BB, Ortiz BH, Guimarães AdS, Nele M, Santos CM, Fai AEC, et al. Three-Dimensional-Printed Isoniazid Chewable Gels for On-Demand Latent Tuberculosis Treatment in Children. Pharmaceutics. 2025; 17(5):658. https://doi.org/10.3390/pharmaceutics17050658
Chicago/Turabian StyleMoreira, Amanda de O. E., Lêda Maria S. Azevedo Neta, Márcia Pietroluongo, Ana Paula dos S. Matos, Beatriz B. Correa, Beatriz H. Ortiz, André da S. Guimarães, Marcio Nele, Carollyne M. Santos, Ana Elizabeth C. Fai, and et al. 2025. "Three-Dimensional-Printed Isoniazid Chewable Gels for On-Demand Latent Tuberculosis Treatment in Children" Pharmaceutics 17, no. 5: 658. https://doi.org/10.3390/pharmaceutics17050658
APA StyleMoreira, A. d. O. E., Neta, L. M. S. A., Pietroluongo, M., Matos, A. P. d. S., Correa, B. B., Ortiz, B. H., Guimarães, A. d. S., Nele, M., Santos, C. M., Fai, A. E. C., Gonçalves, M. H., Shimizu, F. M., Dos Santos, M. S., Moure, R. B., Nascimento, D. D., Guimarães, A. L. d. A., Junior, S. C. d. S. G., Vicosa, A. L., & Cabral, L. M. (2025). Three-Dimensional-Printed Isoniazid Chewable Gels for On-Demand Latent Tuberculosis Treatment in Children. Pharmaceutics, 17(5), 658. https://doi.org/10.3390/pharmaceutics17050658