Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = oil debris

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4466 KiB  
Article
An Oil Debris Analysis Method of Gearbox Condition Monitoring Based on an Improved Multi-Variable Grey Prediction Model
by Bo Wang and Yizhong Wu
Machines 2025, 13(8), 664; https://doi.org/10.3390/machines13080664 - 29 Jul 2025
Viewed by 184
Abstract
Accurate oil debris analysis and wear monitoring of a gearbox are essential to ensure its stable and reliable operation. Element types of wear debris and their changes in the lubrication oil of the gearbox can be monitored by spectral analysis. However, it is [...] Read more.
Accurate oil debris analysis and wear monitoring of a gearbox are essential to ensure its stable and reliable operation. Element types of wear debris and their changes in the lubrication oil of the gearbox can be monitored by spectral analysis. However, it is still difficult to identify wear parts of the gearbox due to the complex composition of elements of wear debris. An improved multi-variable grey prediction model by incorporating a multi-objective genetic algorithm (MOGA-GM(1, N)) is proposed to evaluate weight coefficients of element concentrations of wear debris in the lubrication oil of the gearbox. Moreover, a wear growth rate of each element in the lubrication oil is proposed as an index for oil debris analysis to analyze the multi-variable correlation between the common element of iron (Fe) and other related elements of wear parts of the gearbox. Oil debris analysis of the gearbox is conducted on optimal weight coefficients of related elements to the common element Fe using the MOGA-GM(1, N) model. Wear experiment results verify feasibility of the proposed oil debris analysis method. Full article
Show Figures

Figure 1

9 pages, 2576 KiB  
Article
Novel Debris Material Identification Method Based on Impedance Microsensor
by Haotian Shi, Yucai Xie and Hongpeng Zhang
Micromachines 2025, 16(7), 812; https://doi.org/10.3390/mi16070812 - 14 Jul 2025
Viewed by 270
Abstract
Oil condition monitoring can ensure the safe operation of mechanical equipment. Metal debris is full of friction information, and the identification of debris material helps to locate wear of parts. A method based on impedance analysis is proposed to identify debris material in [...] Read more.
Oil condition monitoring can ensure the safe operation of mechanical equipment. Metal debris is full of friction information, and the identification of debris material helps to locate wear of parts. A method based on impedance analysis is proposed to identify debris material in this article. The differences in permeability and conductivity result in the nonlinear variation trend of inductance–resistance amplitude with debris volume. By establishing a database of amplitude–size curves, debris information (material and size) can be obtained through impedance analysis. Based on experimental and simulation results, iron, stainless steel, aluminum, copper, and brass particles are effectively distinguished. This method is not affected by oil’s light transmittance, other impurities, and debris surface dirt and can be used to distinguish metals with similar colors. This work provides a novel solution for debris material identification, which is expected to promote the development of fault diagnosis. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

20 pages, 5652 KiB  
Article
Capacitive Sensing of Solid Debris in Used Lubricant of Transmission System: Multivariate Statistics Classification Approach
by Surapol Raadnui and Sontinan Intasonti
Lubricants 2025, 13(7), 304; https://doi.org/10.3390/lubricants13070304 - 14 Jul 2025
Viewed by 353
Abstract
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous [...] Read more.
The quantification of solid debris in used lubricating oil is essential for assessing transmission system wear and optimizing maintenance strategies. This study introduces a low-cost capacitive proximity sensor for monitoring total solid particle contamination in lubricants, with a focus on ferrous (Fe), non-ferrous (Al), and non-metallic (SiO2) debris. Controlled tests were performed using five mixing ratios of large-to-small particles (100:0, 75:25, 50:50, 25:75, and 0:100) at a fixed debris mass of 0.5 g per 25 mL of SAE 85W-140 automotive gear oil. Cubic regression analysis yielded high predictive accuracy, with average R2 values of 0.994 for Fe, 0.943 for Al, and 0.992 for SiO2. Further dimensionality reduction using Principal Component Analysis (PCA), along with Linear Discriminant Analysis (LDA) of multivariate statistical analysis, effectively classifies debris types and enhances interpretability. These results demonstrate the potential of capacitive sensing as an offline, non-invasive alternative to traditional techniques for wear debris monitoring in transmission systems. These results confirm the potential of capacitive sensing, supported by statistical modeling, as a non-invasive, cost-effective technique for offline classification and monitoring of wear debris in transmission systems. Full article
(This article belongs to the Special Issue Tribological Research on Transmission Systems)
Show Figures

Figure 1

22 pages, 16452 KiB  
Article
The Uranium Enrichment Mechanism of Hydrocarbon-Bearing Fluids in Aeolian Sedimentary Background Uranium Reservoirs of the Ordos Basin
by Tao Zhang, Jingchao Lei, Cong Hu, Xiaofan Zhou, Chao Liu, Lei Li, Qilin Wang, Yan Hao and Long Guo
Minerals 2025, 15(7), 716; https://doi.org/10.3390/min15070716 - 8 Jul 2025
Viewed by 397
Abstract
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical [...] Read more.
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical observations and hydrocarbon gas composition analysis, combined with the regional source rock and basin tectonic evolution history, reveals the characteristics of the reducing medium and the mineralization mechanisms involved in uranium ore formation. The Lower Cretaceous Luohe Formation uranium reservoirs in the study area exhibit a notable lack of common reducing media, such as carbonaceous debris and pyrite. However, the total hydrocarbon gases in the Luohe Formation range from 2967 to 20,602 μmol/kg, with an average of 8411 μmol/kg—significantly higher than those found in uranium reservoirs elsewhere in China, exceeding them by 10 to 100 times. Due to the absence of other macroscopically visible organic matter, hydrocarbon gases are identified as the most crucial reducing agent for uranium mineralization. These gases consist predominantly of methane and originate from the Triassic Yanchang Formation source rock. Faults formed during the Indosinian, Yanshanian, and Himalayan tectonic periods effectively connect the Cretaceous uranium reservoirs with the oil and gas reservoirs of the Triassic and Jurassic, providing pathways for the migration of deep hydrocarbon fluids into the Cretaceous uranium reservoirs. The multiphase tectonic evolution of the Ordos Basin since the Cenozoic has facilitated the development of faults, ensuring a sufficient supply of reducing media for uranium reservoirs in an arid sedimentary context. Additionally, the “Replenishment-Runoff-Drainage System” created by tectonic activity promotes a continuous supply of uranium- and oxygen-bearing fluids to the uranium reservoirs, resulting in a multi-energy coupling mineralization effect. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

17 pages, 4356 KiB  
Article
Impact of High-Concentration Biofuels on Cylinder Lubricating Oil Performance in Low-Speed Two-Stroke Marine Diesel Engines
by Enrui Zhao, Guichen Zhang, Qiuyu Li and Saihao Zhu
J. Mar. Sci. Eng. 2025, 13(6), 1189; https://doi.org/10.3390/jmse13061189 - 18 Jun 2025
Viewed by 1082
Abstract
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In [...] Read more.
With the implementation of the ISO 8217-2024 marine fuel standard, the use of high-concentration biofuels in ships has become viable. However, relatively few studies have been conducted on the effects of biofuels on cylinder lubrication performance in low-speed, two-stroke marine diesel engines. In this study, catering waste oil was blended with 180 cSt low-sulfur fuel oil (LSFO) to prepare biofuels with volume fractions of 24% (B24) and 50% (B50). These biofuels were evaluated in a MAN marine diesel engine under load conditions of 25%, 50%, 75%, and 90%. The experimental results showed that, at the same engine load, the use of B50 biofuel led to lower kinematic viscosity and oxidation degree of the cylinder residual oil, but higher total base number (TBN), nitration level, PQ index, and concentrations of wear elements (Fe, Cu, Cr, Mo). These results indicate that the wear of the cylinder liner–piston ring interface was more severe when using B50 biofuel than when using B24 biofuel. For the same type of fuel, as the engine load increased, the kinematic viscosity and TBN of the residual oil decreased, while the PQ index and the concentrations of Fe, Cu, Cr, and Mo increased, reflecting the aggravated wear severity. Ferrographic analysis further revealed that ferromagnetic wear particles in the oil mainly consisted of normal wear debris. When using B50 biodiesel, a small amount of fatigue wear particles were detected. These findings offer crucial insights for optimizing biofuel utilization and improving cylinder lubrication systems in marine engines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 9820 KiB  
Article
Zwitterionic Poly(sulfobetaine methacrylate) Brushes Functionalized Threads for DNA Extraction from Complex Cell Lysates
by Xianlong Shi, Liang Wu, Ke Ning, Xinmei Li, Lingke Feng, Yirong Chen and Ling Yu
Sensors 2025, 25(12), 3651; https://doi.org/10.3390/s25123651 - 11 Jun 2025
Viewed by 494
Abstract
Thread-based analytical devices are low-cost, portable, and easy to use, making them ideal for detecting various biomolecules like glucose and DNA with minimal sample requirements, while also offering environmental benefits through their biodegradability. This study explores the potential of zwitterionic poly(sulfobetaine methacrylate) brushes [...] Read more.
Thread-based analytical devices are low-cost, portable, and easy to use, making them ideal for detecting various biomolecules like glucose and DNA with minimal sample requirements, while also offering environmental benefits through their biodegradability. This study explores the potential of zwitterionic poly(sulfobetaine methacrylate) brushes modified cotton thread (PSBMA@threads) as an innovative substitute for DNA solid-phase extraction. The PSBMA polymer brushes were synthesized on cotton threads via surface-initiated atom transfer radical polymerization (SI-ATRP). The usability of the PSBMA@threads for DNA extraction from cell lysates containing cell debris, proteins, and detergents was evaluated. Characterization using SEM, FTIR, and EDS confirmed the successful functionalization with PSBMA polymer brushes. The antifouling properties of PSBMA@threads, including resistance to non-specific protein adsorption and underwater oil repellency, were assessed. The results demonstrated selective DNA capture from protein and lipid-rich lysates. Optimized extraction parameters improved DNA yield, enabling efficient extraction from tumor cells, which successfully underwent PCR amplification. Comparative experiments with commercial silica membrane-based columns revealed that PSBMA@threads exhibited comparable DNA extraction capability. The PSBMA@threads maintained extraction capability after six months of ambient storage, highlighting its stability and cost-effectiveness for nucleic acid isolation in analytical applications. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

14 pages, 4846 KiB  
Article
Study of Corrosion, Power Consumption, and Wear Characteristics of Herringbone-Grooved Fan Bearings in High-Temperature and High-Humidity Environments
by Jim-Chwen Yeh, Yu-Chang Lee, Chun-Hsiang Huang, Ming-Yuan Li and Chin-Chung Wei
Lubricants 2025, 13(6), 245; https://doi.org/10.3390/lubricants13060245 - 28 May 2025
Viewed by 554
Abstract
Fans are essential electronic components for heat dissipation in electronic systems, with fan bearings being critical parts that determine fan performance and lifespan. This paper investigates the corrosion, wear, power consumption, temperature, and vibration characteristics of a newly designed and manufactured powder metallurgy [...] Read more.
Fans are essential electronic components for heat dissipation in electronic systems, with fan bearings being critical parts that determine fan performance and lifespan. This paper investigates the corrosion, wear, power consumption, temperature, and vibration characteristics of a newly designed and manufactured powder metallurgy bearing with herringbone oil grooves for fans under high-humidity and high-temperature conditions. Corrosion experiments on iron–copper powder metallurgy bearings show that a higher environmental temperature and humidity result in greater corrosion current and reduced corrosion resistance. Bearings operated under high humidity (85% RH) and a high temperature (80 °C) for 0, 3, and 8 days, respectively, revealed that wear and corrosion occur simultaneously. The longer the operating time, the more significant the wear and corrosion. After 3 and 8 days, the lubricating oil flow in the oil grooves decreased by 9.8% and 51.5%, respectively. When bearings subjected to varying degrees of corrosion were tested under the same standard operating conditions, it was found that the bearings corroded for 3 and 8 days, resulting in a significant increase in the number of wear debris particles, higher RMS vibration values, and a power consumption increase of 6.9% and 7.8%, respectively. The percentage of iron elements on the surface gradually decreased, with the copper elements being the primary wear particles during the wear process. However, due to the increased clearance between the rotating shaft and the bearing caused by wear, the fan temperature slightly decreased with increased surface wear. Full article
(This article belongs to the Special Issue Recent Advances in Tribological Properties of Machine Tools)
Show Figures

Figure 1

10 pages, 2206 KiB  
Article
Experimental Investigation of Lubrication Performance of Rhombic-Textured TiN-Coated Surfaces Under Lubricated Conditions
by Juan Chen, Jie Zhou, Binbin Ji, Liangcai Zeng, Yang Mao and Jun Wei
Coatings 2025, 15(5), 594; https://doi.org/10.3390/coatings15050594 - 17 May 2025
Viewed by 432
Abstract
Surface texture and titanium nitride (TiN) coating have been established as effective methods for enhancing the tribological properties of mechanical friction pairs. This work aims to investigate the lubrication performance of rhombic-textured TiN-coated surfaces under oil-lubricated conditions using a pin-on-disk test mode. A [...] Read more.
Surface texture and titanium nitride (TiN) coating have been established as effective methods for enhancing the tribological properties of mechanical friction pairs. This work aims to investigate the lubrication performance of rhombic-textured TiN-coated surfaces under oil-lubricated conditions using a pin-on-disk test mode. A total of 17 sets of samples were designed, including a control sample (with no rhombic texture and no TiN coating), a TiN-coated sample and rhombic-textured TiN-coated samples. The rhombic surface texture was fabricated using the end surface of a brass bar. TiN coating deposited TiN on the textured surface. This study focuses on measuring and comparatively analyzing the lubrication load capacity, friction coefficient (COF) and binding force of TiN coatings/substrates in the pin-on-disk friction test mode. Compared with the bare control sample, a rhombic texture can enhance lubrication load-carrying capacity by generating hydrodynamic lubrication effects, thereby reducing friction. Additionally, a rhombic texture enables the mitigation of third-body wear due to wear debris. This research provides valuable insights into the design and fabrication of mechanical friction pairs with high wear resistance under oil-lubricated conditions. For lubrication property enhancement, the influence of groove depth was larger than that of the length of the rhombic side. Full article
Show Figures

Figure 1

13 pages, 3307 KiB  
Article
Preclinical Volume Retention of Fat Grafts Processed with REVOLVE™ Technology or Decantation Methods in Irradiated and Nonirradiated Wounds
by Christopher A. Campbell, Graham M. Grogan, Samantha St. Jean, Nimesh Kabaria, Maryellen Gardocki-Sandor and Patrick S. Cottler
J. Clin. Med. 2025, 14(9), 3100; https://doi.org/10.3390/jcm14093100 - 30 Apr 2025
Viewed by 442
Abstract
Background: The processing of harvested fat for transplantation is critical to fat graft performance. In breast reconstruction, larger volumes of fat are being grafted and, in some clinical cases, are being implanted within radiated tissue. This preclinical animal study evaluated the effects of [...] Read more.
Background: The processing of harvested fat for transplantation is critical to fat graft performance. In breast reconstruction, larger volumes of fat are being grafted and, in some clinical cases, are being implanted within radiated tissue. This preclinical animal study evaluated the effects of radiation on retention volume and fat graft quality after processing by decantation or REVOLVE™ technology (Allergan Aesthetics, an AbbVie Company), a filtration-based device that can process lipoaspirates and remove unwanted contaminants prior to grafting. Methods: Lipoaspirate was collected from human donors (n = 6), processed using either REVOLVE™ technology or decantation, and implanted (0.5 cc) into 60 athymic mice for 4 weeks with or without a single 35-Gy radiation dose 12 weeks prior. Volume composition, MRI, and weight-based volumetric assessment of grafted fat were performed and compared between radiated and non-radiated mice. Results: Volume composition analysis demonstrated significantly higher fat content and lower aqueous fluid with REVOLVE™ technology than with decantation, with minimal cellular debris and free oil. MRI-based and weight-based volume analysis demonstrated a significantly higher percent retention with REVOLVE™ technology than decantation in nonirradiated and irradiated sites, respectively. Pathology scoring showed a significant decrease in fibrosis within grafts processed with REVOLVE™ technology in nonirradiated sites. Conclusions: Results suggest that fat processed using REVOLVE™ technology provides better early volume retention and quality of fat grafts compared to decantation, both in healthy and radiation-treated surgical sites. Full article
(This article belongs to the Special Issue Breast Reconstruction: The Current Environment and Future Directions)
Show Figures

Figure 1

15 pages, 16056 KiB  
Article
Pore Structure Characteristics and Controlling Factors of an Interbedded Shale Oil Reservoir—A Case Study of Chang 7 in the HSN Area of the Ordos Basin
by Linpu Fu, Xixin Wang, Bin Zhao and Shuwei Ma
Processes 2025, 13(5), 1331; https://doi.org/10.3390/pr13051331 - 26 Apr 2025
Viewed by 411
Abstract
The geological structure of interbedded shale oil reservoirs is complex, later characterized by high reservoir heterogeneity and diverse reservoir spaces. These distinctive features are primarily attributed to their unique source–storage configuration. This paper comprehensively investigates the pore structure characteristics and controlling factors, which [...] Read more.
The geological structure of interbedded shale oil reservoirs is complex, later characterized by high reservoir heterogeneity and diverse reservoir spaces. These distinctive features are primarily attributed to their unique source–storage configuration. This paper comprehensively investigates the pore structure characteristics and controlling factors, which are beneficial for realizing efficient and sustainable resource utilization. The pore structure characteristics and main control factors of interbedded shale oil in the Heshuinan (HSN) area of the Ordos Basin are studied by analyzing thin sections and scanning them under an electron microscope, and using XRD analysis, a high-pressure mercury injection, a constant-rate mercury injection, and a nitrogen adsorption method. The influence of sedimentation and diagenesis on the pore structure is analyzed. Research shows that the interbedded shale oil reservoirs of the Triassic Chang 7 in the HSN area have an average porosity of 8.47% and an average permeability of 0.74 × 10−3 μm2. The reservoirs are classified as typical ultra-low porosity, ultra-low permeability reservoirs. The various pore types in the study area are mainly residual intergranular pores and feldspar dissolution pores. The pores are mostly in the shape of parallel slits and ink-bottle-shaped. The pore-throat radii range from 0.02 μm to 200 μm. Sedimentation and diagenesis jointly control the pore structure in the study area. Sedimentation determines the material foundation of the study area. Diagenesis affects later pore development. Early compaction greatly reduces the intergranular pores, but the chlorite envelope reduces the influence of compaction to some extent. The compacted residual intergranular pores are further reduced by clay minerals, carbonate minerals, and siliceous minerals. Late dissolution promotes pore enlargement, which is the key to the formation of high-quality reservoirs. Furthermore, on this basis, this paper outlines the genetic mechanism of the Chang 7 high-quality reservoir in the HSN area to provide guidance for the exploration and development of interbedded shale oil and gas. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 14513 KiB  
Article
Effects of Laser Bionic Textures and Diamond-like Carbon Coatings on Tribological Properties of CuAl10Fe5Ni5 Under Oil Lubrication
by Mengjiao Wang, Mingbo Zhu, Xiangkai Meng and Xudong Peng
Coatings 2025, 15(4), 446; https://doi.org/10.3390/coatings15040446 - 9 Apr 2025
Cited by 1 | Viewed by 617
Abstract
Aluminum bronze (CuAl10Fe5Ni5) is widely utilized in engineering machinery because of its excellent castability and corrosion resistance. However, CuAl10Fe5Ni5 has been unable to meet increasingly demanding working conditions, so researchers have focused on improving its tribological properties. In this study, two bionic textures [...] Read more.
Aluminum bronze (CuAl10Fe5Ni5) is widely utilized in engineering machinery because of its excellent castability and corrosion resistance. However, CuAl10Fe5Ni5 has been unable to meet increasingly demanding working conditions, so researchers have focused on improving its tribological properties. In this study, two bionic textures were designed on a CuAl10Fe5Ni5 surface via laser processing, and diamond-like carbon (DLC) coatings were subsequently deposited on these hexagonal textures. The tribological properties of textured surfaces and DLC coatings in conjunction with textures under various loads were examined through reciprocating friction tests conducted under oil lubrication conditions. The results demonstrate that the textured surface significantly enhances the stability of the CuAl10Fe5Ni5 alloy and effectively reduces friction and wear under various loading conditions. Hexagonal textures exhibit superior anti-friction and wear-resistant compared to other textures. The friction coefficients of the hexagonal textures at higher loads of 15 N and 20 N are 25% and 16% lower than those of the substrate, and the wear rates are 64% and 12% lower, respectively. DLC coatings further improve the tribological properties of CuAl10Fe5Ni5. The friction coefficients of DLC coatings and textured DLC coatings are 25% and 20% lower than those of the substrate, and the wear rates are 95% and 96% lower than those of the substrate, respectively. These results demonstrate that both textures and DLC coatings effectively enhance the tribological properties of CuAl10Fe5Ni5’s surface. The interaction mechanism between textures and DLC coatings can be attributed primarily to secondary lubrication, debris capture by the textures, self-lubricating properties, and increased surface hardness. Full article
Show Figures

Figure 1

18 pages, 6145 KiB  
Article
Classification and Analysis of Dominant Lithofacies of the Fengcheng Formation Shale Oil Reservoirs in the Mahu Sag, Junggar Basin, NW China
by An Xie, Heyuan Wu, Yong Tang, Wenjun He, Jingzhou Zhao, Weitao Wu, Jun Li, Yubin Bai and Liang Yue
Processes 2025, 13(4), 1065; https://doi.org/10.3390/pr13041065 - 2 Apr 2025
Viewed by 439
Abstract
The exploration of the Fengcheng Formation has revealed the characteristic orderly coexistence of conventional reservoirs, tight reservoirs, and shale reservoirs, constituting a full spectrum of reservoir types, and is important for unconventional oil and gas exploration and development. Affected by frequent volcanic tectonic [...] Read more.
The exploration of the Fengcheng Formation has revealed the characteristic orderly coexistence of conventional reservoirs, tight reservoirs, and shale reservoirs, constituting a full spectrum of reservoir types, and is important for unconventional oil and gas exploration and development. Affected by frequent volcanic tectonic movement, hot and dry paleoclimate, and the close provenance supply distance, unique saline–alkaline lacustrine deposits formed during the depositional period of the Fengcheng Formation. The lithologies of the Fengcheng Formation are highly diverse, with endogenous rocks, volcanic rocks, terrigenous debris, and mixed rocks overlapping and forming vertical reservoir changes ranging from meters to centimeters. Owing to the complexity of rock types and scarcity of rock samples, the evaluation of reservoirs in mixed-rock has progressed slowly. Hence, we aimed to evaluate the characteristics of Fengcheng Formation shale oil reservoirs. Centimeter-level core characteristics were analyzed based on the lithological change and structural characteristics. To investigate the lithofacies of the Fengcheng Formation in the Mahu Sag and factors affecting reservoir development, high-frequency sedimentary structures were analyzed using sub-bio-buffering electron microscopy, energy spectrum testing, and fluorescence analysis. The results showed that the shale oil reservoirs in the study area can be divided into four categories: glutenite, volcanic rock, mixed rock, and endogenous rock. The reservoir capacity has improved and can be divided into eight subcategories. Mixed-rock reservoirs can be further divided into four subcategories based on differences in structure and composition. Differences in the bedding and dolomite content are the main factors controlling the differences in the physical properties of this type of reservoir. This study provides a reference for the classification and characteristic study of shale oil reservoirs in saline–alkali lake basins. Full article
Show Figures

Figure 1

21 pages, 21971 KiB  
Article
Study on the Depositional Microfacies and Internal Architecture of Sandy Debris Flows in Low-Permeability Oilfields: Implications for Remaining Oil Recovery in the HeShui Oilfield
by Xiaoping An, Ye Li, Huanying Yang, Wenchun Wan, Gang Hui, Hongchang Li, Chunhui Zhang, Xuejiao Lu, Zhiyang Pi, Chenqi Ge, Fuyu Yao, Penghu Bao, Yujie Zhang, Xing Yang and Yujie Zhang
Processes 2025, 13(4), 1016; https://doi.org/10.3390/pr13041016 - 28 Mar 2025
Viewed by 416
Abstract
As oil resources continue to be depleted, traditional extraction technologies face significant challenges, and improving remaining oil recovery has become a critical issue in the development of low-permeability oil fields. The study first establishes a stratigraphic framework through a fine stratigraphic correlation of [...] Read more.
As oil resources continue to be depleted, traditional extraction technologies face significant challenges, and improving remaining oil recovery has become a critical issue in the development of low-permeability oil fields. The study first establishes a stratigraphic framework through a fine stratigraphic correlation of key wells, followed by a comprehensive characterization of the internal arrangement of sand bodies, with a detailed analysis of the distribution of interlayers and the complexity of sand body stacking patterns. Based on field data, including tracer monitoring and water absorption profiles, the distribution of remaining oil is predicted. The results reveal that sandy debris flow deposition plays a key role in the enrichment of remaining oil, particularly considering how its internal structure impacts reservoir connectivity and waterflood efficiency. The sedimentary pattern in the study area is dominated by debris flow deposition, with poor continuity of sand bodies; over 90% of individual sand bodies encountered during horizontal well drilling have a width of less than 60 m. Sand body stacking types are classified into overlapping, splicing, and isolated types, and different stacking types significantly influence reservoir waterflood efficiency and the distribution of remaining oil. The innovation of this study lies not only in the microstructural investigation of sandy debris flow but also in the comprehensive characterization of its strong heterogeneity. By analyzing the internal configuration of sand bodies, sedimentary microfacies, and physical property distributions, this study uncovers how these factors influence the distribution of remaining oil. This approach provides valuable insights for accurately predicting and enhancing remaining oil potential. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 5527 KiB  
Article
Preparation and Tribology of Textured Ti-6Al-4V with Thermal Oxide Coating
by Xiaoyi Wang, Zhibiao Xu, Haowen Lu, Yue Tan, Xing Xu and Hao Wu
Coatings 2025, 15(3), 258; https://doi.org/10.3390/coatings15030258 - 21 Feb 2025
Cited by 3 | Viewed by 865
Abstract
This study investigates the tribological properties of Ti-6Al-4V alloy treated with single laser texturing, single thermal oxidation, and laser texturing combined with thermal oxidation in a PAO6 oil environment. The surface morphology, cross-sectional morphology, surface chemical composition, microhardness, wettability, and wear surface morphology [...] Read more.
This study investigates the tribological properties of Ti-6Al-4V alloy treated with single laser texturing, single thermal oxidation, and laser texturing combined with thermal oxidation in a PAO6 oil environment. The surface morphology, cross-sectional morphology, surface chemical composition, microhardness, wettability, and wear surface morphology were analyzed using a three-dimensional profiler, scanning electron microscope, electron spectrometer, X-ray diffractometer, micro-Vickers hardness tester, and optical contact angle measuring instrument. The results indicate that combining laser texturing with thermal oxidation treatment enhances groove edge hardness to approximately 1932 HV0.2, due to the synergistic effects of laser-induced heat-affected zones and the formation of high-hardness rutile phase TiO2. Simultaneously, the treatment effectively enhances the wettability of PAO6 oil on the surface. Furthermore, the composite-treated surface combines the oil reservoir and debris-trapping capabilities of a single laser-textured surface with the excellent load-bearing capacity of a single thermally oxidized surface. This enhancement improves the durability and reliability of the groove-type texture, leading to reduced material loss and a diminished wear rate, and significantly improving the surface wear resistance of Ti-6Al-4V alloy. Full article
(This article belongs to the Special Issue Advances in Surface Coatings for Wear and Corrosion Protection)
Show Figures

Figure 1

18 pages, 6792 KiB  
Article
Organic Matter Accumulation Model of Jurassic Lianggaoshan Shale Under Lake-Level Variations in Sichuan Basin: Insights from Environmental Conditions
by Dong Huang, Minghui Qi, Xiang Deng, Yi Huang, Haibo Wang and Xiawei Li
Minerals 2025, 15(2), 159; https://doi.org/10.3390/min15020159 - 9 Feb 2025
Viewed by 909
Abstract
Organic matter (OM) is the primary carrier for the generation and occurrence of shale oil and gas. The combination of sequence stratigraphy and elemental geochemistry plays a crucial role in the study of organic matter enrichment mechanisms in marine shale, but it is [...] Read more.
Organic matter (OM) is the primary carrier for the generation and occurrence of shale oil and gas. The combination of sequence stratigraphy and elemental geochemistry plays a crucial role in the study of organic matter enrichment mechanisms in marine shale, but it is rarely applied to terrestrial lacustrine basins. As a product of the last large-scale lake transgression in the Sichuan Basin, the Early Jurassic Lianggaoshan Formation (LGS Fm.) developed multiple organic-rich shale intervals, which is a good example for studying the OM enrichment in lacustrine basins. Based on a high-resolution sequence stratigraphic framework, the evolutionary process of terrestrial debris input, redox conditions, and paleo-productivity during the sedimentary period of the Lianggaoshan Formation lacustrine shale at different stages of lake-level variations has been revealed. The main controlling factors for OM enrichment and the establishment of their enrichment patterns have been determined. Sequence stratigraphy studies have shown that there are three third-order lake transgression-lake regression (T-R) cycles in the LGS Formation. The total organic carbon content (TOC) is higher in the TST cycle, especially in the T-R3 cycle, and lower in the RST cycle. There are differences in the redox conditions, paleo-productivity, terrestrial detrital transport, and OM accumulation under the influence of lacustrine shale deposition in different system tracts. The results indicate that changes in lake level have a significant impact on the reducibility of bottom water and paleo-productivity of surface seawater, but have a relatively small impact on the input of terrestrial debris. In the TST cycle, the reducibility of bottom water gradually increases, and the paleo-productivity gradually increases, while in the RST cycle, the opposite is true. Within the TST cycle, the OM accumulation is mainly influenced by paleo-productivity and redox condition of bottom water, with moderate input of terrestrial debris playing a positive role. In the RST cycle, the redox condition of bottom water is the main inducing factor for OM enrichment, followed by paleo-productivity, while terrestrial input flux plays a diluting role, which is generally not conducive to OM accumulation. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

Back to TopTop