Zwitterionic Poly(sulfobetaine methacrylate) Brushes Functionalized Threads for DNA Extraction from Complex Cell Lysates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Fabrication of PSBMA@thread
2.3. The Morphology and Surface Properties of PSBMA@threads
2.4. Characterization of the Function of PSBMA@threads
2.5. Optimization of PSBMA@thead-Based DNA Extraction Conditions
2.6. Thread-Based SPE to Extract DNA from Tumor Cells
2.7. Statistic Analysis
3. Results and Discussion
3.1. Characterization of PSBMA@threads
3.2. Optimization the PSBMA@threads-Based DNA Extraction
3.3. PSBMA@threads-Assisted Extraction of DNA from Tumor Cells for PCR Assay
3.4. Stability of PSBMA@threads
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gašperšič, J.; Videtič Paska, A. Potential of modern circulating cell-free DNA diagnostic tools for detection of specific tumor cells in clinical practice. Biochem. Med. 2020, 30, 030504. [Google Scholar] [CrossRef] [PubMed]
- Sakari, S.L.; Jimson, S.; Masthan, K.M.; Jacobina, J. Role of DNA profiling in forensic odontology. J. Pharm. Bioallied Sci. 2015, 7, S138–S141. [Google Scholar] [CrossRef]
- Bergman, P.S.; Schumer, G.; Blankenship, S.; Campbell, E. Detection of Adult Green Sturgeon Using Environmental DNA Analysis. PLoS ONE 2016, 11, e0153500. [Google Scholar] [CrossRef]
- Mao, F.; Baiyin, H.; Li, J.; Chen, X.; Xu, Y.; Wang, C.; Li, C. Editorial: Biomedical application of DNA modifications. Front. Genet. 2023, 14, 1286185. [Google Scholar] [CrossRef]
- Charlermroj, R.; Makornwattana, M.; Phuengwas, S.; Meerak, J.; Pichpol, D.; Karoonuthaisiri, N. DNA-based bead array technology for simultaneous identification of eleven foodborne pathogens in chicken meat. Food Control 2019, 101, 81–88. [Google Scholar] [CrossRef]
- Lai, J.; Du, B.; Wang, Y.; Wu, R.; Yu, Z. Next-generation sequencing of circulating tumor DNA for detection of gene mutations in lung cancer: Implications for precision treatment. Onco Targets Ther. 2018, 11, 9111–9116. [Google Scholar] [CrossRef] [PubMed]
- Scharf, S.; Bartels, A.; Kondakci, M.; Pfeffer, K.; Henrich, B.; Haas, R. Introduction of a bead beating step improves fungal DNA extraction from selected patient specimens. Int. J. Med. Microbiol. 2020, 310, 151443. [Google Scholar] [CrossRef]
- Han, Z.; Sun, J.; Lv, A.; Sung, Y.; Sun, X.; Shi, H.; Hu, X.; Wang, A.; Xing, K. A modified method for genomic DNA extraction from the fish intestinal microflora. AMB Express 2018, 8, 52. [Google Scholar] [CrossRef]
- Gómez-Acata, E.S.; Centeno, C.M.; Falcón, L.I. Methods for extracting ‘omes from microbialites. J. Microbiol. Methods 2019, 160, 1–10. [Google Scholar] [CrossRef]
- Guo, X.M.; Gao, W.; Wang, H.L.; Wongkhaluang, P.; Taengchaiyaphum, S.; Xie, G.S.; Li, C.; Zhao, R.H.; Sritunyalucksana, K.; Huang, J. Chitinase and proteinase K treatments enhance the DNA yield of microsporidium Ecytonucleospora hepatopenaei spores. J. Invertebr. Pathol. 2024, 207, 108222. [Google Scholar] [CrossRef]
- Barbier, F.F.; Chabikwa, T.G.; Ahsan, M.U.; Cook, S.E.; Powell, R.; Tanurdzic, M.; Beveridge, C.A. A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. Plant. Methods 2019, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Lutz, Í.; Miranda, J.; Santana, P.; Martins, T.; Ferreira, C.; Sampaio, I.; Vallinoto, M.; Gomes, G.E. Quality analysis of genomic DNA and authentication of fisheries products based on distinct methods of DNA extraction. PLoS ONE 2023, 18, e0282369. [Google Scholar] [CrossRef]
- Barazesh, A.; Sarkari, B.; Ebrahimi, S.; Hami, M. DNA extraction from hydatid cyst protoscolices: Comparison of five different methods. Vet. World 2018, 11, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Llompart, M.; Celeiro, M.; García-Jares, C.; Dagnac, T. Environmental applications of solid-phase microextraction. TrAC Trend Anal. Chem. 2019, 112, 1–12. [Google Scholar] [CrossRef]
- Li, P.; Li, M.; Yue, D.; Chen, H. Solid-phase extraction methods for nucleic acid separation. A review. J. Sep. Sci. 2021, 45, 172–184. [Google Scholar] [CrossRef]
- Katevatis, C.; Fan, A.; Klapperich, C.M. Low concentration DNA extraction and recovery using a silica solid phase. PLoS ONE 2017, 12, e0176848. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Lei, B. Improved DNA extraction on bamboo paper and cotton is tightly correlated with their crystallinity and hygroscopicity. PLoS ONE 2022, 17, e0277138. [Google Scholar] [CrossRef]
- Lindman, B.; Medronho, B.; Alves, L.; Norgren, M.; Nordenskiöld, L. Hydrophobic interactions control the self-assembly of DNA and cellulose. Q. Rev. Biophys. 2021, 54, e3. [Google Scholar] [CrossRef]
- Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef]
- Hou, J.; Hu, C.; Li, H.; Liu, H.; Xiang, Y.; Wu, G.; Li, Y. Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. J. Pharm. Biomed. 2025, 253, 116543. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, J.; You, J.; Shi, M.; Yin, L. Application of magnetic nanomaterials in sample pretreatment. Microchem. J. 2025, 214, 114052. [Google Scholar] [CrossRef]
- Min, S.; Zhan, T.; Lu, Y.; Pan, D.; Chen, X.; Xu, B. Rapid and easily identifiable blood typing on microfluidic cotton thread-based analytical devices. Lab Chip 2023, 23, 4680–4689. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.C.M.; Araújo, D.A.G.; Pradela-Filho, L.A.; Takeuchi, R.M.; Trindade, M.A.G.; Dos Santos, A.L. Threads in tubing: An innovative approach towards improved electrochemical thread-based microfluidic devices. Lab Chip 2022, 22, 3045–3054. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; He, J.; Chen, X.; Qiao, Y.; Wang, F.; Xia, Q.; Yu, L.; Lu, Z. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose 2019, 26, 4553–4562. [Google Scholar] [CrossRef]
- Tomimuro, K.; Tenda, K.; Ni, Y.; Hiruta, Y.; Merkx, M.; Citterio, D. Thread-Based Bioluminescent Sensor for Detecting Multiple Antibodies in a Single Drop of Whole Blood. ACS Sens. 2020, 5, 1786–1794. [Google Scholar] [CrossRef]
- Mao, X.; Du, T.-E.; Wang, Y.; Meng, L. Disposable dry-reagent cotton thread-based point-of-care diagnosis devices for protein and nucleic acid test. Biosens. Bioelectron. 2015, 65, 390–396. [Google Scholar] [CrossRef]
- Ulum, M.F.; Maylina, L.; Noviana, D.; Wicaksono, D.H.B. EDTA-treated cotton-thread microfluidic device used for one-step whole blood plasma separation and assay. Lab Chip 2016, 16, 1492–1504. [Google Scholar] [CrossRef]
- Du, T.-E.; Wang, Y.; Zhang, Y.; Zhang, T.; Mao, X. A novel adenosine-based molecular beacon probe for room temperature nucleic acid rapid detection in cotton thread device. Anal. Chim. Acta 2015, 861, 69–73. [Google Scholar] [CrossRef]
- Wu, T.; Xu, T.; Xu, L.-P.; Huang, Y.; Shi, W.; Wen, Y.; Zhang, X. Superhydrophilic cotton thread with temperature-dependent pattern for sensitive nucleic acid detection. Biosens. Bioelectron. 2016, 86, 951–957. [Google Scholar] [CrossRef]
- Li, Y.D.; Li, W.Y.; Chai, H.H.; Fang, C.; Kang, Y.J.; Li, C.M.; Yu, L. Chitosan functionalization to prolong stable hydrophilicity of cotton thread for thread-based analytical device application. Cellulose 2018, 25, 4831–4840. [Google Scholar] [CrossRef]
- Chen, L.; Cabot, J.M.; Paull, B. Thread-based isotachophoresis for DNA extraction and purification from biological samples. Lab Chip 2021, 21, 2565–2573. [Google Scholar] [CrossRef]
- Feng, J.; Han, S.; Ji, X.; Li, C.; Wang, X.; Tian, Y.; Sun, M. A green extraction material-natural cotton fiber for in-tube solid-phase microextraction. J. Sep. Sci. 2019, 42, 1051–1057. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, L.; Chen, X.; Han, X.; Wang, R.; Liu, H. Microscopic insight into the DNA condensation process of a zwitterion-functionalized polycation. Biopolymers 2016, 105, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Nuckowski, Ł.; Dzieszkowski, K.; Rafiński, Z.; Studzińska, S. Application of Magnetic Nanoparticles Coated with Crosslinked Zwitterionic Poly(ionic liquid)s for the Extraction of Oligonucleotides. Materials 2021, 14, 3146. [Google Scholar] [CrossRef]
- He, G.; Wang, W.; Zhou, Y.; Zhao, G.; Liao, J. Ampholytic ion-exchange magnetic beads: A promising tool for selecting short fragments in circulating cell-free DNA analysis. Front. Oncol. 2024, 14, 1397680. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Yesilbag Tonga, G.; Parkin, S.R.; Rotello, V.M.; DeRouchey, J.E. Tuning DNA Condensation with Zwitterionic Polyamidoamine (zPAMAM) Dendrimers. Macromolecules 2017, 50, 8202–8211. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Y.; Li, S.; Bai, Y.; Ma, J.; Shao, L. Multifunctional Core–Shell Zwitterionic Nanoparticles To Build Robust, Stable Antifouling Membranes via Magnetic-Controlled Surface Segregation. ACS Appl. Mater. Interfaces 2019, 11, 35501–35508. [Google Scholar] [CrossRef]
- Georgouvelas, D.; Jalvo, B.; Valencia, L.; Papawassiliou, W.; Pell, A.J.; Edlund, U.; Mathew, A.P. Residual Lignin and Zwitterionic Polymer Grafts on Cellulose Nanocrystals for Antifouling and Antibacterial Applications. ACS Appl. Polym. Mater. 2020, 2, 3060–3071. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Li, M.; Fu, F.; Zhao, Y.; Yu, J. Zwitterionic Polymer-Grafted Superhydrophilic and Superoleophobic Silk Fabrics for Anti-Oil Applications. Macromol. Rapid Commun. 2020, 41, e2000162. [Google Scholar] [CrossRef]
- Beltrán-Osuna, Á.A.; Ródenas-Rochina, J.; Gómez Ribelles, J.L.; Perilla, J.E. Antifouling zwitterionic pSBMA-MSN particles for biomedical applications. Polym. Adv. Technol. 2018, 30, 688–697. [Google Scholar] [CrossRef]
- Davenport, D.M.; Lee, J.; Elimelech, M. Efficacy of antifouling modification of ultrafiltration membranes by grafting zwitterionic polymer brushes. Sep. Purif. Technol. 2017, 189, 389–398. [Google Scholar] [CrossRef]
- Wang, L.; Sun, L.; Zhang, X.; Wang, H.; Song, L.; Luan, S. A self-defense hierarchical antibacterial surface with inherent antifouling and bacteria-activated bactericidal properties for infection resistance. Biomater. Sci. 2022, 10, 1968–1980. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-J.; Zhu, L.-P.; Zhang, P.-B.; Zhu, B.-K.; Xu, Y.-Y. Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core–shell silica nanoparticles. J. Colloid Interf. Sci. 2016, 468, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Chang, Y.; Chang, Y.H.; Shih, Y.J. Preparation of Amphiphilic Polymer-Functionalized Carbon Nanotubes for Low-Protein-Adsorption Surfaces and Protein-Resistant Membranes. ACS Appl. Mater. Interfaces 2010, 2, 3642–3647. [Google Scholar] [CrossRef]
- Liu, C.H.; Faria, A.F.; Ma, J.; Elimelech, M. Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles. Environ. Sci. Technol. 2017, 51, 182–191. [Google Scholar] [CrossRef]
- Liu, Q.S.; Patel, A.A.; Liu, L.Y. Superhydrophilic and Underwater Superoleophobic Poly(sulfobetaine methacrylate)-Grafted Glass Fiber Filters for Oil-Water Separation. ACS Appl. Mater. Interfaces 2014, 6, 8996–9003. [Google Scholar] [CrossRef]
- Wu, L.; Xiong, J.; Xiao, G.; Ju, J.; Sun, W.; Wang, W.; Ma, Y.; Ran, R.; Qiao, Y.; Li, C.; et al. Smart salt-responsive thread for highly sensitive microfluidic glucose detection in sweat. Lab Chip 2024, 24, 776–786. [Google Scholar] [CrossRef]
- Ning, K.; Fang, C.; Xie, Y.Y.; Chen, Q.W.; Feng, L.K.; Pan, R.; Yu, L. A mirror-assisted imaging device enables side-view observation of microscale changes at interface without modifying the microscope. Measurement 2025, 245, 116662. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Cao, X.; Tan, L.; Jia, B.; Chen, R.; Li, J. GAPDH: A common housekeeping gene with an oncogenic role in pan-cancer. Comput. Struct. Biotechnol. 2023, 21, 4056–4069. [Google Scholar] [CrossRef]
- Riethmacher, D.; Brinkmann, V.; Birchmeier, C. A targeted mutation in the mouse e-cadherin gene results in defective preimplantation development. Proc. Natl. Acad. Sci. USA 1995, 92, 855–859. [Google Scholar] [CrossRef]
Cell line | Primer Name | Primer Sequence (5′→3′) | |
DU 145 | GAPDH | Forward | ctcctccgggtgatgctttt |
Reverse | gcccaatacgaccaaatcagag | ||
CDH1 | Forward | agtcactgacaccaacgataat | |
Reverse | atcgttgttcactggatttgtg | ||
EMT-6 | GAPDH | Forward | cttgtcatcaacgggaagcc |
Reverse | atgttagtggggtctcgctc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Wu, L.; Ning, K.; Li, X.; Feng, L.; Chen, Y.; Yu, L. Zwitterionic Poly(sulfobetaine methacrylate) Brushes Functionalized Threads for DNA Extraction from Complex Cell Lysates. Sensors 2025, 25, 3651. https://doi.org/10.3390/s25123651
Shi X, Wu L, Ning K, Li X, Feng L, Chen Y, Yu L. Zwitterionic Poly(sulfobetaine methacrylate) Brushes Functionalized Threads for DNA Extraction from Complex Cell Lysates. Sensors. 2025; 25(12):3651. https://doi.org/10.3390/s25123651
Chicago/Turabian StyleShi, Xianlong, Liang Wu, Ke Ning, Xinmei Li, Lingke Feng, Yirong Chen, and Ling Yu. 2025. "Zwitterionic Poly(sulfobetaine methacrylate) Brushes Functionalized Threads for DNA Extraction from Complex Cell Lysates" Sensors 25, no. 12: 3651. https://doi.org/10.3390/s25123651
APA StyleShi, X., Wu, L., Ning, K., Li, X., Feng, L., Chen, Y., & Yu, L. (2025). Zwitterionic Poly(sulfobetaine methacrylate) Brushes Functionalized Threads for DNA Extraction from Complex Cell Lysates. Sensors, 25(12), 3651. https://doi.org/10.3390/s25123651