Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (515)

Search Parameters:
Keywords = oil and gas sectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8736 KiB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 - 1 Aug 2025
Viewed by 233
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

17 pages, 3995 KiB  
Article
Nonlinear Vibration and Post-Buckling Behaviors of Metal and FGM Pipes Transporting Heavy Crude Oil
by Kamran Foroutan, Farshid Torabi and Arth Pradeep Patel
Appl. Sci. 2025, 15(15), 8515; https://doi.org/10.3390/app15158515 (registering DOI) - 31 Jul 2025
Viewed by 90
Abstract
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing [...] Read more.
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing the mechanical and thermal performance of FGM-based pipes under various operating conditions, this study investigates the possibility of using them as a more reliable substitute. In the current study, the post-buckling and nonlinear vibration behaviors of pipes composed of FGMs transporting heavy crude oil were examined using a Timoshenko beam framework. The material properties of the FGM pipe were observed to change gradually across the thickness, following a power-law distribution, and were influenced by temperature variations. In this regard, two types of FGM pipes are considered: one with a metal-rich inner surface and ceramic-rich outer surface, and the other with a reverse configuration featuring metal on the outside and ceramic on the inside. The nonlinear governing equations (NGEs) describing the system’s nonlinear dynamic response were formulated by considering nonlinear strain terms through the von Kármán assumptions and employing Hamilton’s principle. These equations were then discretized using Galerkin’s method to facilitate the analytical investigation. The Runge–Kutta method was employed to address the nonlinear vibration problem. It is concluded that, compared with pipelines made from conventional materials, those constructed with FGMs exhibit enhanced thermal resistance and improved mechanical strength. Full article
Show Figures

Figure 1

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 391
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

28 pages, 525 KiB  
Review
Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
by Daniel A. Leontieff, Keisuke Ikehata, Yasutaka Inanaga and Seiji Furukawa
Processes 2025, 13(8), 2331; https://doi.org/10.3390/pr13082331 - 23 Jul 2025
Viewed by 602
Abstract
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented [...] Read more.
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented ozone at full scale, others have yet to fully embrace these technologies’ effectiveness. This review article examines recent publications from the past two decades, exploring novel applications of ozone-based technologies in treating wastewater from diverse sectors, including food and beverage, agriculture, aquaculture, textile, pulp and paper, oil and gas, medical and pharmaceutical manufacturing, pesticides, cosmetics, cigarettes, latex, cork manufacturing, semiconductors, and electroplating industries. The review underscores ozone’s broad applicability in degrading recalcitrant synthetic and natural organics, thereby reducing toxicity and enhancing biodegradability in industrial effluents. Additionally, ozone-based treatments prove highly effective in disinfecting pathogenic microorganisms present in these effluents. Continued research and application of these ozonation and ozone-based advanced oxidation processes hold promise for addressing environmental challenges and advancing sustainable wastewater management practices globally. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

34 pages, 14529 KiB  
Review
Research and Applications of Additive Manufacturing in Oil and Gas Extraction and Gathering Engineering
by Xiang Jin, Jubao Liu, Wei Fan, Mingyuan Sun, Zhongmin Xiao, Zongheng Fan, Ming Yang and Liming Yao
Materials 2025, 18(14), 3353; https://doi.org/10.3390/ma18143353 - 17 Jul 2025
Viewed by 606
Abstract
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its [...] Read more.
The growing consumption of oil and gas resources and the increasing difficulty of extraction have created major challenges for traditional manufacturing and maintenance, particularly in the timely supply of critical components, customized production, and complex structure fabrication. Additive manufacturing (AM) technology, with its high design freedom, precision, and rapid prototyping, provides new approaches to address these issues. However, systematic reviews of related efforts are scarce. This paper reviews the applications and progress of metal and non-metal AM technologies in oil and gas extraction and gathering engineering, focusing on the just-in-time (JIT) manufacturing of failed components, the manufacturing and repair of specialized equipment and tools for oil and gas extraction and gathering, and artificial core and reservoir geological modeling fabrication. AM applications in this field remain exploratory and face challenges with regard to their standards, supply chains, materials, and processes. Future research should emphasize developing materials and processes for extreme conditions, optimizing process parameters, establishing standards and traceability systems, and integrating AM with digital design and reverse engineering to support efficient, safe, and sustainable industry development. This work aims to provide a reference for advancing AM research and engineering applications in the oil and gas sector. Full article
Show Figures

Figure 1

16 pages, 944 KiB  
Article
Artificial Intelligence in the Oil and Gas Industry: Applications, Challenges, and Future Directions
by Marcelo dos Santos Póvoas, Jéssica Freire Moreira, Severino Virgínio Martins Neto, Carlos Antonio da Silva Carvalho, Bruno Santos Cezario, André Luís Azevedo Guedes and Gilson Brito Alves Lima
Appl. Sci. 2025, 15(14), 7918; https://doi.org/10.3390/app15147918 - 16 Jul 2025
Viewed by 1156
Abstract
This study aims to provide a comprehensive overview of the application of artificial intelligence (AI) methods to solve real-world problems in the oil and gas sector. The methodology involved a two-step process for analyzing AI applications. In the first step, an initial exploration [...] Read more.
This study aims to provide a comprehensive overview of the application of artificial intelligence (AI) methods to solve real-world problems in the oil and gas sector. The methodology involved a two-step process for analyzing AI applications. In the first step, an initial exploration of scientific articles in the Scopus database was conducted using keywords related to AI and computational intelligence, resulting in a total of 11,296 articles. The bibliometric analysis conducted using VOS Viewer version 1.6.15 software revealed an average annual growth of approximately 15% in the number of publications related to AI in the sector between 2015 and 2024, indicating the growing importance of this technology. In the second step, the research focused on the OnePetro database, widely used by the oil industry, selecting articles with terms associated with production and drilling, such as “production system”, “hydrate formation”, “machine learning”, “real-time”, and “neural network”. The results highlight the transformative impact of AI on production operations, with key applications including optimizing operations through real-time data analysis, predictive maintenance to anticipate failures, advanced reservoir management through improved modeling, image and video analysis for continuous equipment monitoring, and enhanced safety through immediate risk detection. The bibliometric analysis identified a significant concentration of publications at Society of Petroleum Engineers (SPE) events, which accounted for approximately 40% of the selected articles. Overall, the integration of AI into production operations has driven significant improvements in efficiency and safety, and its continued evolution is expected to advance industry practices further and address emerging challenges. Full article
Show Figures

Figure 1

22 pages, 1515 KiB  
Article
Techno-Economic Analysis of Flare Gas to Hydrogen: A Lean and Green Sustainability Approach
by Felister Dibia, Oghenovo Okpako, Jovana Radulovic, Hom Nath Dhakal and Chinedu Dibia
Appl. Sci. 2025, 15(14), 7839; https://doi.org/10.3390/app15147839 - 13 Jul 2025
Viewed by 490
Abstract
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a [...] Read more.
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a sustainability method that uses flare gas for hydrogen production through steam methane reforming (SMR) with CCS, supported by a techno-economic analysis. Data Envelopment Analysis (DEA) was used to evaluate the oil company’s efficiency, and inverse DEA/sensitivity analysis identified maximum flare gas reduction, which was modeled in Aspen HYSYS V14. Subsequently, an economic evaluation was performed to determine the levelized cost of hydrogen (LCOH) and the cost–benefit ratio (CBR) for Nigeria. The CBR results were 2.15 (payback of 4.11 years with carbon credit) and 1.96 (payback of 4.55 years without carbon credit), indicating strong economic feasibility. These findings promote a practical approach for waste reduction, aiding Nigeria’s transition to a circular, low-carbon economy, and demonstrate a positive relationship between lean and green strategies in the petroleum sector. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

22 pages, 892 KiB  
Review
Membrane Technologies for Bioengineering Microalgae: Sustainable Applications in Biomass Production, Carbon Capture, and Industrial Wastewater Valorization
by Michele Greque Morais, Gabriel Martins Rosa, Luiza Moraes, Larissa Chivanski Lopes and Jorge Alberto Vieira Costa
Membranes 2025, 15(7), 205; https://doi.org/10.3390/membranes15070205 - 11 Jul 2025
Viewed by 578
Abstract
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative [...] Read more.
In accordance with growing environmental pressures and the demand for sustainable industrial practices, membrane technologies have emerged as key enablers for increasing efficiency, reducing emissions, and supporting circular processes across multiple sectors. This review focuses on the integration among microalgae-based systems, offering innovative and sustainable solutions for biomass production, carbon capture, and industrial wastewater treatment. In cultivation, membrane photobioreactors (MPBRs) have demonstrated biomass productivity up to nine times greater than that of conventional systems and significant reductions in water (above 75%) and energy (approximately 0.75 kWh/m3) footprints. For carbon capture, hollow fiber membranes and hybrid configurations increase CO2 transfer rates by up to 300%, achieving utilization efficiencies above 85%. Coupling membrane systems with industrial effluents has enabled nutrient removal efficiencies of up to 97% for nitrogen and 93% for phosphorus, contributing to environmental remediation and resource recovery. This review also highlights recent innovations, such as self-forming dynamic membranes, magnetically induced vibration systems, antifouling surface modifications, and advanced control strategies that optimize process performance and energy use. These advancements position membrane-based microalgae systems as promising platforms for carbon-neutral biorefineries and sustainable industrial operations, particularly in the oil and gas, mining, and environmental technology sectors, which are aligned with global climate goals and the UN Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

23 pages, 5228 KiB  
Article
From Conventional to Electrified Pavements: A Structural Modeling Approach for Spanish Roads
by Gustavo Boada-Parra, Ronny Romero, Federico Gulisano, Freddy Apaza-Apaza, Damaris Cubilla, Andrea Serpi, Rafael Jurado-Piña and Juan Gallego
Coatings 2025, 15(7), 801; https://doi.org/10.3390/coatings15070801 - 9 Jul 2025
Viewed by 373
Abstract
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% [...] Read more.
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% of global car sales by 2035. However, widespread adoption requires smart infrastructure capable of enabling dynamic in-motion charging. In this context, Electric Road Systems (ERSs), particularly those based on Wireless Power Transfer (WPT) technologies, offer a promising solution by transferring energy between road-embedded transmitters and vehicle-mounted receivers. This study assesses the structural response and service life of conventional and electrified asphalt pavement sections representative of the Spanish road network. Several standard pavement configurations were analyzed under heavy traffic (dual axles, 13 tons) using a hybrid approach combining mechanistic–empirical multilayer modeling and three-dimensional Finite Element Method (FEM) simulations. The electrified designs integrate prefabricated charging units (CUs) placed at a 9 cm depth, disrupting the structural continuity of the pavement. The results reveal stress concentrations at the CU–asphalt interface and service life reductions of up to 50% in semiflexible pavements. Semirigid sections performed better, with average reductions close to 40%. These findings are based on numerical simulations of standard Spanish sections and do not include experimental validation. Full article
(This article belongs to the Special Issue Recent Research in Asphalt and Pavement Materials)
Show Figures

Graphical abstract

35 pages, 1595 KiB  
Article
Analysis of the Synergies of Air Pollutant and Greenhouse Gas Emission Reduction in Typical Chemical Enterprises
by Qi Gong, Yatfei Chan, Yijia Xia, Weiqi Tang and Weichun Ma
Sustainability 2025, 17(14), 6263; https://doi.org/10.3390/su17146263 - 8 Jul 2025
Viewed by 291
Abstract
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. [...] Read more.
In this study, we selected the production processes and main products of three typical chemical enterprises in Shanghai, namely SH Petrochemical (part of the oil-refining sector), SK Ethylene, and HS Chlor-Alkali, to quantitatively assess the synergistic effects across technology, policy, and emission mechanisms. The localized air pollutant levels and greenhouse gas emissions of the three enterprises were calculated. The synergistic effects between the end-of-pipe emission reductions for air pollutants and greenhouse gas emissions were analyzed using the pollutant reduction synergistic and cross-elasticity coefficients, including technology comparisons (e.g., acrylonitrile gas incineration (AOGI) technology vs. traditional flare). Based on these data, we used the SimaPro software and the CML-IA model to conduct a life cycle environmental impact assessment regarding the production and upstream processes of their unit products. By combining the life cycle method and the scenario simulation method, we predicted the trends in the environmental impacts of the three chemical enterprises after the implementation of low-carbon development policies in the chemical industry in 2030. We also quantified the synergistic effects of localized air pollutant and greenhouse gas (GHG) emission reductions within the low-carbon development scenario by using cross-elasticity coefficients based on life cycle environmental impacts. The research results show that, for every ton of air pollutant reduced through end-of-pipe treatment measures, the HS Chlor-Alkali enterprise would increase its maximum CO2 emissions, amounting to about 80 tons. For SK Ethylene, the synergistic coefficient for VOC reduction and CO2 emissions when using AOGI thermal incineration technology is superior to that for traditional flare thermal incineration. The activities of the three enterprises had an impact on several environmental indicators, particularly the fossil fuel resource depletion potential, accounting for 69.48%, 53.94%, and 34.23% of their total environmental impact loads, respectively. The scenario simulations indicate that, in a low-carbon development scenario, the overall environmental impact loads of SH Petrochemical (refining sector), SK Ethylene, and HS Chlor-Alkali would decrease by 3~5%. This result suggests that optimizing the upstream power structure, using “green hydrogen” instead of “grey hydrogen” in hydrogenation units within refining enterprises, and reducing the consumption of electricity and steam in the production processes of ethylene and chlor-alkali are effective measures in reducing carbon emissions in the chemical industry. The quantification of the synergies based on life cycle environmental impacts revealed that there are relatively strong synergies for air pollutant and GHG emission reductions in the oil-refining industry, while the chlor-alkali industry has the weakest synergies. Full article
Show Figures

Figure 1

26 pages, 2609 KiB  
Review
Comparative Review of Natural Gas Vehicles During the Energy Transition
by Eleni Himona and Andreas Poullikkas
Energies 2025, 18(13), 3512; https://doi.org/10.3390/en18133512 - 3 Jul 2025
Viewed by 1120
Abstract
The global climate crisis necessitates the urgent implementation of sustainable practices and carbon emission reduction strategies across all sectors. Transport, as a major contributor to greenhouse gas emissions, requires transitional technologies to bridge the gap between fossil fuel dependency and renewable energy systems. [...] Read more.
The global climate crisis necessitates the urgent implementation of sustainable practices and carbon emission reduction strategies across all sectors. Transport, as a major contributor to greenhouse gas emissions, requires transitional technologies to bridge the gap between fossil fuel dependency and renewable energy systems. Natural gas, recognised as the cleanest fossil-derived fuel with approximately half the CO2 emissions of coal and 75% of oil, presents a potential transitional solution through Natural Gas Vehicles (NGVs). This manuscript presents several distinctive contributions that advance the understanding of Natural Gas Vehicles within the contemporary energy transition landscape while synthesising updated emission performance data. Specifically, the feasibility and sustainability of NGVs are investigated within the energy transition framework by systematically incorporating recent technological developments and environmental, economic, and infrastructure considerations in comparison to conventional vehicles (diesel and petrol) and unconventional alternatives (electric and hydrogen-fuelled). The analysis reveals that NGVs can reduce CO2 emissions by approximately 25% compared to petrol vehicles on a well-to-wheel basis, with significant reductions in NOx and particulate matter. However, these environmental benefits depend heavily on the source and type of natural gas used (CNG or LNG), while economic viability hinges largely on governmental policies and infrastructure development. The findings suggest that NGVs can serve as an effective transitional technology in the transport sector’s sustainability pathway, particularly in regions with established natural gas infrastructure, but require supportive policy frameworks to overcome implementation barriers. Full article
(This article belongs to the Collection Energy Transition Towards Carbon Neutrality)
Show Figures

Figure 1

23 pages, 3708 KiB  
Article
Natural Frequency Analysis of a Stepped Drill String in Vertical Oil Wells Subjected to Coupled Axial–Torsional–Lateral Vibrations
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(13), 3492; https://doi.org/10.3390/en18133492 - 2 Jul 2025
Viewed by 338
Abstract
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage [...] Read more.
Drilling oil and gas wells is a complex process that requires a combination of several parameters to dig into the ground. Inappropriate drilling parameter settings and reaction forces can lead to unwanted vibrations, which can negatively impact the drill string and cause damage to drill bits. To reduce unwanted oscillations, drilling vibration modeling is the first approach used to determine the behavior of the drill string under various conditions. Natural frequencies, one of the modal characteristics of a vibrating drill string, can be estimated by analytical or numerical models. However, as the field conditions become more complicated, analytical models become increasingly difficult to use, and alternative approaches must be adopted. The main objective of this paper is to investigate the natural frequencies of drill strings with real geometry under coupled vibration modes using both analytical and finite element methods. This study bridges the literature gap in modeling stepped drill string geometries, which are usually represented as uniform beams. This paper used analytical and finite element models to determine the drill string’s lateral, axial, and torsional natural frequencies under varying lengths of drill pipes and drill collars. To assess the reliability of finite element models under complex geometry, the drill string was approximated as a stepped beam rather than a uniform beam. Then, a comparison was made with analytical models. The results showed that the length of drill pipes has a pronounced effect on the natural frequencies of the overall drill string for the three vibrational modes, while drill collar length only has a notable impact on the torsional mode. These findings contribute to drilling systems’ reliability and efficiency in the oil and gas energy sector. Full article
Show Figures

Figure 1

31 pages, 1271 KiB  
Article
Assessment of the Projects’ Prospects in the Economic and Technological Development of the Oil and Gas Complex in the Republic of Mozambique
by Tatyana Semenova and Nunes Churrana
Resources 2025, 14(7), 106; https://doi.org/10.3390/resources14070106 - 28 Jun 2025
Viewed by 1051
Abstract
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including [...] Read more.
This study is devoted to a comprehensive technical and economic assessment of the prospects for the development of the oil and gas sector in the Republic of Mozambique in the context of the global energy transition. The analysis of key gas projects, including Coral South FLNG and Mozambique LNG, focused on their technological features, economic parameters and environmental impact. It is shown that the introduction of floating liquefaction technology reduces capital expenditures, increases operational flexibility, and minimizes infrastructure risks, especially in conditions of geopolitical instability. Based on a comparative analysis of the projects, it was found that the use of modular solutions and the integration of carbon capture and storage (CCS) systems contribute to improving sustainability and investment attractiveness. A patent analysis of technological innovations was carried out, which made it possible to substantiate the prospects for using nanotechnologies and advanced CO2 capture systems for further development of the sector. The results of the study indicate the need to strengthen content localization, develop human capital, and create effective revenue management mechanisms to ensure sustainable growth. The developed strategic development concept is based on the principles of the sixth technological paradigm, which implies an emphasis on environmental standards and technological modernization, including on the basis of nanotechnology. Thus, it is established that the successful implementation of gas projects in Mozambique can become the basis for long-term socio-economic development of the country, provided that technological and institutional innovations are integrated. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

22 pages, 536 KiB  
Article
Bridging the Gap: Multi-Stakeholder Perspectives on the Role of Carbon Capture and Storage (CCS)/Carbon Capture Utilization and Storage (CCUS) in Achieving Indonesia’s Net Zero Emissions
by Rudianto Rimbono, Jatna Supriatna, Raldi Hendrotoro Seputro Koestoer and Udi Syahnoedi Hamzah
Sustainability 2025, 17(13), 5935; https://doi.org/10.3390/su17135935 - 27 Jun 2025
Viewed by 461
Abstract
CCS/CCUS is considered vital for global climate mitigation, especially in decarbonizing hard-to-abate sectors like upstream oil and gas. In Indonesia, however, its deployment remains limited due to fragmented stakeholder views and lack of integrated policy support. This study explores multi-stakeholder perspectives, including government, [...] Read more.
CCS/CCUS is considered vital for global climate mitigation, especially in decarbonizing hard-to-abate sectors like upstream oil and gas. In Indonesia, however, its deployment remains limited due to fragmented stakeholder views and lack of integrated policy support. This study explores multi-stakeholder perspectives, including government, academia, business, finance, media, and civil society, on the role and feasibility of CCS/CCUS in achieving the country’s net zero emissions (NZE) target. Using a mixed-method approach, we conducted structured surveys (n = 39) and in-depth interviews (n = 34). Findings reveal broad support for CCS/CCUS but highlight ongoing concerns about economic viability, regulatory uncertainty, and environmental risks. Stakeholders emphasize the need for stronger government incentives and cross-border financing mechanisms. The study underscores the importance of inclusive policymaking, enhanced fiscal support, and integration of CCS/CCUS into Indonesia’s carbon economic value framework to ensure a more participatory and sustainable climate policy pathway. Full article
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Centrifugal Pumping Force in Oil Injection-Based TMS to Cool High-Power Aircraft Electric Motors
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Energies 2025, 18(13), 3390; https://doi.org/10.3390/en18133390 - 27 Jun 2025
Viewed by 320
Abstract
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas [...] Read more.
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas emissions in several sectors, including the aviation industry, which has been requested to mitigate its environmental impact. Conventional aircraft propulsion systems depend on fossil fuels, significantly contributing to global carbon emissions. For this reason, innovative propulsion technologies are needed to reduce aviation’s impact on the environment. Electric propulsion has emerged as a promising solution among the several innovative technologies introduced to face climate change challenges. It offers, in fact, a pathway to more sustainable air travel by eliminating direct greenhouse gas emissions, enhancing energy efficiency. Unfortunately, integrating electric motors into aircraft is currently a big challenge, primarily due to thermal management-related issues. Efficient heat dissipation is crucial to maintain optimal performance, reliability, and safety of the electric motor, but aeronautic applications are highly demanding in terms of power, so ad hoc Thermal Management Systems (TMSs) must be developed. The present paper explores the design and optimization of a TMS tailored for a megawatt electric motor in aviation, suitable for regional aircraft (~80 pax). The proposed system relies on coolant oil injected through a hollow shaft and radial tubes to directly reach hot spots and ensure effective heat distribution inside the permanent magnet cavity. The goal of this paper is to demonstrate how advanced TMS strategies can enhance operational efficiency and extend the lifespan of electric motors for aeronautic applications. The effectiveness of the radial tube configuration is assessed by means of advanced Computational Fluid Dynamics (CFD) analysis with the aim of verifying that the proposed design is able to maintain system thermal stability and prevent its overheating. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

Back to TopTop