Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (207)

Search Parameters:
Keywords = oil and gas facility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3781 KiB  
Article
Review of NFPA 780 Standard Compliance for Improved Lightning Protection in Indonesia’s Oil and Gas Industry
by Bryan Denov and Reynaldo Zoro
Energies 2025, 18(15), 4002; https://doi.org/10.3390/en18154002 - 28 Jul 2025
Viewed by 389
Abstract
Lightning represents a critical danger to facilities such as oil tank farms, with the potential to cause major explosive incidents. To address this risk, Indonesia’s oil and gas industry has adopted the NFPA 780 Standard for lightning protection systems. However, tank explosions and [...] Read more.
Lightning represents a critical danger to facilities such as oil tank farms, with the potential to cause major explosive incidents. To address this risk, Indonesia’s oil and gas industry has adopted the NFPA 780 Standard for lightning protection systems. However, tank explosions and refinery disruptions caused by lightning strikes continue to occur annually, highlighting the need to reassess the standard’s self-protection criteria, particularly in Indonesia’s tropical climate. The NFPA 780 standard was primarily developed based on lightning characteristics in subtropical regions. This study evaluates its effectiveness in tropical environments, where lightning parameters such as peak currents, frequencies, and ground flash densities differ significantly. By analyzing specific incidents of tank explosions in Indonesia, the research reveals that compliance with the NFPA 780 standard alone may not be adequate to protect critical infrastructure. To address these challenges, this study proposes a novel approach to lightning protection by designing solutions tailored to the unique characteristics of tropical climates. By incorporating local lightning parameters, the proposed measures aim to enhance safety and resilience in oil and gas facilities. This research provides a framework for adapting international standards to regional needs, improving the effectiveness of lightning protection in tropical environments. Full article
(This article belongs to the Topic EMC and Reliability of Power Networks)
Show Figures

Figure 1

48 pages, 4145 KiB  
Review
A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
by Md Hujjatul Islam and Shashank Reddy Patlolla
Energies 2025, 18(15), 3937; https://doi.org/10.3390/en18153937 - 23 Jul 2025
Viewed by 402
Abstract
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector [...] Read more.
Carbon capture technologies are largely considered to play a crucial role in meeting the climate change and global warming target set by Net Zero Emission (NZE) 2050. These technologies can contribute to clean energy transitions and emissions reduction by decarbonizing the power sector and other CO2 intensive industries such as iron and steel production, natural gas processing oil refining and cement production where there is no obvious alternative to carbon capture technologies. While the progress of carbon capture technologies has fallen behind expectations in the past, in recent years there has been substantial growth in this area, with over 700 projects at various stages of development. Moreover, there are around 45 commercial carbon capture facilities already in operation around the world in different industrial processes, fuel transformation and power generation. Carbon capture technologies including pre/post-combustion, oxyfuel and chemical looping combustion have been widely exploited in the recent years at different Technology Readiness level (TRL). Although, a large number of review studies are available addressing different carbon capture strategies, however, studies related to the commercial status of the carbon capture technologies are yet to be conducted. In this review article, we summarize the state-of-the-art of different carbon capture technologies applied to different emission sources, focusing on emission reduction, net-zero emission, and negative emission. We also highlight the commercial status of the different carbon capture technologies including economics, opportunities, and challenges. Full article
Show Figures

Graphical abstract

21 pages, 6897 KiB  
Article
Performance Analysis of HVDC Operational Control Strategies for Supplying Offshore Oil Platforms
by Alex Reis, José Carlos Oliveira, Carlos Alberto Villegas Guerrero, Johnny Orozco Nivelo, Lúcio José da Motta, Marcos Rogério de Paula Júnior, José Maria de Carvalho Filho, Vinicius Zimmermann Silva, Carlos Andre Carreiro Cavaliere and José Mauro Teixeira Marinho
Energies 2025, 18(14), 3733; https://doi.org/10.3390/en18143733 - 15 Jul 2025
Viewed by 220
Abstract
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage [...] Read more.
Driven by the environmental benefits associated with reduced greenhouse gas emissions, oil companies have intensified research efforts into reassessing the strategies used to meet the electrical demands of offshore production platforms. Among the various alternatives available, the deployment of onshore–offshore interconnections via High-Voltage Direct Current (HVDC) transmission systems has emerged as a promising solution, offering both economic and operational advantages. In addition to reliably meeting the electrical demand of offshore facilities, this approach enables enhanced operational flexibility due to the advanced control and regulation capabilities inherent to HVDC converter stations. Based on the use of interconnection through an HVDC link, aiming to evaluate the operation of the electrical system as a whole, this study focuses on evaluating dynamic events using the PSCAD software version 5.0.2 to analyze the direct online starting of a large induction motor and the sudden loss of a local synchronous generating unit. The simulation results are then analyzed to assess the effectiveness of both Grid-Following (GFL) and Grid-Forming (GFM) control strategies for the converters, while the synchronous generators are evaluated under both voltage regulation and constant power factor control operation, with a particular focus on system stability and restoration of normal operating conditions in the sequence of events. Full article
(This article belongs to the Special Issue Advanced Electric Power Systems, 2nd Edition)
Show Figures

Figure 1

26 pages, 3013 KiB  
Review
Intumescent Coatings and Their Applications in the Oil and Gas Industry: Formulations and Use of Numerical Models
by Taher Hafiz, James Covello, Gary E. Wnek, Abdulkareem Melaiye, Yen Wei and Jiujiang Ji
Polymers 2025, 17(14), 1923; https://doi.org/10.3390/polym17141923 - 11 Jul 2025
Viewed by 444
Abstract
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to [...] Read more.
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to heat, thereby reducing heat transfer and delaying structural failure. This review article provides an overview of recent developments in the effectiveness of ICs in mitigating fire risks, enhancing structural resilience, and reducing environmental impacts within the oil and gas industry. The literature surveyed shows that analytical techniques, such as thermogravimetric analysis, scanning electron microscopy, and large-scale fire testing, have been used to evaluate the thermal insulation performances of the coatings. The results indicate significant temperature reductions on protected steel surfaces that extend critical failure times under hydrocarbon fire conditions. Recent advancements in nano-enhanced and bio-derived ICs have also improved thermal stability and mechanical durability. Furthermore, numerical modeling based on heat transfer, mass conservation, and kinetic equations aids in optimizing formulations for real-world applications. Nevertheless, challenges remain in terms of standardizing modeling frameworks and enhancing the environmental sustainability of ICs. This review highlights the progress made and the opportunities for continuous advances and innovation in IC technologies to meet the ever-evolving challenges and complexities in oil and gas industry operations. Consequently, the need to enhance fire protection by utilizing a combination of tools improves predictive modeling and supports regulatory compliance in high-risk industrial environments. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

16 pages, 26026 KiB  
Article
Computational Fluid Dynamics-Based Modeling of Methane Flows Around Oil and Gas Equipment
by Abhinav Anand, Stuart Riddick, Kira B. Shonkwiler, Aashish Upreti, Michael Moy, Elijah Kiplimo, Mercy Mbua and Daniel J. Zimmerle
Atmosphere 2025, 16(7), 811; https://doi.org/10.3390/atmos16070811 - 2 Jul 2025
Viewed by 365
Abstract
Recent studies estimate that emissions from oil and gas production facilities contribute between 20 and 50% of the total methane (CH4) emitted in the US; therefore, quantifying and reducing these emissions are crucial for achieving climate goals. Methane quantification [...] Read more.
Recent studies estimate that emissions from oil and gas production facilities contribute between 20 and 50% of the total methane (CH4) emitted in the US; therefore, quantifying and reducing these emissions are crucial for achieving climate goals. Methane quantification depends on both measuring methane concentrations and converting them to emissions through a modeling framework. Currently, simple atmospheric dispersion models are primarily used to quantify emissions and concentrations, but these estimates are highly uncertain when quantifying emissions from complex aerodynamic sources, such as oil and gas facilities. This investigation used a CFD modeling approach, which can account for aerodynamic complexity but has hitherto not been used to model methane concentrations downwind of a methane release of a known rate, and compared it against in situ measurements. High-time-resolution (1 Hz) methane concentration and meteorological data were measured during experiments conducted at the METEC on 21 March and 11 July 2024. The METEC site configuration, measured wind data, and controlled emission rates were used as input for the CONVERGE CFD model to model downwind CH4 concentration. The modeling was carried out between 20 and 70 m, from two different points of release in two separate controlled-release experiments, one from a separator and another from a wellhead. In these experiments, we found that the CFD model could predict the CH4 concentrations downwind of the release to a good degree. The model was evaluated on multiple metrics to assess its performance in estimating methane concentrations at typical fence line distances (∼30 m). These results help us to understand external flows and the ability of CFD models to predict downwind concentrations in aerodynamically complex environments. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 4986 KiB  
Article
Research on Multi-Cycle Injection–Production Displacement Characteristics and Factors Influencing Storage Capacity in Oil Reservoir-Based Underground Gas Storage
by Yong Tang, Peng Zheng, Zhitao Tang, Minmao Cheng and Yong Wang
Energies 2025, 18(13), 3330; https://doi.org/10.3390/en18133330 - 25 Jun 2025
Viewed by 862
Abstract
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the [...] Read more.
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the multi-cycle injection–production process for converting the target reservoir into a gas storage facility. Microscopic displacement experiments have shown that the remaining oil is primarily distributed in the dead pores and tiny pores of the core in the form of micro-bead chains and films. The oil displacement efficiency of water flooding followed by gas flooding is 18.61% higher than that of gas flooding alone, indicating that the transition from water flooding to gas flooding can further reduce the liquid saturation and increase the storage capacity space by 2.17%. Single-tube long-core displacement experiments indicate that, during the collaborative construction of a gas storage facility, the overall oil displacement efficiency without a depletion process is approximately 24% higher than that with a depletion process. This suggests that depletion production is detrimental to enhancing oil recovery and expanding the capacity of the gas storage facility. During the cyclic injection–production stage, the crude oil recovery rate increases by 1% to 4%. As the number of cycles increases, the incremental oil displacement efficiency in each stage gradually decreases, and so does the increase in cumulative oil displacement efficiency. Better capacity expansion effects are achieved when gas is produced simultaneously from both ends. Parallel double-tube long-core displacement experiments demonstrate that, when the permeability is the same, the oil displacement efficiencies during the gas flooding stage and the cyclic injection–production stage are essentially identical. When there is a permeability contrast, the oil displacement efficiency of the high-permeability core is 9.56% higher than that of the low-permeability core. The ratio of the oil displacement efficiency between the high-permeability end and the low-permeability end is positively correlated with the permeability contrast; the greater the permeability contrast, the larger the ratio. The research findings can provide a reference for enhancing oil recovery and expanding the capacity of the target reservoir when it is converted into a gas storage facility. Full article
Show Figures

Figure 1

13 pages, 1763 KiB  
Proceeding Paper
Transforming Petrochemical Safety Using a Multimodal AI Visual Analyzer
by Uzair Bhatti, Qamar Jaleel, Umair Aslam, Ahrad bin Riaz, Najam Saeed and Khurram Kamal
Eng. Proc. 2024, 78(1), 12; https://doi.org/10.3390/engproc2024078012 - 29 May 2025
Viewed by 521
Abstract
The petrochemical industry faces significant safety challenges, necessitating stringent protocols and advanced monitoring systems. Traditional methods rely on manual inspections and fixed sensors, often reacting to hazards only after they occur. Multimodal AI, integrating visual, sensor, and textual data, offers a transformative solution [...] Read more.
The petrochemical industry faces significant safety challenges, necessitating stringent protocols and advanced monitoring systems. Traditional methods rely on manual inspections and fixed sensors, often reacting to hazards only after they occur. Multimodal AI, integrating visual, sensor, and textual data, offers a transformative solution for real-time, proactive safety management. This paper evaluates AI models—Gemini 1.5 Pro, OPENAI GPT-4, and Copilot—in detecting workplace hazards, ensuring compliance with Process Safety Management (PSM) and DuPont safety frameworks. The study highlights the models’ potential in improving safety outcomes, reducing human error, and supporting continuous, data-driven risk management in petrochemical plants. This paper is the first of its kind to use the latest multimodal tech to identify the safety hazard; a similar model could be deployed in other manufacturing industries, especially the oil and gas (both upstream and downstream) industry, fertilizer industries, and production facilities. Full article
Show Figures

Figure 1

22 pages, 2285 KiB  
Article
AI-Driven Maintenance Optimisation for Natural Gas Liquid Pumps in the Oil and Gas Industry: A Digital Tool Approach
by Abdulmajeed Almuraia, Feiyang He and Muhammad Khan
Processes 2025, 13(5), 1611; https://doi.org/10.3390/pr13051611 - 21 May 2025
Cited by 1 | Viewed by 672
Abstract
Natural Gas Liquid (NGL) pumps are critical assets in oil and gas operations, where unplanned failures can result in substantial production losses. Traditional maintenance approaches, often based on static schedules and expert judgement, are inadequate for optimising both availability and cost. This study [...] Read more.
Natural Gas Liquid (NGL) pumps are critical assets in oil and gas operations, where unplanned failures can result in substantial production losses. Traditional maintenance approaches, often based on static schedules and expert judgement, are inadequate for optimising both availability and cost. This study proposes a novel Artificial Intelligence (AI)-based methodology and digital tool for optimising NGL pump maintenance using limited historical data and real-time sensor inputs. The approach combines dynamic reliability modelling, component condition assessment, and diagnostic logic within a unified framework. Component-specific maintenance intervals were computed using mean time between failures (MTBFs) estimation and remaining useful life (RUL) prediction based on vibration and leakage data, while fuzzy logic- and rule-based algorithms were employed for condition evaluation and failure diagnoses. The tool was implemented using Microsoft Excel Version 2406 and validated through a case study on pump G221 in a Saudi Aramco facility. The results show that the optimised maintenance routine reduced the total cost by approximately 80% compared to conventional individual scheduling, primarily by consolidating maintenance activities and reducing downtime. Additionally, a structured validation questionnaire completed by 15 industry professionals confirmed the methodology’s technical accuracy, practical usability, and relevance to industrial needs. Over 90% of the experts strongly agreed on the tool’s value in supporting AI-driven maintenance decision-making. The findings demonstrate that the proposed solution offers a practical, cost-effective, and scalable framework for the predictive maintenance of rotating equipment, especially in environments with limited sensory and operational data. It contributes both methodological innovation and validated industrial applicability to the field of maintenance optimisation. Full article
Show Figures

Figure 1

19 pages, 810 KiB  
Review
A Review of Offshore Methane Quantification Methodologies
by Stuart N. Riddick, Mercy Mbua, Catherine Laughery and Daniel J. Zimmerle
Atmosphere 2025, 16(5), 626; https://doi.org/10.3390/atmos16050626 - 20 May 2025
Viewed by 458
Abstract
Since pre-industrial times, anthropogenic methane emissions have increased and are partly responsible for a changing global climate. Natural gas and oil extraction activities are one significant source of anthropogenic methane. While methods have been developed and refined to quantify onshore methane emissions, the [...] Read more.
Since pre-industrial times, anthropogenic methane emissions have increased and are partly responsible for a changing global climate. Natural gas and oil extraction activities are one significant source of anthropogenic methane. While methods have been developed and refined to quantify onshore methane emissions, the ability of methods to directly quantify emissions from offshore production facilities remains largely unknown. Here, we review recent studies that have directly measured emissions from offshore production facilities and critically evaluate the suitability of these measurement strategies for emission quantification in a marine environment. The average methane emissions from production platforms measured using downwind dispersion methods were 32 kg h−1 from 188 platforms; 118 kg h−1 from 104 platforms using mass balance methods; 284 kg h−1 from 151 platforms using aircraft remote sensing; and 19,088 kg h−1 from 10 platforms using satellite remote sensing. Upon review of the methods, we suggest the unusually large emissions, or zero emissions observed could be caused by the effects of a decoupling of the marine boundary layer (MBL). Decoupling can happen when the MBL becomes too deep or when there is cloud cover and results in a stratified MBL with air layers of different depths moving at different speeds. Decoupling could cause: some aircraft remote sensing observations to be biased high (lower wind speed at the height of the plume); the mass balance measurements to be biased high (narrow plume being extrapolated too far vertically) or low (transects miss the plume); and the downwind dispersion measurements much lower than the other methods or zero (plume lofting in a decoupled section of the boundary layer). To date, there has been little research on the marine boundary layer, and guidance on when decoupling happens is not currently available. We suggest an offshore controlled release program could provide a better understanding of these results by explaining how and when stratification happens in the MBL and how this affects quantification methodologies. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

24 pages, 4083 KiB  
Review
The Use of Abandoned Salt Caverns for Energy Storage and Environmental Protection: A Review, Current Status and Future Protections
by Yun Luo, Wei Liu, Hongxing Wang and Keyao Li
Energies 2025, 18(10), 2634; https://doi.org/10.3390/en18102634 - 20 May 2025
Viewed by 656
Abstract
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been [...] Read more.
The existence of a large number of abandoned salt caverns in China has posed a great threat to geological safety and environmental protection, and it also wasted enormous underground space resources. To address such problems, comprehensive utilization of these salt caverns has been proposed both currently and in the future, mainly consisting of energy storage and waste disposal. Regarding energy storage in abandoned salt caverns, the storage media, such as gas, oil, compressed air and hydrogen, have been introduced respectively in terms of the current development and future implementation, with site-selection criteria demonstrated in detail. The recommended burial depth of abandoned salt caverns for gas storage is 1000–1500 m, while it should be less than 1000 m for oil storage. Salt cavern compressed air storage has more advantages in construction and energy storage economics. Salt cavern hydrogen storage imposes stricter requirements on surrounding rock tightness, and its location should be near the hydrogen production facilities. The technical idea of storing ammonia in abandoned salt caverns (indirect hydrogen storage) has been proposed to enhance the energy storage density. For the disposal of wastes, including low-level nuclear waste and industrial waste, the applicable conditions, technical difficulties, and research prospects in this field have been reviewed. The disposal of nuclear waste in salt caverns is not currently recommended due to the complex damage mechanism of layered salt rock and the specific locations of salt mines in China. Industrial waste disposal is relatively mature internationally, but in China, policy and technical research require strengthening to promote its application. Furthermore, considering the recovery of salt mines and the development of salt industries, the cooperation between energy storage regions and salt mining regions has been discussed. The economic and environmental benefits of utilizing abandoned salt caverns have been demonstrated. This study provides a solution to handle the abandoned salt caverns in China and globally. Full article
Show Figures

Figure 1

30 pages, 7314 KiB  
Article
Performance Evaluation of Fixed-Point Continuous Monitoring Systems: Influence of Averaging Time in Complex Emission Environments
by David Ball, Nathan Eichenlaub and Ali Lashgari
Sensors 2025, 25(9), 2801; https://doi.org/10.3390/s25092801 - 29 Apr 2025
Viewed by 505
Abstract
Quantifying methane emissions from facilities with complex emissions profiles can present a substantial challenge. Real-world emission scenarios can involve dynamic operational background emissions and temporally overlapping asynchronous emission events with varying rates from multiple sources. Previous studies have involved simpler testing setups, often [...] Read more.
Quantifying methane emissions from facilities with complex emissions profiles can present a substantial challenge. Real-world emission scenarios can involve dynamic operational background emissions and temporally overlapping asynchronous emission events with varying rates from multiple sources. Previous studies have involved simpler testing setups, often with synchronous emission sources and constant rates. This work is among the first to assess the performance of continuous monitoring systems (CMSs) under dynamic, overlapping emission scenarios with time-varying baselines. The data were collected as part of a novel single-blind controlled release study, where release sources and emission rates are not disclosed during the testing period. Several error metrics are defined and evaluated across a range of relevant averaging times, demonstrating that despite significant error variance in short-duration estimates, the low bias of the system results in substantially improved emission estimates when aggregated to longer timescales. Over the 4-week duration of this study, 700 kg of methane was released by the testing center, while the estimated quantity shows a final mass of 673 kg, an underestimation by 27 kg (4%). These results demonstrate that advanced CMSs can accurately quantify cumulative site-level emissions in complex scenarios, highlighting their potential for enhanced future emissions monitoring and regulatory applications in the oil and gas sector. Full article
(This article belongs to the Special Issue Gas Sensing for Air Quality Monitoring)
Show Figures

Figure 1

23 pages, 8595 KiB  
Article
Phase Behavior and Flowing State of Water-Containing Live Crude Oil in Transportation Pipelines
by Si Li, Haiyan Yang, Run Liu, Shidong Zhou and Kaifeng Fan
Energies 2025, 18(5), 1116; https://doi.org/10.3390/en18051116 - 25 Feb 2025
Cited by 1 | Viewed by 648
Abstract
To address the challenges and risks associated with the declining crude yield, an optimization project for the surface production facilities at ZY Oilfield is underway. Upon the completion of this project, the oilfield’s export pipelines will transport water-containing live crude oil. To ensure [...] Read more.
To address the challenges and risks associated with the declining crude yield, an optimization project for the surface production facilities at ZY Oilfield is underway. Upon the completion of this project, the oilfield’s export pipelines will transport water-containing live crude oil. To ensure pipeline transportation safety, it is essential to clarify the phase behaviors and flow state of water-containing live oil. For this purpose, the VLLE characteristics of water-containing live oil were analyzed with Aspen HYSYS V12 software and validated through PVT tests. Additionally, the pressure variations in multiphase flow pipelines under different operating conditions were calculated using the Beggs and Brill–Moody–Eaton method with Pipephase 9.6 software. The results indicated that the bubble point pressure and vapor fraction of water-containing live oil were higher than those of dehydrated dead crude within the operating temperature range. Liquid–gas flow was likely to occur in the presence of low soil temperatures, low oil output, low outlet pressure, high outlet temperatures, or small water fractions, particularly at the pipeline ends. Moreover, the optimized technological processes for stations and pipeline operations were proposed. The findings offer a new approach for the safe transportation of low-output live oil and provide valuable insights for optimizing surface production in aging oilfields. Full article
(This article belongs to the Special Issue Oil Recovery and Simulation in Reservoir Engineering)
Show Figures

Figure 1

15 pages, 4198 KiB  
Article
Natural and Waste Materials for Desulfurization of Gaseous Fuels and Petroleum Products
by Iliya Iliev, Antonina Filimonova, Andrey Chichirov, Alena Vlasova, Ruzina Kamalieva and Ivan Beloev
Fuels 2025, 6(1), 13; https://doi.org/10.3390/fuels6010013 - 7 Feb 2025
Cited by 2 | Viewed by 1011
Abstract
Currently, the key challenge of the oil-refining industry worldwide is to produce environmentally friendly fuel in large volumes to meet market demand, which is due to strict environmental standards governing the permissible sulfur content in fuel. Natural gas, refinery gas, and coal gas [...] Read more.
Currently, the key challenge of the oil-refining industry worldwide is to produce environmentally friendly fuel in large volumes to meet market demand, which is due to strict environmental standards governing the permissible sulfur content in fuel. Natural gas, refinery gas, and coal gas contain acid gases such as hydrogen sulfide and carbon dioxide. These compounds must be removed from the gas stream because of the toxicity of H2S and to prevent the acid gas-induced corrosion of pipelines and facilities. Hydrogen sulfide is released as a result of various industrial processes, and its removal is critical because this compound can cause corrosion and environmental damage even at low concentrations. Sulfur compounds are also present in natural gas, biofuels and other fuel gases used in power plants. This article proposes new adsorbents of natural and waste origin and presents the results of their testing for the removal of acid gases. This paper also considers methods for the preparation of adsorbents from waste and procedures for the removal of sulfur-containing compounds. Using agricultural, industrial waste to produce activated sorbents not only solves the problem of waste disposal but also reduces the cost of desulfurization, contributing to the creation of sustainable and environmentally friendly technologies. The Review Section comprehensively summarizes current research on hydrogen sulfide removal in gas cleaning processes using agricultural and industrial waste as highly efficient adsorbents. In the Experimental Section, 10 composite materials based on natural raw materials and wastes, as well as 6 commercial adsorbents, were synthesized and tested under laboratory conditions. The choice of materials for the adsorbent production was based on the principles of environmental friendliness, availability, and cost-effectiveness. The developed materials based on modified sludge from water treatment plants of thermal power plants are effective sorbents for the purification of gas emissions from petrochemical enterprises. For industrial use, it is necessary to solve the problems of increasing the economic attractiveness of sorbents from waste, the ability of regeneration, the competitive adsorption of pollutants, the use of indicator sorbents, the optimization of operating conditions, and safe waste disposal. Full article
Show Figures

Figure 1

22 pages, 8214 KiB  
Article
Transforming Industrial Maintenance with Thermoelectric Energy Harvesting and NB-IoT: A Case Study in Oil Refinery Applications
by Raúl Aragonés, Joan Oliver and Carles Ferrer
Sensors 2025, 25(3), 703; https://doi.org/10.3390/s25030703 - 24 Jan 2025
Cited by 2 | Viewed by 1507
Abstract
Heat-intensive industries (e.g., iron and steel, aluminum, cement) and explosive sectors (e.g., oil and gas, chemical, petrochemical) face challenges in achieving Industry 4.0 goals due to the widespread adoption of industrial Internet of Things (IIoT) technologies. Wireless solutions are favored in large facilities [...] Read more.
Heat-intensive industries (e.g., iron and steel, aluminum, cement) and explosive sectors (e.g., oil and gas, chemical, petrochemical) face challenges in achieving Industry 4.0 goals due to the widespread adoption of industrial Internet of Things (IIoT) technologies. Wireless solutions are favored in large facilities to reduce the costs and complexities of extensive wiring. However, conventional wireless devices powered by lithium batteries have limitations, including reduced lifespan in high-temperature environments and incompatibility with explosive atmospheres, leading to high maintenance costs. This paper presents a novel approach for energy-intensive and explosive industries, which represent over 40% of the gross production revenue (GPR) in several countries. The proposed solution uses residual heat to power ATEX-certified IIoT devices, eliminating the need for batteries and maintenance. These devices are designed for condition monitoring and predictive maintenance of rotating machinery, which is common in industrial settings. The study demonstrates the successful application of this technology, highlighting its potential to reduce costs and improve safety and efficiency in challenging industrial environments. Full article
Show Figures

Figure 1

22 pages, 574 KiB  
Review
Fire Hazards Caused by Equipment Used in Offshore Oil and Gas Operations: Prescriptive vs. Goal-Oriented Legislation
by Dejan Brkić
Fire 2025, 8(1), 29; https://doi.org/10.3390/fire8010029 - 16 Jan 2025
Cited by 1 | Viewed by 2251
Abstract
This article offers a concise overview of the best practices for safety in offshore oil and gas operations, focusing on the risks associated with various types of equipment, particularly on the risk of fire. It identifies specific machinery and systems that could pose [...] Read more.
This article offers a concise overview of the best practices for safety in offshore oil and gas operations, focusing on the risks associated with various types of equipment, particularly on the risk of fire. It identifies specific machinery and systems that could pose hazards, assesses their potential impact on safety, and explores conditions that may lead to accidents. Some of the largest accidents were analyzed for their associations with fire hazards and specific equipment. Two primary regulatory approaches to offshore safety are examined: the prescriptive approach in the United States (US) and the goal-oriented approach in Europe. The prescriptive approach mandates strict compliance with specific regulations, while in the goal-oriented approach a failure to adhere to recognized best practices can result in legal accountability for negligence, especially concerning human life and environmental protection. This article also reviews achievements in safety through the efforts of regulatory authorities, industry collaborations, technical standards, and risk assessments, with particular attention given to the status of Mobile Offshore Drilling Units (MODUs). Contrary to common belief, the most frequent types of accidents are not those involving a fire/explosion caused by the failure of the Blowout Preventer (BOP) after a well problem has already started. Following analysis, it can be concluded that the most frequent type of accident typically occurs without fire and is due to material fatigue. This can result in the collapse of the facility, capsizing of the platform, and loss of buoyancy of mobile units, particularly in bad weather or during towing operations. It cannot be concluded that accidents can be more efficiently prevented under a specific type of safety regime, whether prescriptive or goal-oriented. Full article
(This article belongs to the Special Issue Fire Safety Management and Risk Assessment)
Show Figures

Figure 1

Back to TopTop