Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (574)

Search Parameters:
Keywords = offshore renewable energies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2394 KiB  
Article
Analysis of Offshore Wind Power Potential Considering Different Mesh Shapes in the Presence of Prevailing Wind and Deeper Water Depth: A Case Study in Akita, Japan
by Takaaki Furubayashi and Komei Tsujie
Energies 2025, 18(15), 4187; https://doi.org/10.3390/en18154187 - 7 Aug 2025
Abstract
With countries around the world required to change their energy systems to mitigate climate change, offshore wind power has become one of the most important renewable energy sources. This study aims to analyze the potential for offshore wind power generation based on the [...] Read more.
With countries around the world required to change their energy systems to mitigate climate change, offshore wind power has become one of the most important renewable energy sources. This study aims to analyze the potential for offshore wind power generation based on the water depth and annual average wind speed in the Akita region, Japan. A geographical information system was used not only for a conventional square mesh but also for a rectangular mesh when there is a prevailing wind, and a greater water depth was also considered. The results obtained indicate that the use of a rectangular mesh reduces the potential for implantable offshore wind turbines compared to a square mesh. It was also found that the potential for offshore wind power generation is significant up to a water depth of 500 m. Full article
(This article belongs to the Special Issue Offshore Wind Farms: Theory, Methods and Applications)
Show Figures

Figure 1

28 pages, 11518 KiB  
Article
Identifying Sustainable Offshore Wind Farm Sites in Greece Under Climate Change
by Vasiliki I. Chalastani, Elissavet Feloni, Carlos M. Duarte and Vasiliki K. Tsoukala
J. Mar. Sci. Eng. 2025, 13(8), 1508; https://doi.org/10.3390/jmse13081508 - 5 Aug 2025
Abstract
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms [...] Read more.
Wind power has gained attention as a vital renewable energy source capable of reducing emissions and serving as an effective alternative to fossil fuels. Floating wind farms could significantly enhance the energy capacities of Mediterranean countries. However, location selection for offshore wind farms (OWFs) is a challenge for renewable energy policy and marine spatial planning (MSP). To address these issues, this study considers the marine space of Greece to propose a GIS-based multi-criteria decision-making (MCDM) framework employing the Analytic Hierarchy Process (AHP) to identify suitable sites for OWFs. The approach assesses 19 exclusion criteria encompassing legislative, environmental, safety, and technical constraints to determine the eligible areas. Subsequently, 10 evaluation criteria are weighted to determine the selected areas’ level of suitability. The study considers baseline conditions (1981–2010) and future climate scenarios based on RCP 4.5 and RCP 8.5 for two horizons (2011–2040 and 2041–2070), integrating projected wind velocities and sea level rise to evaluate potential shifts in suitable areas. Results indicate the central and southeastern Aegean Sea as the most suitable areas for OWF deployment. Climate projections indicate a modest increase in suitable areas. The findings serve as input for climate-resilient MSP seeking to promote sustainable energy development. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 133
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

42 pages, 9817 KiB  
Article
Simulation Analysis of Onshore and Offshore Wind Farms’ Generation Potential for Polish Climatic Conditions
by Martyna Kubiak, Artur Bugała, Dorota Bugała and Wojciech Czekała
Energies 2025, 18(15), 4087; https://doi.org/10.3390/en18154087 - 1 Aug 2025
Viewed by 152
Abstract
Currently, Poland is witnessing a dynamic development of the offshore wind energy sector, which will be a key component of the national energy mix. While many international studies have addressed wind energy deployment, there is a lack of research that compares the energy [...] Read more.
Currently, Poland is witnessing a dynamic development of the offshore wind energy sector, which will be a key component of the national energy mix. While many international studies have addressed wind energy deployment, there is a lack of research that compares the energy and economic performance of both onshore and offshore wind farms under Polish climatic and spatial conditions, especially in relation to turbine spacing optimization. This study addresses that gap by performing a computer-based simulation analysis of three onshore spacing variants (3D, 4D, 5D) and four offshore variants (5D, 6D, 7D, 9D), located in central Poland (Stęszew, Okonek, Gostyń) and the Baltic Sea, respectively. The efficiency of wind farms was assessed in both energy and economic terms, using WAsP Bundle software and standard profitability evaluation metrics (NPV, MNPV, IRR). The results show that the highest NPV and MNPV values among onshore configurations were obtained for the 3D spacing variant, where the energy yield leads to nearly double the annual revenue compared to the 5D variant. IRR values indicate project profitability, averaging 14.5% for onshore and 11.9% for offshore wind farms. Offshore turbines demonstrated higher capacity factors (36–53%) compared to onshore (28–39%), with 4–7 times higher annual energy output. The study provides new insight into wind farm layout optimization under Polish conditions and supports spatial planning and investment decision making in line with national energy policy goals. Full article
Show Figures

Figure 1

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Viewed by 204
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

24 pages, 1000 KiB  
Article
Exploring Residents’ Perceptions of Offshore Wind Farms in Western Australia: A Qualitative Investigation
by Elena Turner and Michael Odei Erdiaw-Kwasie
Sustainability 2025, 17(15), 6880; https://doi.org/10.3390/su17156880 - 29 Jul 2025
Viewed by 297
Abstract
Residents’ attitudes towards offshore wind farms have been researched extensively over the past few decades. In this research, the precept that offshore wind farms influence residents’ well-being is implicit. Only a few studies have directly examined residents’ knowledge, perceived benefits, and acceptance. This [...] Read more.
Residents’ attitudes towards offshore wind farms have been researched extensively over the past few decades. In this research, the precept that offshore wind farms influence residents’ well-being is implicit. Only a few studies have directly examined residents’ knowledge, perceived benefits, and acceptance. This study attempts to go beyond attitude-based research and explicitly examines factors influencing acceptance decision-making. The data for this qualitative study was collected through face-to-face interviews at a proposed offshore wind farm site in Perth, Western Australia. Results from the study suggest that offshore wind farms are not perceived or responded to uniformly by residents. This study provides a more comprehensive understanding of the dynamics and complexities behind identifying and explaining how residents of designated communities perceive offshore wind farms in a nuanced manner. Therefore, this study proffers significant theoretical discussions and practical implications regarding developing sustainable renewable energy alternatives in cities across Australia. Full article
Show Figures

Figure 1

18 pages, 1370 KiB  
Article
Price Impacts of Energy Transition on the Interconnected Wholesale Electricity Markets in the Northeast United States
by Jay W. Zarnikau, Chi-Keung Woo, Kang Hua Cao and Han Steffan Qi
Energies 2025, 18(15), 4019; https://doi.org/10.3390/en18154019 - 28 Jul 2025
Viewed by 194
Abstract
Our regression analysis documents that energy policies to promote renewable energy development, as well as hydroelectric imports from Canada, lead to short-run reductions in average electricity prices (also known as merit-order effects) throughout the Northeast United States. Changes in the reliance upon renewable [...] Read more.
Our regression analysis documents that energy policies to promote renewable energy development, as well as hydroelectric imports from Canada, lead to short-run reductions in average electricity prices (also known as merit-order effects) throughout the Northeast United States. Changes in the reliance upon renewable energy in one of the Northeast’s three interconnected electricity markets will impact wholesale prices in the other two. The retirement of a 1000 MW nuclear plant can increase prices by about 9% in the Independent System Operator of New England market and 7% in the New York Independent System Operator market in the short run at reference hubs, while also raising prices in neighboring markets. Some proposed large-scale off-shore wind farms would not only lower prices in local markets at the reference hubs modeled but would also lower prices in neighboring markets. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

18 pages, 889 KiB  
Article
Dynamic Leader Election and Model-Free Reinforcement Learning for Coordinated Voltage and Reactive Power Containment Control in Offshore Island AC Microgrids
by Xiaolu Ye, Zhanshan Wang, Qiufu Wang and Shuran Wang
J. Mar. Sci. Eng. 2025, 13(8), 1432; https://doi.org/10.3390/jmse13081432 - 27 Jul 2025
Viewed by 165
Abstract
Island microgrids are essential for the exploitation and utilization of offshore renewable energy resources. However, voltage regulation and accurate reactive power sharing remain significant technical challenges that need to be addressed. To tackle these issues, this paper proposes an algorithm that integrates a [...] Read more.
Island microgrids are essential for the exploitation and utilization of offshore renewable energy resources. However, voltage regulation and accurate reactive power sharing remain significant technical challenges that need to be addressed. To tackle these issues, this paper proposes an algorithm that integrates a dynamic leader election (DLE) mechanism and model-free reinforcement learning (RL). The algorithm aims to address the issue of fixed leaders restricting reactive power flow between buses during heavy load variations in island microgrids, while also overcoming the challenge of obtaining model parameters such as resistance and inductance in practical microgrids. First, we establish a voltage containment control and reactive power error model for island alternating current (AC) microgrids and construct a corresponding value function based on this error model. Second, a dynamic leader election algorithm is designed to address the issue of fixed leaders restricting reactive power flow between buses due to preset voltage limits under unknown or heavy load conditions. The algorithm adaptively selects leaders based on bus load, allowing the voltage limits to adjust accordingly and regulating reactive power flow. Then, to address the difficulty of accurately acquiring parameters such as resistance and inductance in microgrid lines, a model-free reinforcement learning method is introduced. This method relies on real-time measurements of voltage and reactive power data, without requiring specific model parameters. Ultimately, simulation experiments on offshore island microgrids are conducted to validate the effectiveness of the proposed algorithm. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 737
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

31 pages, 3874 KiB  
Review
Vertical-Axis Wind Turbines in Emerging Energy Applications (1979–2025): Global Trends and Technological Gaps Revealed by a Bibliometric Analysis and Review
by Beatriz Salvador-Gutierrez, Lozano Sanchez-Cortez, Monica Hinojosa-Manrique, Adolfo Lozada-Pedraza, Mario Ninaquispe-Soto, Jorge Montaño-Pisfil, Ricardo Gutiérrez-Tirado, Wilmer Chávez-Sánchez, Luis Romero-Goytendia, Julio Díaz-Aliaga and Abner Vigo-Roldán
Energies 2025, 18(14), 3810; https://doi.org/10.3390/en18143810 - 17 Jul 2025
Viewed by 836
Abstract
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to [...] Read more.
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to map global research trends, and a parallel mini-review distilled recent advances into five thematic areas: aerodynamic strategies, advanced materials, urban integration, hybrid systems, and floating offshore platforms. The results reveal that VAWT research output has surged since 2006, led by China with strong contributions from Europe and North America, and is concentrated in leading renewable energy journals. Dominant topics include computational fluid dynamics (CFD) simulations, performance optimization, wind–solar hybrid integration, and adaptation to turbulent urban environments. Technologically, active and passive aerodynamic innovations have boosted performance albeit with added complexity, remaining mostly at moderate technology readiness (TRL 3–5), while advanced composite materials are improving durability and fatigue life. Emerging applications in microgrids, building-integrated systems, and offshore floating platforms leverage VAWTs’ omnidirectional, low-noise operation, although challenges persist in scaling up, control integration, and long-term field validation. Overall, VAWTs are gaining relevance as a complement to conventional turbines in the sustainable energy transition, and this study’s integrated approach identifies critical gaps and high-priority research directions to accelerate VAWT development and help transition these turbines from niche prototypes to mainstream renewable solutions. Full article
Show Figures

Figure 1

22 pages, 15594 KiB  
Article
Seasonally Robust Offshore Wind Turbine Detection in Sentinel-2 Imagery Using Imaging Geometry-Aware Deep Learning
by Xike Song and Ziyang Li
Remote Sens. 2025, 17(14), 2482; https://doi.org/10.3390/rs17142482 - 17 Jul 2025
Viewed by 322
Abstract
Remote sensing has emerged as a promising technology for large-scale detection and updating of global wind turbine databases. High-resolution imagery (e.g., Google Earth) facilitates the identification of offshore wind turbines (OWTs) but offers limited offshore coverage due to the high cost of capturing [...] Read more.
Remote sensing has emerged as a promising technology for large-scale detection and updating of global wind turbine databases. High-resolution imagery (e.g., Google Earth) facilitates the identification of offshore wind turbines (OWTs) but offers limited offshore coverage due to the high cost of capturing vast ocean areas. In contrast, medium-resolution imagery, such as 10-m Sentinel-2, provides broad ocean coverage but depicts turbines only as small bright spots and shadows, making accurate detection challenging. To address these limitations, We propose a novel deep learning approach to capture the variability in OWT appearance and shadows caused by changes in solar illumination and satellite viewing geometry. Our method learns intrinsic, imaging geometry-invariant features of OWTs, enabling robust detection across multi-seasonal Sentinel-2 imagery. This approach is implemented using Faster R-CNN as the baseline, with three enhanced extensions: (1) direct integration of imaging parameters, where Geowise-Net incorporates solar and view angular information of satellite metadata to improve geometric awareness; (2) implicit geometry learning, where Contrast-Net employs contrastive learning on seasonal image pairs to capture variability in turbine appearance and shadows caused by changes in solar and viewing geometry; and (3) a Composite model that integrates the above two geometry-aware models to utilize their complementary strengths. All four models were evaluated using Sentinel-2 imagery from offshore regions in China. The ablation experiments showed a progressive improvement in detection performance in the following order: Faster R-CNN < Geowise-Net < Contrast-Net < Composite. Seasonal tests demonstrated that the proposed models maintained high performance on summer images against the baseline, where turbine shadows are significantly shorter than in winter scenes. The Composite model, in particular, showed only a 0.8% difference in the F1 score between the two seasons, compared to up to 3.7% for the baseline, indicating strong robustness to seasonal variation. By applying our approach to 887 Sentinel-2 scenes from China’s offshore regions (2023.1–2025.3), we built the China OWT Dataset, mapping 7369 turbines as of March 2025. Full article
Show Figures

Graphical abstract

18 pages, 1709 KiB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 307
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

23 pages, 2079 KiB  
Article
Offshore Energy Island for Sustainable Water Desalination—Case Study of KSA
by Muhnad Almasoudi, Hassan Hemida and Soroosh Sharifi
Sustainability 2025, 17(14), 6498; https://doi.org/10.3390/su17146498 - 16 Jul 2025
Viewed by 469
Abstract
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework [...] Read more.
This study identifies the optimal location for an offshore energy island to supply sustainable power to desalination plants along the Red Sea coast. As demand for clean energy in water production grows, integrating renewables into desalination systems becomes increasingly essential. A decision-making framework was developed to assess site feasibility based on renewable energy potential (solar, wind, and wave), marine traffic, site suitability, planned developments, and proximity to desalination facilities. Data was sourced from platforms such as Windguru and RETScreen, and spatial analysis was conducted using Inverse Distance Weighting (IDW) and Multi-Criteria Decision Analysis (MCDA). Results indicate that the central Red Sea region offers the most favorable conditions, combining high renewable resource availability with existing infrastructure. The estimated regional desalination energy demand of 2.1 million kW can be met using available renewable sources. Integrating these sources is expected to reduce local CO2 emissions by up to 43.17% and global desalination-related emissions by 9.5%. Spatial constraints for offshore installations were also identified, with land-based solar energy proposed as a complementary solution. The study underscores the need for further research into wave energy potential in the Red Sea, due to limited real-time data and the absence of a dedicated wave energy atlas. Full article
Show Figures

Figure 1

24 pages, 10449 KiB  
Article
Quantifying the System Benefits of Ocean Energy in the Context of Variability: A UK Example
by Donald R. Noble, Shona Pennock, Daniel Coles, Timur Delahaye and Henry Jeffrey
Energies 2025, 18(14), 3717; https://doi.org/10.3390/en18143717 - 14 Jul 2025
Viewed by 197
Abstract
Recent studies have shown benefits of using tidal stream and wave energy in the electricity generation mix to improve supply–demand balancing on annual/subannual timeframes. This paper investigates this further by considering the variability of solar photovoltaic, onshore and offshore wind, wave, and tidal [...] Read more.
Recent studies have shown benefits of using tidal stream and wave energy in the electricity generation mix to improve supply–demand balancing on annual/subannual timeframes. This paper investigates this further by considering the variability of solar photovoltaic, onshore and offshore wind, wave, and tidal stream over multiple years. It also considers their ability to match with electricity demand when combined. Variability of demand and generation can have a significant impact on results. Over the sample of five years considered (2015–2019), demand varied by around 3%, and the availability of each renewable technology differed by up to 9%. This highlights the importance of considering multiple years of input data when assessing power system impacts, instead of relying on an ‘average’ year. It is also key that weather related correlations between renewable resources and with demand can be maintained in the data. Results from an economic dispatch model of Great Britain’s power system in 2030 are even more sensitive to the input data year, with costs and carbon emissions varying by up to 21% and 45%, respectively. Using wave or tidal stream as part of the future energy mix was seen to have a positive impact in all cases considered; 1 GW of wave and tidal (0.57% of total capacity) reduces annual dispatch cost by 0.2–1.3% and annual carbon emissions by 2.3–3.5%. These results lead to recommended best practises for modelling high renewable power systems, and will be of interest to modellers and policy makers. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

24 pages, 2671 KiB  
Review
Navigational Safety Hazards Posed by Offshore Wind Farms: A Comprehensive Literature Review and Bibliometric Analysis
by Vice Milin, Ivica Skoko, Željana Lekšić and Zlatko Boko
J. Mar. Sci. Eng. 2025, 13(7), 1330; https://doi.org/10.3390/jmse13071330 - 11 Jul 2025
Viewed by 226
Abstract
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to [...] Read more.
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to the safety of navigation of the ships that navigate in their vicinity ought to be examined further. An ever-growing number of OWFs has led to safety concerns that have never been taken into consideration before. This article gives a structured quantitative analysis and an in-depth review of the literature connected to the safety of navigation, collision probability, and risk assessment that OWFs pose to all maritime industry agents. In this article, the main concerns of the impact of OWFs to the safety of navigation are analyzed using a combination of both the PRISMA and PICOC methodologies. Various types of scientific papers such as journal articles, conference proceedings, MSc theses, PhD theses, and online works of research are collated into a detailed bibliometric analysis and categorized by the most relevant parameters providing valuable perspectives on the current state of art in the field. The findings of this research emphasize the need for a further and more thorough analysis on the theoretical installment of OWFs and their inevitable impact on increasing maritime traffic complexity. The results of this article can form a strong basis for further scientific development in the field and can give useful insights to all maritime industry stakeholders dealing with OWFs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop