Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (181)

Search Parameters:
Keywords = offshore oil field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1929 KiB  
Article
An Investigation of Channeling Identification for the Thermal Recovery Process of Horizontal Wells in Offshore Heavy Oil Reservoirs
by Renfeng Yang, Taichao Wang, Lijun Zhang, Yabin Feng, Huiqing Liu, Xiaohu Dong and Wei Zheng
Energies 2025, 18(13), 3450; https://doi.org/10.3390/en18133450 - 30 Jun 2025
Viewed by 222
Abstract
The development of inter-well channeling pathways has become a major challenge restricting the effectiveness of the thermal recovery process for heavy oil reservoirs, which leads to non-uniform sweep and reduced oil recovery. This is especially true for the characteristics of the higher injection–production [...] Read more.
The development of inter-well channeling pathways has become a major challenge restricting the effectiveness of the thermal recovery process for heavy oil reservoirs, which leads to non-uniform sweep and reduced oil recovery. This is especially true for the characteristics of the higher injection–production intensity in offshore operations, making the issue more prominent. In this study, a quick and widely applicable approach is proposed for channeling identification, utilizing the static reservoir parameters and injection–production performance. The results show that the cumulative injection–production pressure differential (CIPPD) over the cumulative water equivalent (CWE) exhibits a linear relationship when connectivity exists between the injection and production wells. Thereafter, the seepage resistance could be analyzed quantitatively by the slope of the linear relationship during the steam injection process. Simultaneously, a channeling identification chart could be obtained based on the data of injection–production performance, dividing the steam flooding process into three different stages, including the energy recharge zone, interference zone, and channeling zone. Then, the established channeling identification chart is applied to injection–production data from two typical wells in the Bohai oilfield. From the obtained channeling identification chart, it is shown that Well X1 exhibits no channeling, while Well X2 exhibited channeling in the late stage of the steam flooding process. These findings are validated against the field performance (i.e., the liquid rate, water cut, flowing temperature, and flowing pressure) to confirm the accuracy. The channeling identification approach in this paper provides a guide for operational adjustments to improve the effect of the thermal recovery process in the field. Full article
Show Figures

Figure 1

17 pages, 3303 KiB  
Article
Research on High-Performance Underwater-Curing Polymer Composites for Offshore Oil Riser Pipes
by Xuan Zhao, Jun Wan, Xuefeng Qv, Yajun Yu and Huiyan Zhao
Polymers 2025, 17(13), 1827; https://doi.org/10.3390/polym17131827 - 30 Jun 2025
Viewed by 466
Abstract
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical [...] Read more.
In offshore oil and gas extraction, riser pipes serve as the first isolation barrier for wellbore integrity, playing a crucial role in ensuring operational safety. Protective coatings represent an effective measure for corrosion prevention in riser pipes. To address issues such as electrochemical corrosion and poor adhesion of existing coatings, this study developed an underwater-curing composite material based on a polyisobutylene (PIB) and butyl rubber (IIR) blend system. The material simultaneously exhibits high peel strength, low water absorption, and stability across a wide temperature range. First, the contradiction between material elasticity and strength was overcome through the synergistic effect of medium molecular weight PIB internal plasticization and IIR crosslinking networks. Second, stable peel strength across a wide temperature range (−45 °C to 80 °C) was achieved by utilizing the interfacial effects of nano-fillers. Subsequently, an innovative solvent-free two-component epoxy system was developed, combining medium molecular weight PIB internal plasticization, nano-silica hydrogen bond reinforcement, and latent curing agent regulation. This system achieves rapid surface drying within 30 min underwater and pull-off strength exceeding 3.5 MPa. Through systematic laboratory testing and field application experiments on offshore oil and gas well risers, the material’s fundamental properties and operational performance were determined. Results indicate that the material exhibits a peel strength of 5 N/cm on offshore oil risers, significantly extending the service life of the riser pipes. This research provides theoretical foundation and technical support for improving the efficiency and reliability of repair processes for offshore oil riser pipes. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites: 2nd Edition)
Show Figures

Figure 1

30 pages, 76684 KiB  
Review
Offshore Geothermal Energy Perspectives: Hotspots and Challenges
by Paulo H. Gulelmo Souza and Alexandre Szklo
Resources 2025, 14(7), 103; https://doi.org/10.3390/resources14070103 - 23 Jun 2025
Viewed by 890
Abstract
Geothermal energy is a low-carbon and reliable energy resource capable of generating both heat and electricity from the Earth’s internal thermal energy. While geothermal development has traditionally been focused on onshore sites, offshore geothermal resources are attracting growing interest due to advancements in [...] Read more.
Geothermal energy is a low-carbon and reliable energy resource capable of generating both heat and electricity from the Earth’s internal thermal energy. While geothermal development has traditionally been focused on onshore sites, offshore geothermal resources are attracting growing interest due to advancements in technology, the search for alternative baseload power, and the opportunity to repurpose decommissioned petroleum infrastructure. Recent efforts include utilizing abandoned oil and gas fields to adapt existing infrastructure for geothermal use, as well as exploring high-temperature geothermal zones such as submarine volcanoes and hotspots. Despite these initiatives, research output, scientific publications and patents remain relatively limited, suggesting that offshore geothermal technology is still in its early stages. Countries like Italy, Indonesia and Turkey are actively investigating geothermal resources in volcanic marine areas, while North Sea countries and the USA are assessing the feasibility of converting mature oil and gas fields into geothermal energy sites. These diverse strategies underscore the regional geological and infrastructure conditions in shaping development approaches. Although expertise from the oil and gas industry can accelerate technological progress in marine geothermal energy, economic challenges remain. Therefore, improving cost competitiveness is crucial for offshore geothermal energy. Full article
Show Figures

Figure 1

26 pages, 5445 KiB  
Article
Research on Sensorless Control Strategy of High-Speed Submersible Permanent Magnet Synchronous Motor
by Liang Xiong, Xiaolian Zhang, Lieyu Tian, Yang Lv, Jinsong Lu, Ailiyaer Ahemaiti, Qi Shi and Junguo Cui
Actuators 2025, 14(6), 282; https://doi.org/10.3390/act14060282 - 9 Jun 2025
Viewed by 433
Abstract
The application fields of high-speed submersible permanent magnet synchronous motors (PMSM) are constantly expanding. Especially in high-risk and complex environments such as oil exploration, offshore oil exploitation, and deep well operation, the reliability, stability, and efficiency of motor drive systems are more and [...] Read more.
The application fields of high-speed submersible permanent magnet synchronous motors (PMSM) are constantly expanding. Especially in high-risk and complex environments such as oil exploration, offshore oil exploitation, and deep well operation, the reliability, stability, and efficiency of motor drive systems are more and more prominent. The submersible motor is greatly affected by load disturbance, pressure change, and external oil flow, and the traditional method may not perform well in complex disturbance problems. Therefore, a three-order adaptive nonlinear extended state observer is proposed to collect the input and output information of the system in real time, and estimate the motor speed, position, and total disturbance. A linear feedback control law is designed to eliminate the disturbance. The superiority of the proposed algorithm under complex operating conditions is verified by the Simulink model and experiments, which provide a theoretical basis for the control of submersible motors. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

22 pages, 5064 KiB  
Article
Research on the Influencing Factors During Hydraulic Fracturing Assisted Oil Displacement Process in Offshore Low Permeability Oilfields and the Quantitative Characterization of Fracture Propagation and Liquid Infiltration
by Hui Yuan, Jianfeng Peng, Shaowei Wu, Qi Li, Xiaojin Wan, Yikun Liu, Ru Shan and Shuang Liang
Processes 2025, 13(6), 1783; https://doi.org/10.3390/pr13061783 - 4 Jun 2025
Viewed by 449
Abstract
Hydraulic fracturing-assisted oil displacement (HFAOD) can improve the productivity of offshore low-permeability reservoirs, but challenges such as rapid productivity decline, difficulty in controlling fracture height, and unclear influence of geological and operational factors on key parameters of HFAOD persist. This study establishes a [...] Read more.
Hydraulic fracturing-assisted oil displacement (HFAOD) can improve the productivity of offshore low-permeability reservoirs, but challenges such as rapid productivity decline, difficulty in controlling fracture height, and unclear influence of geological and operational factors on key parameters of HFAOD persist. This study establishes a fluid-solid coupling model for HFAOD and verifies its accuracy with field data. It clarifies the laws of HFAOD fracture propagation and fluid infiltration, conducts sensitivity analyses to identify dominant factors affecting fracture propagation and fluid infiltration, and achieves quantitative characterization and rapid prediction of fracture half-length and infiltration radius. The results indicate that the HFAOD fluid undergoes simultaneous infiltration during fracture propagation. In the initial stage of HFAOD, the fluid primarily contributes to fracture creation with limited infiltration, while in the middle to late stages, fracture propagation diminishes, and the infiltration radius expands significantly. The dominant controlling factors affecting HFAOD fracture propagation are reservoir thickness and cumulative injection volume; the dominant controlling factors affecting HFAOD fluid infiltration are permeability and formation pressure coefficient before HFAOD, which should be given special attention on site. This study quantifies the relationships between HFAOD key parameters (fracture half-length and infiltration radius) and their dominant controlling factors and establishes a mathematical model for a rapid prediction of these parameters. The research results provide a theoretical basis for optimizing HFAOD designs in offshore low-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 3909 KiB  
Article
Application of Blasingame’s Modern Production-Decline Analysis Method in Production Performance Analysis of Buried Hill Condensate Gas Reservoir
by Lingang Lv, Peng Chen and Hang Lai
Processes 2025, 13(6), 1645; https://doi.org/10.3390/pr13061645 - 23 May 2025
Viewed by 497
Abstract
With the increase in exploration in recent years, buried hill condensate gas reservoirs have gradually become an important field for increasing reserves and production of offshore oil and gas in China, and efficient development of condensate gas reservoirs has also become a hot [...] Read more.
With the increase in exploration in recent years, buried hill condensate gas reservoirs have gradually become an important field for increasing reserves and production of offshore oil and gas in China, and efficient development of condensate gas reservoirs has also become a hot issue in hydrocarbon development. Due to the complex phase-change law and retrograde condensation phenomenon of deep condensate gas reservoirs, the reservoir properties and production dynamics data obtained by conventional pressure-recovery-test methods were greatly limited, and the dynamic data and evaluation parameters of the single well control area cannot be accurately determined. In this paper, using the production analysis method to analyze the production dynamics data of a single well, combined with static geological data and well-test analysis data, the reservoir parameters of a single well were evaluated. Specifically, the Blasingame method was applied to realize the production-decline law of production wells, and new dimensionless flow, pressure parameters, and pseudo-time functions were introduced. Using the unstable well test theory and the traditional production decline analysis technology, the IHS Harmony software is used to fit the production dynamic data with the theoretical chart. The evaluation parameters such as reservoir permeability, skin factor, well control radius, and well control reserves were calculated, providing strong support for the production decision-making of the petroleum industry and also providing a strong decision-making basis for the dynamic adjustment of oil–gas-well manufacture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 4031 KiB  
Article
The Prediction of the Valve Opening Required for Slugging Control in Offshore Pipeline Risers Based on Empirical Closures and Valve Characteristics
by Jiqiang Fu, Quanhong Wu, Jie Sun, Hanxuan Wang and Suifeng Zou
J. Mar. Sci. Eng. 2025, 13(5), 981; https://doi.org/10.3390/jmse13050981 - 19 May 2025
Viewed by 445
Abstract
Topside choking is a common way to eliminate severe slugging flow in pipeline riser systems in offshore oil and gas fields. However, a lack of fundamentals in two-phase flow gives rise to difficulty in the model selection of valves and the effective control [...] Read more.
Topside choking is a common way to eliminate severe slugging flow in pipeline riser systems in offshore oil and gas fields. However, a lack of fundamentals in two-phase flow gives rise to difficulty in the model selection of valves and the effective control of the valves. In this study, the prediction of the valve opening required for slugging control based on measurable parameters is investigated experimentally and theoretically. It is found that the resistance coefficient factor of the valve is almost the same for pipeline risers and simple vertical pipes when severe slugging is eliminated. Therefore, fluid parameters can be approximated by the conditions of a simple vertical pipe. The target of control is to achieve dual-frequency fluctuation, and it is quantitatively converted to the pressure drop of the valve. Based on these two empirical enclosures, the valve opening can be worked out by using the gas fraction model and the theoretical model of valve flow resistance. The non-slip model is found to be better than the drift-flux model in the final prediction of the optimal valve opening. An explicit model for the calculation of the optimal resistance factor and the corresponding valve opening is established, making it more convenient to select the valve in the design stage of offshore oil and gas exploitation. The average absolute error of the proposed model is +0.01%, which is smaller than the simulation performed by OLGA 7.0 software (+4.91% before tuning and +0.08% after tuning). A field case with a flexible S-shape riser proves the good applicability of the model (with a deviation smaller than ±2%). The applications of the prediction model in the model selection of the valve and uncertain factors in the operation are also discussed. Full article
(This article belongs to the Special Issue Advanced Research in Flexible Riser and Pipelines)
Show Figures

Figure 1

27 pages, 3006 KiB  
Article
Designing and Modeling Value-Added Production Sharing Contracts (VAPSC): From Offshore Gas to LNG in Lebanon
by Evgenii Marin, Tatiana Ponomarenko and Fatima Dirani
Resources 2025, 14(5), 79; https://doi.org/10.3390/resources14050079 - 16 May 2025
Viewed by 3559
Abstract
This article presents the value-added production-sharing contract (VAPSC), an extension of traditional production-sharing contracts (PSCs), which encompasses raw materials production, subsequent processing, and the final ‘sharing’ of goods. Developing countries often face challenges in oil and gas exploration, production, and sector development, necessitating [...] Read more.
This article presents the value-added production-sharing contract (VAPSC), an extension of traditional production-sharing contracts (PSCs), which encompasses raw materials production, subsequent processing, and the final ‘sharing’ of goods. Developing countries often face challenges in oil and gas exploration, production, and sector development, necessitating new collaborative frameworks between governments, industries, and international companies. The study justifies the economic terms of VAPSC that align with Lebanon’s national regulations, focusing on offshore gas production and the subsequent production and sale of liquefied natural gas (LNG). The research evaluates VAPSC application in Lebanon through a case study involving offshore gas field development, LNG plant construction, and consequent LNG-sharing. Results demonstrate the VAPSC potential to promote petroleum sector development by generating added value for both the state and society, as well as economic efficiency for the contractor. The research contributes to contract theory by introducing VAPSC as a novel framework for integrating hydrocarbon extraction, subsequent processing, and value-added product distribution, offering a replicable model for other resource-rich developing nations. The main findings include the design of a new type of contract—VAPSC—along with an economic-mathematical model for optimizing government-investor partnerships and the definition of key contractual terms. Full article
Show Figures

Figure 1

17 pages, 1403 KiB  
Article
Research and Application Analysis of Intelligent Control Strategy for Water Injection Pump in Offshore Oil and Gas Field
by Weizheng An, Yingyi Ma, Haibo Xu, Erqinhu Ke, Xianjie Liao and Ruijie Zhao
Water 2025, 17(10), 1506; https://doi.org/10.3390/w17101506 - 16 May 2025
Viewed by 426
Abstract
This paper discusses the energy-saving control method of a pipeline network system based on reinforcement learning and a genetic algorithm and compares it with traditional control methods such as constant-pressure control and non-frequency conversion control. The purpose is to improve the operational efficiency [...] Read more.
This paper discusses the energy-saving control method of a pipeline network system based on reinforcement learning and a genetic algorithm and compares it with traditional control methods such as constant-pressure control and non-frequency conversion control. The purpose is to improve the operational efficiency of an offshore oil and gas field water injection system. This paper simulates and verifies the experimental platform of a water injection system pipe network in offshore oil and gas fields and evaluates the optimization effect of different control strategies under different flow rates. The experimental results reveal that under a varying flow rate, the water injection system harnessing the GA and RL exhibits a remarkable energy-saving advantage over traditional control methods. Specifically, the GA strategy achieves an average energy-saving rate of 22.51%, with a maximum energy-saving rate of 38.14% under low flow rate, while the RL strategy attains an average energy-saving rate of 18.39%. These methodologies not only furnish novel solutions for the real-time optimal scheduling of water injection systems in offshore oil and gas fields but also proffer practical guidance, thereby paving the way for technological advancement and sustainable development in the industry. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery, 3rd Edition)
Show Figures

Figure 1

17 pages, 11157 KiB  
Article
A New Characterization Method for Dynamic Connectivity Field Between Injection and Production Wells in Offshore Reservoir
by Changchun Guo, Yuzhou Hu, Li Tao, Mengna Cheng, Fankun Meng, Hui Zhao and Fengshuang Du
J. Mar. Sci. Eng. 2025, 13(5), 906; https://doi.org/10.3390/jmse13050906 - 2 May 2025
Viewed by 369
Abstract
Connectivity between injection and production wells is critical for efficient oil production, especially in offshore reservoirs where the number of wells is limited. Though several methods for point-to-point connectivity have been developed, there is a lack of characterization methods for the dynamic connectivity [...] Read more.
Connectivity between injection and production wells is critical for efficient oil production, especially in offshore reservoirs where the number of wells is limited. Though several methods for point-to-point connectivity have been developed, there is a lack of characterization methods for the dynamic connectivity field, which describes connectivity for the whole reservoir. Based on the concept of pore-scale connectivity, this work proposes a multi-parameter integrated model to represent the connectivity field. The calculated connectivity is consistent with simulated streamlines between wells. Key influencing factors, including permeability heterogeneity, injection rate and viscosity ratio on the connectivity field, are systematically analyzed. The established method is then applied to construct the connectivity field in an offshore reservoir. First, a point cloud is applied to represent the reservoir characteristics. Then, the connection network is established, with parameters obtained from history matching. In this way, the point-to-point connectivity is transformed into a connectivity field. The connectivity between injection and production wells is validated by comparing with the on-site tracer test and measured allocation factor of water injection. This approach holds significant potential for enhancing the efficiency of water injection and optimizing offshore reservoir management. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

18 pages, 12576 KiB  
Article
Global Methane Retrieval, Monitoring, and Quantification in Hotspot Regions Based on AHSI/ZY-1 Satellite
by Tong Lu, Zhengqiang Li, Cheng Fan, Zhuo He, Xinran Jiang, Ying Zhang, Yuanyuan Gao, Yundong Xuan and Gerrit de Leeuw
Atmosphere 2025, 16(5), 510; https://doi.org/10.3390/atmos16050510 - 28 Apr 2025
Viewed by 701
Abstract
Methane is the second largest greenhouse gas. The detection of methane super-emitters and the quantification of their emission rates are necessary for the implementation of methane emission reduction policies to mitigate global warming. High-spectral-resolution satellites such as Gaofen-5 (GF-5), EMIT, GHGSat, and MethaneSAT [...] Read more.
Methane is the second largest greenhouse gas. The detection of methane super-emitters and the quantification of their emission rates are necessary for the implementation of methane emission reduction policies to mitigate global warming. High-spectral-resolution satellites such as Gaofen-5 (GF-5), EMIT, GHGSat, and MethaneSAT have been successfully employed to detect and quantify methane point source leaks. In this study, a matched filter (MF) algorithm is improved using data from the EMIT instrument and applied to data from the Advanced Hyperspectral Imager (AHSI) onboard the Ziyuan-1 (ZY-1) satellite. Validation by comparison with EMIT′s L2 XCH4 products shows the good performance of the improved MF algorithm, in spite of the lower spectral resolution of AHSI/ZY-1 in comparison with other point source imagers. The improved MF algorithm applied to AHSI/ZY-1 data was used to detect and quantify methane super-emitters in global methane hotspot regions. The results show that the improved MF algorithm effectively suppresses noise in retrieval results over both land and ocean surfaces, enhancing algorithm robustness. Sixteen methane plumes were detected in global hotspot regions, originating from coal mines, oil and gas fields, and landfills, with emission rates ranging from 0.57 to 78.85 t/h. The largest plume was located at an offshore oil and gas field in the Gulf of Mexico, with instantaneous emissions nearly equal to the combined total of the other 15 plumes. The findings demonstrate that AHSI, despite its lower spectral resolution, can detect sources with emission rates as small as 571 kg/h and achieve faster retrieval speeds, showing significant potential for global methane monitoring. Additionally, this study highlights the need to focus on methane emissions from marine sources, alongside terrestrial sources, to efficiently implement reduction strategies. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 5439 KiB  
Article
Research and Application of Fracturing Testing Technology in a South-West Weizhou Oilfield Shale Oil Exploration Well
by Wenbo Meng, Yan Jin, Yunhu Lu, Guanlong Ren and Shiming Wei
Energies 2025, 18(8), 2007; https://doi.org/10.3390/en18082007 - 14 Apr 2025
Viewed by 412
Abstract
A numerical analysis model for sand-mudstone interbedded fracturing based on field application in South China is presented in this paper. The proposed model can analyze the influence laws of different longitudinal lithology changes, stress difference changes, different interlayer positions, and fracturing fluid construction [...] Read more.
A numerical analysis model for sand-mudstone interbedded fracturing based on field application in South China is presented in this paper. The proposed model can analyze the influence laws of different longitudinal lithology changes, stress difference changes, different interlayer positions, and fracturing fluid construction parameters on fracture characteristics. Based on the study of fracture characteristics of low-modulus mudstone, a set of layered stress loading experimental devices was independently designed and developed. Experimental analysis shows that the stress difference has a limited limiting effect on the interlayer propagation of hydraulic fracturing fractures in the Weizhou Formation, and the fracture height is prone to interlayer propagation. The injection of high-rate and high-viscosity fracturing fluid has a significant impact on the hydraulic fracture surface penetration. Numerical simulation analysis shows that the smaller the elastic modulus of the mudstone interlayer and the lower the minimum horizontal principal stress compared to the sandstone layer, the more favorable it is for fracture propagation. Field application showed that the highest injection rate of the fracturing pump in well A was 7 m3/min for south-west Weizhou oilfield shale oil. The interpretation results of the acoustic logging after fracturing showed obvious response characteristics of the formation fractures, and the farthest detection fracture response well distance was 12 m, indicating a good fracturing transformation effect and providing technical support for subsequent offshore shale oil fracturing construction. Full article
Show Figures

Figure 1

21 pages, 1766 KiB  
Review
Fuzzy-Ball Fluids: Fundamentals, Mechanisms, and Prospects for Clean Energy and Oilfield Applications
by Long Jin, Chinedu J. Okere, Qin Guo and Lihui Zheng
Energies 2025, 18(7), 1592; https://doi.org/10.3390/en18071592 - 22 Mar 2025
Cited by 2 | Viewed by 514
Abstract
Fuzzy-ball fluids have emerged as a novel class of chemical sealaplugging materials with significant potential for enhancing both traditional oilfield operations and clean energy technologies. They are characterized by unique viscoelastic properties, plugging, self-adapting capabilities, and the ability to regulate multi-phase fluid flow [...] Read more.
Fuzzy-ball fluids have emerged as a novel class of chemical sealaplugging materials with significant potential for enhancing both traditional oilfield operations and clean energy technologies. They are characterized by unique viscoelastic properties, plugging, self-adapting capabilities, and the ability to regulate multi-phase fluid flow under extreme subsurface conditions. In oilfield applications, fuzzy-ball fluids offer solutions for drilling, hydraulic fracturing, workover operations, and enhanced oil recovery in shallow, deep, and offshore reservoirs. In clean energy fields such as hydrogen storage, carbon capture, utilization, and storage, and geothermal energy, they show promise in improving energy efficiency, storage security, and environmental sustainability. This review explores the fundamental principles and mechanisms behind fuzzy-ball fluids, examines their field applications in the oil and gas industry, and investigates their potential in emerging clean energy technologies. This study also identifies key challenges, including material stability, economic viability, and environmental impact, which must be addressed to ensure the successful deployment of fuzzy-ball fluids. Furthermore, we outline future research directions, emphasizing material optimization, large-scale field trials, environmental impact assessments, and interdisciplinary collaboration to accelerate the commercialization of fuzzy-ball fluid technologies. By addressing these challenges, fuzzy-ball fluids could play a transformative role in both conventional and clean energy fields, contributing to sustainable and efficient energy solutions. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

15 pages, 11658 KiB  
Article
Polymer Flooding Injectivity Maintaining and Enhancement Strategies: A Field Case Study of Chinese Offshore EOR Project
by Chenxi Wang, Jian Zhang, Bo Huang, Hong Du, Xianghai Meng, Xianjie Li, Xinsheng Xue, Yi Su, Chao Li and Haiping Guo
Processes 2025, 13(3), 903; https://doi.org/10.3390/pr13030903 - 19 Mar 2025
Viewed by 656
Abstract
Polymer flooding has been gradually applied in Chinese offshore oilfields to enhance oil recovery (EOR). Injectivity loss during polymer flooding is a common issue that could cause lower displacement speed and efficiency, and eventually compromise the polymer flooding result. This paper presents a [...] Read more.
Polymer flooding has been gradually applied in Chinese offshore oilfields to enhance oil recovery (EOR). Injectivity loss during polymer flooding is a common issue that could cause lower displacement speed and efficiency, and eventually compromise the polymer flooding result. This paper presents a case study of a Chinese offshore field where injectivity loss issues were encountered in the polymer flooding project. A series of measures are applied to enhance the injectivity. The injectivity enhancement strategies are proposed and conducted from three main aspects, namely, (1) surface polymer fluid preparation; (2) downhole wellbore stimulation; and (3) reservoir–polymer compatibility, respectively. For the surface polymer fluid preparation, a series of sieve flow tests are conducted to obtain the optimal mesh size to improve the polymer fluid preparation quality and reduce the amount of “fish eyes”. The downhole wellbore stimulations involve oxidization-associated acidizing treatment and re-perforation. Polymer–reservoir compatibility tests are conducted to optimize the molecular weight (MW). Regarding the surface measures, the optimal filtration sieve mesh number is 200, which could reduce fish eyes to a desirable level without causing mesh plugging. After mesh refinement, the average injection pressure of the twelve injection wells decreases by 0.5 MPa. For the downhole stimulations, acidizing treatment are applied to six injection wells, which decreases the injection pressures by 6 to 7 MPa. For Well A, where acidizing does not work, the re-perforation measure is used and enhances the injectivity by 300%. Moreover, the laboratory and field polymer–reservoir compatibility tests show that the optimal polymer molecular weight (MW) is sixteen million. Proposed strategies applied from the surface, downhole, and reservoir aspects could be used to resolve different levels of injectivity loss, which could provide guidance for future offshore polymer projects. Full article
Show Figures

Figure 1

24 pages, 21490 KiB  
Article
Mechanisms of Differential Enrichment of Oil and Gas in the Paleogene of the Bohai Exploration Area: Controlled by Sag Types and Source–Reservoir Coupling
by Yan Chen, Haitao Liu, Jufeng Wang, Deqiang Sun, Zijun Tang, Chunming Zhang, Fengcheng Wu, Qingyao Li, Zhenglong Jiang and Changyi Zhao
Processes 2025, 13(3), 707; https://doi.org/10.3390/pr13030707 - 28 Feb 2025
Viewed by 896
Abstract
As of 2019, 119 oil and gas fields were involved in the Paleogene of the Bohai exploration area, accounting for more than 85% of the total number of oil and gas fields in the Bohai Bay Basin. Previous studies have confirmed that there [...] Read more.
As of 2019, 119 oil and gas fields were involved in the Paleogene of the Bohai exploration area, accounting for more than 85% of the total number of oil and gas fields in the Bohai Bay Basin. Previous studies have confirmed that there are significant differences in the degree of oil and gas enrichment in the Paleogene of the Bohai exploration area. However, how these differences affect the hydrocarbon generation potential, and oil and gas resource distribution in each region has not been thoroughly studied; the controlling factors contributing to these differences have also not been fully elucidated. In view of this, based on the research results of projects on oil and gas exploration in the Bohai Bay Basin over the past decade, this paper statistically analyzed a large amount of data on source rocks, sedimentation rates, etc., and explored the differential enrichment of oil and gas in the Bohai exploration area and its genetic mechanisms. The research shows that from the offshore to the center of the marine area, the Paleogene oil and gas enrichment horizons have the characteristics of changing from old to new; the Paleogene source rocks in the offshore and marine areas have significant differences in thickness, total organic carbon content, organic matter type and maturity, and these differences determine the hydrocarbon generation potential and oil and gas resource distribution in each area; the sedimentary filling process in the Bohai exploration area is mainly controlled by tectonic uplift and subsidence and changes in lake level, and it has experienced stages such as rifting and lake transgression, thus showing obvious differences in provenance and sedimentary reservoirs; three sets of source–reservoir–caprock combinations are developed in the Bohai exploration area, and oil and gas are mainly enriched in the source rock strata and adjacent reservoirs. The middle and upper source–reservoir–caprock combinations have the best configurations, and from the offshore to the marine area, oil and gas show a trend from enrichment in Es3 to enrichment in Es1–Ed. Due to the differences in sag types, there is differential enrichment of oil and gas in the Bohai exploration area. According to the sedimentation rate, the sag types in the study area can be divided into early-developed type, inherited-developed type and late-developed type. The sag types in the Bohai exploration area show the characteristics of gradually changing from the offshore to the late type in the marine area, and there is a good corresponding relationship between the sag types and the vertical enrichment strata of oil and gas. The research results can provide a reference for discussing the oil and gas accumulation laws and future exploration and development of the Bohai exploration area. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop