Fuzzy-Ball Fluids: Fundamentals, Mechanisms, and Prospects for Clean Energy and Oilfield Applications
Abstract
1. Introduction
2. Fuzzy-Ball Fluids: Composition, Properties, and Mechanisms
2.1. Composition and Structure
2.2. Rheological Properties
2.3. Self-Adapting and Plugging Mechanisms
2.3.1. Self-Adapting Mechanisms
2.3.2. Self-Plugging Mechanisms
3. Applications for Oilfield Development
3.1. Drilling
- High plugging capacity can effectively prevent loss circulation and minimize reservoir damage.
- Formation strengthening enhances the compressive strength of the rock, reducing the likelihood of wellbore collapse during drilling.
3.2. Re-Hydrofracturing
3.3. Improving Oil Recovery
3.4. Well Workover
4. Discussions
4.1. Future Application Directions
4.1.1. Hydrogen Storage Systems
4.1.2. Carbon Capture, Utilization, and Storage
4.1.3. Geothermal Energy Systems
4.2. Challenges and Limitations
4.2.1. Material Stability
4.2.2. Interdisciplinary Collaboration
4.2.3. Economic Viability
4.2.4. Environmental Impact
4.2.5. Comparative Analysis of the Challenges and Limitations
4.3. Future Research Directions
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woon, K.S.; Phuang, Z.X.; Taler, J.; Varbanov, P.S.; Chong, C.T.; Klemeš, J.J.; Lee, C.T. Recent Advances in Urban Green Energy Development towards Carbon Emissions Neutrality. Energy 2023, 267, 126502. [Google Scholar] [CrossRef]
- Li, L.; Lu, S.; Peng, T.; Zhang, M.; Mi, F. Fuzzy-ball Workover Fluids for Formation Damage Control in Jidong Oilfield. Oil Drill. Prod. Technol. 2011, 33, 31–34. [Google Scholar] [CrossRef]
- Ilyushin, Y.; Nosova, V.; Krauze, A. Application of Systems Analysis Methods to Construct a Virtual Model of the Field. Energies 2025, 18, 1012. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, J.; Chen, J.; Li, Y.; Bu, H. Practice of fuzzy-ball drilling fluid for sidetracking horizontal well Mo 80-C1. Drill. Prod. Technol. 2013, 36, 110–113. [Google Scholar]
- Wang, D.; He, Y.; Bu, Y.; Bi, Y.; Zhang, Y.; Luo, H. Practice of Fuzzy-Ball Drilling Fluid Technology in Well Ji X Coal Bed Methane. Oil Drill. Prod. Technol. 2011, 33, 93–95. [Google Scholar] [CrossRef]
- Xu, H.; Wei, P.; Wang, Z.; Zhang, M.; Yang, M.; Fan, J. A Technique of Temporary Blocking for Re-fracturing that Combines Non-solid Phase Fuzzy-Ball Fluid and Fibrous Material. Unconv. Oil Gas 2018, 5, 75–79. [Google Scholar]
- Magzoub, M.; Salehi, S.; Li, G.; Fan, J.; Teodoriu, C. Loss Circulation Prevention in Geothermal Drilling by Shape Memory Polymer. Geothermics 2021, 89, 101943. [Google Scholar] [CrossRef]
- Li, X.; Zheng, L.; Chen, Y.; Huang, X.; Zhai, X.; Wei, P.; Tao, X.; Nie, S. Fuzzy-Ball Fluids Enhance the Production of Oil and Gas Wells: A Historical Review. Energies 2023, 16, 6647. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Derkach, S.R.; Kulichikhin, V.G. Rheology of Gels and Yielding Liquids. Gels 2023, 9, 715. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Q.; Yuan, X.; Hua, X.; Chen, L. Research on a Nano-Composite Cement Slurry System Suitable for Low-Temperature Formations. Pet. Drill. Tech. 2021, 49, 73–80. [Google Scholar]
- Ur Rahman Awan, F.; Keshavarz, A.; Akhondzadeh, H.; Nosrati, A.; Al-Anssari, S.; Iglauer, S. Optimizing the Dispersion of Coal Fines Using Sodium Dodecyl Benzene Sulfonate. In Proceedings of the SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference 2019, APUR 2019, Brisbane, Australia, 18–19 November 2019. [Google Scholar] [CrossRef]
- He, J.; Okere, C.J.; Su, G.; Hu, P.; Zhang, L.; Xiong, W.; Li, Z. Formation Damage Mitigation Mechanism for Coalbed Methane Wells via Refracturing with Fuzzy-Ball Fluid as Temporary Blocking Agents. J. Nat. Gas. Sci. Eng. 2021, 90, 103956. [Google Scholar] [CrossRef]
- González, J.M.; Quintero, F.; Arellano, J.E.; Márquez, R.L.; Sánchez, C.; Pernía, D. Effects of interactions between solids and surfactants on the tribological properties of water-based drilling fluids. Colloids Surf. A Physicochem. Eng. Asp. 2011, 391, 216–223. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Zhao, Z.; Tao, D.; Zhang, X. Properties of Chorionic Vesicle Fluids Prepared by Different Surfactants. Oilfield Chem. 2022, 37, 229–233. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.; Li, J.; Li, X.; Zheng, H. Soft Capsule Drilling Fluid Technology for 215.9mm CBM Well and Horizontal Well. China Coalbed Methane 2012, 9, 18–21. [Google Scholar]
- Li, Z. Practice of fuzzy ball cementing pad fluid in leakage zone of Naiman well N-X-Y. Adv. Mater. Res. 2013, 773, 714–719. [Google Scholar]
- Yan, L.; Shen, R.; Yuan, G.; Li, B.; Wei, P.; Xian, Y.; Zhao, Z. Application of Near Collapse Pressureanti-sloughing Drilling Fluids in CBM Wells at Fanzhuang Block. J. China Coal Soc. 2015, 40, 144–150. [Google Scholar] [CrossRef]
- Wang, H.; Cui, J.; Zhu, Q.; Chen, B. Fuzzy-ball Drilling Fluid Technology in CBM of Multilateral Horizontal Well Qinping 12-11-3H with Six Branch Holes. Oil Drill. Prod. Technol. 2014, 36, 39–41. [Google Scholar] [CrossRef]
- Tao, X.; Zheng, Z.; Yu, H.; Liu, H.; Li, Y.; Zhang, J.; Liu, J.; Zheng, L. Internal Blocking and Bonding to Strengthen the Mechanical Properties and Prevent Collapse and Leakage of Fragmented Coalbed Methane (CBM) Reservoirs by Cohesive Drilling Fluids. Geoenergy Sci. Eng. 2024, 241, 213136. [Google Scholar] [CrossRef]
- Jiang, J.; Zhai, X.; He, J.; Geng, Y.; Cui, J.; Wei, P. Application of A Fuzzy-Ball Temporary Plugging Agent to the Diverting Fracturing of Deep Carbonate Reservoirs. Nat. Gas Ind. 2019, 39, 81–87. [Google Scholar]
- Zhu, P.W. Effects of Sodium Dodecyl Sulfate on Structures of Poly(N-Isopropylacrylamide) at the Particle Surface. J. Phys. Chem. B 2015, 119, 359–371. [Google Scholar] [CrossRef]
- Awan, F.U.R.; Keshavarz, A.; Akhondzadeh, H.; Al-Anssari, S.; Al-Yaseri, A.; Nosrati, A.; Ali, M.; Iglauer, S. Stable Dispersion of Coal Fines during Hydraulic Fracturing Flowback in Coal Seam Gas Reservoirs—An Experimental Study. Energy Fuels 2020, 34, 5566–5577. [Google Scholar] [CrossRef]
- Lou, Z.; Li, S.; Fan, A.; Du, Z.; Song, X. Experimental Evaluation and Field Application of Pre-Cross Linked Polymer Particle Flooding in Eastern Wenliu block 25 of Zhongyuan oilfield. J. Southwest Pet. Univ. (Sci. Technol. Ed.) 2012, 34, 125–132. [Google Scholar]
- Wang, X.; Gan, M.; Yang, X.; Zhang, P.; Peng, X.; Ju, Y.; Kou, Y.; Yu, X.; Zheng, L.; Wang, C. Mechanism of Enhanced Oil Recovery by Fuzzy-Ball Fluid as a Novel Oil-Displacement Agent. Energy Rep. 2023, 9, 1447–1463. [Google Scholar] [CrossRef]
- Song, J.; Li, Y.; Wang, H. Oil-Displacing Efficiency of Polymer Flood and Successive Permeability Control and Polymer Flood Determined on Three-Dimensional Heterogeneous Physical Models. Oilfield Chem. 2002, 19, 162–166. [Google Scholar] [CrossRef]
- Yan, Z.; Okere, C.J.; Zeng, X.; Yao, Z.; Su, G.; Gan, M.; Fu, Y.; Tao, X.; Zheng, L. Preventing Sour Gas Kicks during Workover of Natural Gas Wells from Deep Carbonate Reservoirs with Anti-Hydrogen Sulfide Fuzzy-Ball Kill Fluid. Energy Sci. Eng. 2022, 10, 2674–2688. [Google Scholar] [CrossRef]
- Mandal, B.P.; Biswas, A.K.; Bandyopadhyay, S.S. Selective Absorption of H2S from Gas Streams Containing H2S and CO2 into Aqueous Solutions of N-Methyldiethanolamine and 2-Amino-2-Methyl-1-Propanol. Sep. Purif. Technol. 2004, 35, 191–202. [Google Scholar] [CrossRef]
- Zeng, H.; Zhu, F.; Zhang, W.; Zhang, Z.; Liu, Z.; Cai, N. Application of Fuzzy-Ball Workover Fluid Combined with Solid Plugging Agent to the Temporary Plugging of Deep Low-Pressure Gas Layers in Puguang Gas Field. Oil Drill. Prod. Technol. 2020, 42, 652–656. [Google Scholar] [CrossRef]
- Epelle, E.I.; Obande, W.; Udourioh, G.A.; Afolabi, I.C.; Desongu, K.S.; Orivri, U.; Gunes, B.; Okolie, J.A. Perspectives and Prospects of Underground Hydrogen Storage and Natural Hydrogen. Sustain. Energy Fuels 2022, 6, 3324–3343. [Google Scholar] [CrossRef]
- Fang, W.; Ding, C.; Chen, L.; Zhou, W.; Wang, J.; Huang, K.; Zhu, R.; Wu, J.; Liu, B.; Fang, Q.; et al. Review of Hydrogen Storage Technologies and the Crucial Role of Environmentally Friendly Carriers. Energy Fuels 2024, 38, 13539–13564. [Google Scholar] [CrossRef]
- Chaturvedi, K.R.; Sinha, A.S.K.; Nair, V.C.; Sharma, T. Enhanced Carbon Dioxide Sequestration by Direct Injection of Flue Gas Doped with Hydrogen into Hydrate Reservoir: Possibility of Natural Gas Production. Energy 2021, 227, 120521. [Google Scholar] [CrossRef]
- Okere, C.J.; Sheng, J.J.; Ejike, C. Evaluating Reservoir Suitability for Large-Scale Hydrogen Storage: A Preliminary Assessment Considering Reservoir Properties. Energy Geosci. 2024, 5, 100318. [Google Scholar] [CrossRef]
- Amid, A.; Mignard, D.; Wilkinson, M. Seasonal storage of hydrogen in a depleted natural gas reservoir. Int. J. Hydrog. Energy 2016, 41, 5549–5558. [Google Scholar]
- Gomez Mendez, I.; El-Sayed, W.M.M.; Menefee, A.H.; Karpyn, Z.T. Insights into Underground Hydrogen Storage Challenges: A Review on Hydrodynamic and Biogeochemical Experiments in Porous Media. Energy Fuels 2024, 38, 20015–20032. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. CO2 Sequestration in Subsurface Geological Formations: A Review of Trapping Mechanisms and Monitoring Techniques. Earth Sci. Rev. 2024, 253, 104793. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Z.; Wu, S.; Yang, C.; Wang, Y.; Wu, Y. Potential Assessment and Development Obstacle Analysis of CCUS Layout in China: A Combined Interpretive Model Based on GIS-DEMATEL-ISM. Energy 2024, 310, 133225. [Google Scholar] [CrossRef]
- Hajiabadi, S.H.; Bedrikovetsky, P.; Borazjani, S.; Mahani, H. Well Injectivity during CO2 Geosequestration: A Review of Hydro-Physical, Chemical, and Geomechanical Effects. Energy Fuels 2021, 35, 9240–9267. [Google Scholar] [CrossRef]
- Barbosa Machado, M.V.; Delshad, M.; Sepehrnoori, K. Modeling Self-Sealing Mechanisms in Fractured Carbonates Induced by CO2 Injection in Saline Aquifers. ACS Omega 2023, 8, 48925–48937. [Google Scholar] [CrossRef]
- Sharmin, T.; Khan, N.R.; Akram, M.S.; Ehsan, M.M. A State-of-the-Art Review on Geothermal Energy Extraction, Utilization, and Improvement Strategies: Conventional, Hybridized, and Enhanced Geothermal Systems. Int. J. Thermofluids 2023, 18, 100323. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Larestani, A.; Nait Amar, M.; Hajirezaie, S. Application of Intelligent Models in Drilling Engineering. In Applications of Artificial Intelligence Techniques in the Petroleum Industry; Gulf Professional Publishing: Oxford, UK, 2020; pp. 229–278. [Google Scholar] [CrossRef]
Category | Fuzzy-Ball | Polymer-Based | Nanoparticle-Based | Conventional |
---|---|---|---|---|
Mechanism | - Self-adaption - Self-plugging | - Gel formation - High-viscosity plugging | - Pore throat plugging - Wettability alteration | - Physical blocking - Viscosity control |
Injectability | High (low viscosity) | Low (high viscosity) | Moderate | High |
Plugging efficiency | Excellent (selective) | Good | Limited (microscale) | Poor |
Adaptability | Excellent | Moderate | Good | Poor |
Cost | Moderate | Low | High | Low |
Environmental impact | Low (if designed properly) | Moderate to High | Low to Moderate | High (oil-based) |
Application range | Broad | Moderate | Narrow | Narrow |
Application | Key Mechanisms | Advantages | Performance Highlights |
---|---|---|---|
Drilling (FBDFs) |
|
|
|
Hydraulic fracturing (FTBFs) |
|
|
|
Improve oil recovery (FAFFs) |
|
|
|
Well workover (AFKFs) |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Okere, C.J.; Guo, Q.; Zheng, L. Fuzzy-Ball Fluids: Fundamentals, Mechanisms, and Prospects for Clean Energy and Oilfield Applications. Energies 2025, 18, 1592. https://doi.org/10.3390/en18071592
Jin L, Okere CJ, Guo Q, Zheng L. Fuzzy-Ball Fluids: Fundamentals, Mechanisms, and Prospects for Clean Energy and Oilfield Applications. Energies. 2025; 18(7):1592. https://doi.org/10.3390/en18071592
Chicago/Turabian StyleJin, Long, Chinedu J. Okere, Qin Guo, and Lihui Zheng. 2025. "Fuzzy-Ball Fluids: Fundamentals, Mechanisms, and Prospects for Clean Energy and Oilfield Applications" Energies 18, no. 7: 1592. https://doi.org/10.3390/en18071592
APA StyleJin, L., Okere, C. J., Guo, Q., & Zheng, L. (2025). Fuzzy-Ball Fluids: Fundamentals, Mechanisms, and Prospects for Clean Energy and Oilfield Applications. Energies, 18(7), 1592. https://doi.org/10.3390/en18071592